Supporting Information

Oxygen-vacancy-mediated $LaFe_{1-x}Mn_xO_{3-\delta}$ perovskite nanocatalysts for degradation of organic pollutants through enhanced surface ozone adsorption and metal doping effects

Shengzhe Wang^{a,b}, Peiwei Han^c, Ying Zhao^a, Wenjing Sun^a, Rui Wang^c, Xin Jiang^d, Chunyan Wu^d, Chenglin Sun^{a*}, Huangzhao Wei^{a,b*}

a. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

P.R. China

b. University of Chinese Academy of Sciences, Beijing 100049, P.R. China

c. Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology/College of Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, Beijing, China

d. Beijing North Energy Conservation Environment Protection Co. Ltd., Beijing 100070, China

Corresponding Authors: Chenglin Sun (clsun@dicp.ac.cn); Huangzhao Wei (whzhdicpwtg@dicp.ac.cn)

There was 15 pages in this SI file, including 1 text, 6 tables and 13 figures.

Text S1. Iodometric titration method

Iodometric titration was carried out to investigate the content of oxygen vacancy of the perovskite-based catalysts ¹⁻². Briefly, 20 mg of $LaFe_{1-x}Mn_xO_{3-\delta}$ catalyst was dissolved in 6mL of 4 M HCl followed by adding 10 mL of degassed deionized water for dilution in a sealed two-neck round-bottom flask under N₂ atmosphere. The mixture solution was kept stirred and degassed with N₂ for another 15 min. Then 8 mL of 1 M KI solution made in degassed deionized water was injected into the flask. The solution was then titrated with 0.01 M Na₂S₂O₃ solution.

It is assumed that the amount of La and Mn in the samples is in a stoichiometric 1:1 ratio, and that La has the oxidation state of La^{3+} and Mn can exist in the oxidation states of Mn^{2+} , Mn^{3+} and Mn^{4+} . Therefore, the chemical formula of $LaFe_{1-x}Mn_xO_{3-\delta}$ can be expressed as follows.

And Fe and Mn share the oxidation states of 2+, 3+ and 4+, where M represents the B site metals.

$$La^{3+}Mn^{3+}_{(1-\alpha-\beta)}Mn^{4+}_{\alpha}Mn^{2+}_{\beta}O_{3-\delta} \qquad \qquad \text{Eq. (S1)}$$

 δ and $\alpha - \beta$ fulfill the following relationship to achieve the charge neutrality.

$$\delta = (0.5 - \alpha + \beta)/2 \qquad \text{Eq. (S2)}$$

By dissolving in HCl solution and react with KI:

$$2Fe^{3+}/Mn^{3+} + 2Cl^{-} \rightarrow Cl_{2} + 2Fe^{2+}/Mn^{2+}$$
Eq. (S3)
$$Mn^{4+} + 2Cl^{-} \rightarrow Cl_{2} + Mn^{2+}$$
Eq. (S4)
$$Cl_{2} + 2l^{-} \rightarrow 2Cl^{-} + I_{2}$$
Eq. (S5)

The iodine was titrated with a standard solution of sodium thiosulphate according to the reaction below.

$$2S_2O_3^{2-} + I_2 \rightarrow 2I^- + S_4O_6^{2-}$$
 Eq. (S6)

The amount of iodine (mol) formed in this reaction is

$$[I_2] = 0.5[Fe^{3+}/Mn^{3+}] + [Mn^{4+}]$$

= 0.5(1 - \alpha - \beta)m/M + \alpha m/M Eq. (S7)

where $[Fe^{3+}/Mn^{3+}]$ and $[Mn^{4+}]$ in molar concentrations and M (g/mol) and m (g) are the molar weight and the mass of LaFe_{1-x}Mn_xO_{3- δ}, respectively. In LaFe_{1-x}Mn_xO_{3- δ}, M depends on the contents of oxygen as

$$M = M_0 - m_1 \delta$$
 Eq. (S8)

where $M_0=241.84-242.75$ g/mol is the molar weight of $LaFe_{1-x}Mn_xO_{3-\delta}$ when all manganese is in the trivalent state, and $m_1=15.9994$ g/mol is the atomic weight of oxygen. The amount of Cl_2 formed during titration is

$$[I_2] = CV/2 \qquad \qquad \text{Eq. (S9)}$$

where C is the concentration (mol/mL) and V is the volume (mL) of the $Na_2S_2O_3$ solution. Substituting (6) and (7) in (5) we will get

$$\delta = (CVM_0 - m) / (CVm_1 - 0.75m)$$
 Eq. (S10)

