Supporting Information

Selective oxidation of alcohols by graphene-like carbon with electrophilic oxygen and integrated pyridinic nitrogen active

sites

Jiaquan Li, *a Hongqi Sun,^b Shaobin Wang, *c Yu Dong ^d and Shaomin Liu ^a

^a WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin

University, Perth, WA 6102, Australia.

- ^b School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia.
- ^c School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
- ^d School of Civil and Mechanical Engineering, Curtin University, Perth, WA, 6845, Australia.
- Corresponding authors:
- * Jiaquan Li (jiaquan.li@curtin.edu.au)
- * Shaobin Wang. <u>shaobin.wang@adelaide.edu.au</u>

Fig. S1. SEM images of (a) NG-600, (b) NG-700, (c) NG-800, (d) NG-900 and (e) NG-1000.

Fig. S2. SEM images of (a) NG(blank), (b) NG(AN), (c) NG(ACl) and (d) NG(MgN)

Fig. S3. Raman spectra of NG samples.

Fig. S4. Deconvolution of N1s XPS spectra of NG-600, NG-700, NG-800, NG-900 and NG-1000.

Fig. S5. Deconvolution of O1s XPS spectra of NG-600, NG-700, NG-800, NG-900 and NG-1000.

and NG-1000 derived from deconvolution of XPS spectra."										
Samples	Pyridinic N	Pyrrolic N	Quaternary N	Pyridine-N-oxide	NO_2	С=О	О=С-О	С-О	H_2O	
NG-600	5.5	9.1	6.9	1.2	0.6	1.7	3.2	3.3	1.0	
NG-700	6.7	7.9	1.7	0.5	1.1	3.1	4.6	2.2	0.2	
NG-800	3.6	5.6	1.4	0.8	1.0	2.8	4.4	1.6	0.4	
NG-900	1.7	2.5	1.1	0.6	1.3	2.9	4.3	2.0	0.6	
NG-1000	0.8	1.5	1.2	0.2	1.1	2.1	4.5	1.7	0.5	

Table S1. Composition of O and N species on NG-600, NG-700, NG-800, NG-900 and NG-1000 derived from deconvolution of XPS spectra.^a

^a The content of each N or O component is provided in atomic percentage.

Fig. S6. The effect of PMS concentration on the catalytic efficiency of BzOH oxidation with NG-800. Reaction conditions: 5 mg catalyst, 0.1 mmol BzOH, 5 mL acetonitrile/water (1:1, volume ratio), 50 °C, 5 h.

Fig. S7. The effect of reaction temperature on the catalytic efficiency of BzOH oxidation with NG-800. Reaction conditions: 5 mg catalyst, 0.1 mmol BzOH, 0.3 mmol PMS, 5 mL acetonitrile/water (1:1, volume ratio), 5 h.

Fig. S8. The effect of reaction time on the catalytic efficiency of BzOH oxidation with NG-800. Reaction conditions: 5 mg catalyst, 0.1 mmol BzOH, 0.3 mmol PMS, 5 mL acetonitrile/water (1:1, volume ratio), 50 °C.

Fig. S9. EPR spectra in the presence of DMPO (DMPO-'OH-●, DMPO- SO₄⁻-♦).

Table S2.	Comparison	of the	oxidation	efficiency	of benzyl	alcohol i	n this	work	with
the reporte	ed literatures.								

	Catalyst loading	Oxidant	T/ °C	t/h	Additive	BzOH	BzH	BzH yield/%	Ref
Entry	(relative to the mass of					conversion/	selectivity		
	BzOH)					%	/%		
1	Graphene oxide (200%)	$O_2/1$ atm	100	24	_	_	_	90	[1]
2	NCNT (2%)	$O_2/15 \ atm$	130	8	_	44.7	94.1	_	[2]
3	N-graphene (300%)	$O_2/1 atm$	70	10	_	12.8	100	_	[3]
4	P-doped carbon (80%)	Air/1 atm	120	5	_	_	_	99.7	[4]
5	AuPd bimetal (0.5%)	$O_2/8 atm$	110	1	_	83	70	_	[5]
6	NiFe ₂ O ₄ (10%)	TBHP	60	3	_	_	_	85	[6]
7	Au/Al ₂ O ₃ (2.5%)	TBHP	125	5	_	89.9	89.2	_	[7]
8	N-nanodiamond (5%)	TBHP	70	24	_	88.5	99	_	[8]
9	_	PMS	_	3	NaBr	_	_	87	[9]
10	Carbon nanotubes (50%)	PMS	50	5	_	57.1	84.3	48.1	[10]
11	NG (50%)	PMS	50	5	_	96.1	85.2	81.9	Herein

Fig. S10. The oxidation of BzH with NG-800 in acetonitrile/water 1:1 solvent (A/W) and ethanol/water 1:1 solvent (EtOH/W). Reaction conditions: 5 mg catalyst, 0.1 mmol BzH, 0.2 mmol PMS, 5 mL acetonitrile/water (1:1, volume ratio), 50 °C, 5 h.

References

[1] S. Presolski, M. Pumera, Graphene Oxide: Carbocatalyst or Reagent?, Angew. Chem. Int. Ed., 57 (2018) 16713-16715.

[2] J. Luo, H. Yu, H. Wang, H. Wang, F. Peng, Aerobic oxidation of benzyl alcohol to benzaldehyde catalyzed by carbon nanotubes without any promoter, Chem. Eng. J., 240 (2014) 434-442.

[3] J. Long, X. Xie, J. Xu, Q. Gu, L. Chen, X. Wang, Nitrogen-Doped Graphene Nanosheets as Metal-Free Catalysts for Aerobic Selective Oxidation of Benzylic Alcohols, ACS Catal., 2 (2012) 622-631.

[4] Z. Long, L. Sun, W. Zhu, G. Chen, X. Wang, W. Sun, P-Doped carbons derived from cellulose as highly efficient metal-free catalysts for aerobic oxidation of benzyl alcohol in water under an air atmosphere, Chem. Commun., 54 (2018) 8991-8994.

[5] P. Wu, Y. Cao, L. Zhao, Y. Wang, Z. He, W. Xing, P. Bai, S. Mintova, Z. Yan, Formation of PdO on Au–Pd