Phase name		LaMnO _{3-δ}	$LaFe_{0.26}Mn_{0.74}O_{3-\delta}$	$LaFe_{0.5}Mn_{0.5}O_{3\text{-}\delta}$	$LaFe_{0.74}Mn_{0.26}O_{3-\delta}$	LaFeO _{3-ð}
Crystal system		Rhombohedral	Rhombohedral	Rhombohedral	Rhombohedral	Orthorhombic
Space Group		R-3c	R-3c:H	R-3c	R-3c	Pbnm
	Rexp	2.50%	2.39%	2.24%	2.22%	1.83%
DVI	Rwp	3.35%	2.40%	2.26%	2.24%	1.95%
R-Values	Rp	2.28%	1.85%	1.74%	1.70%	1.54%
	GOF	1.34	1.00	1.01	1.01	1.06
	a (Å)	5.439 (6)	5.519 (5)	5.531 (7)	5.537 (6)	5.586 (6)
	b (Å)	5.439 (6)	5.519 (5)	5.531 (7)	5.537 (6)	5.515 (6)
	c (Å)	13.13 (6)	13.36 (9)	13.41 (5)	13.45 (3)	7.859 (8)
	α(°)	90	90	90	90	90
Cell parameters	β(°)	90	90	90	90	90
	γ(°)	120	120	120	120	90
	Volume(Å ³)	336.4	352.6	355.4	357.1	242.1
	Density (g/cm ³)	7.163	6.841	6.793	6.766	6.661

Table S1. XRD Spectrum refined table of $LaFe_{1-x}Mn_xO_{3-\delta}$

Theoretical phase	LaMnO _{3-ð}	$LaFe_{0.26}Mn0_{.74}O_{3-\delta}$	LaFe _{0.5} Mn _{0.5} O _{3-δ}	$LaFe_{0.74}Mn_{0.26}O_{3\text{-}\delta}$	LaFeO _{3-ð}
Actual phase	LaMnO _{3-δ}	$LaFe_{0.2546}Mn_{0.7454}O_{3\text{-}\delta}$	$LaFe_{0.4836}Mn_{0.5164}O_{3\text{-}\delta}$	$LaFe_{0.7285}Mn_{0.2715}O_{3\text{-}\delta}$	LaFeO _{3-δ}

Table S2. Comparison of refined and theoretical results of $LaFe_{1-x}Mn_xO_{3-\delta}$

Sample	La (wt.%)	Fe (wt.%)	Mn (wt.%)	O Calculated (wt.%)	O Theory (wt.%)
LaMnO _{3-ð}	58.60	-	22.25	19.16	19.84
$LaFe_{0.26}Mn_{0.74}O_{3\text{-}\delta}$	53.95	7.76	16.30	22.00	19.83
$LaFe_{0.5}Mn_{0.5}O_{3\text{-}\delta}$	53.86	15.25	12.67	18.23	19.85
$LaFe_{0.74}Mn_{0.26}O_{3-\delta}$	48.54	23.23	6.93	21.31	19.79
LaFeO _{3-δ}	44.95	39.03	-	16.03	9.77

Table S3. Element content of LaFe_{1-x}Mn_xO_{3-δ}

Comple	Fe ions based XPS studies			
Sampie	Fe ²⁺ (at. %)	Fe ³⁺ (at. %)	Fe ²⁺ /Fe ³⁺	
$LaFe_{0.26}Mn_{0.74}O_{3\text{-}\delta}$	69.44	30.56	2.27	
$LaFe_{0.5}Mn_{0.5}O_{3-\delta}$	65.36	34.64	1.89	
$LaFe_{0.74}Mn_{0.26}O_{3\text{-}\delta}$	63.29	36.71	1.72	
LaFeO _{3-ð}	62.50	37.50	1.67	

Table S4. LaFe_{1-x}Mn_xO_{3-δ} XPS-Fe

Table S5. LaFe_{1-x}Mn_xO_{3-δ} XPS-Mn

Sampla	Mn ions based XPS studies					
Sampre	Mn ³⁺ (at. %)	Mn ⁴⁺ (at. %)	Satellite (at. %)	Mn ³⁺ /Mn ⁴⁺		
LaMnO _{3-ð}	66.67	24.67	8.67	2.70		
$LaFe_{0.26}Mn_{0.74}O_{3\text{-}\delta}$	61.71	29.93	8.64	2.08		
$LaFe_{0.5}Mn_{0.5}O_{3\text{-}\delta}$	53.76	30.11	16.13	1.78		
$LaFe_{0.74}Mn_{0.26}O_{3-\delta}$	51.28	37.95	10.77	1.35		

Table S6. LaFe_{1-x}Mn_xO_{3-δ} XPS-O

Formula	O based XPS studies					
Sample	Lattice oxygen (at. %)	Oxidative oxygen species (at. %)	Oxygen vacancies (at. %)	Adsorption water (at. %)		
LaMnO _{3-ð}	51.81	9.84	33.16	5.18		
$LaFe_{0.26}Mn_{0.74}O_{3\text{-}\delta}$	34.13	18.25	39.68	7.94		
$LaFe_{0.5}Mn_{0.5}O_{3\text{-}\delta}$	47.17	5.19	33.96	13.68		
$LaFe_{0.74}Mn_{0.26}O_{3-\delta}$	55.25	7.18	32.04	5.52		
LaFeO _{3-δ}	46.95	14.08	27.23	11.74		

Figure S1. XRD Spectrum refined diagram of LaFe_{1-x}Mn_xO_{3-δ}

Figure S2. Nitrogen sorption isotherms of LaFe_{1-x}Mn_xO_{3-δ}

Figure S4. m-Cresol conversion on different catalysts

Figure S5. H₂-TPR of LaFe_{1-x}Mn_xO_{3-δ}

The reduction behaviors of the catalysts were examined by H₂-TPD experiments. It can be obtained that the reduction of MnO₂ mainly has four stages: reduction from MnO₂ to Mn₂O₃ at 280°C, reduction from Mn₂O₃ to Mn₃O₄ at 410°C, reduction from Mn₃O₄ to MnO at 480°C and reduced from MnO to Mn at 690°C ³. There are three main stages in the reduction of Fe₂O₃, reduction from Fe₂O₃ to Fe₃O₄ at 360°C, reduction from Fe₃O₄ to FeO at 580°C, and reduction from FeO to Fe at 670°C ⁴⁻⁵. The reduction of La₂O₃ mainly occurs at about 400-600°C. There are obvious reduction peaks in the H₂-TPR reduction curve of LaFe_{1-x}Mn_xO_{3-δ} catalysts. It can be proved that the synthesized material has good surface reducibility, so it can be inferred that the catalyst has good catalytic activity in the redox reaction.

S-10

Figure S9. SEM of LaFe_{0.26}Mn_{0.74}O_{3-δ} after continuous reaction

Figure S10. TEM of $LaFe_{0.26}Mn_{0.74}O_{3-\delta}$ after continuous reaction

Figure S11. HRTEM of $LaFe_{0.26}Mn_{0.74}O_{3\text{-}\delta}$ after continuous reaction

Figure S12. EDS mapping of $LaFe_{0.26}Mn_{0.74}O_{3\text{-}\delta}$ after continuous reaction

Figure S13. XRD of $LaFe_{0.26}Mn_{0.74}O_{3-\delta}$ after continuous reaction

References

- Laiho, R.,Lisunov, K.,Lähderanta, E.,Petrenko, P.,Salminen, J.,Stamov, V.,Stepanov, Y.
 P.,Zakhvalinskii, V. J. Phys. Chem. Solids, 2003, 64, 2313-2319.
- 2 Mefford, J. T., Hardin, W. G., Dai, S., Johnston, K. P., Stevenson, K. J. Nat. Mater., 2014, 13, 726.
- 3 Liu, Y., Dai, H., Du, Y., Deng, J., Zhang, L., Zhao, Z., Au, C. T. J. Catal., 2012, 287, 149-160.
- 4 Cheng, X., Li, K., Wei, Y., Zhu, X., Tian, D. Can. J Chem. Eng., 2017, 95, 1569-1578.
- 5 Carlsson, P. A., Skoglundh, M. Appl. Catal. B: Environ., 2011, 101, 669-675.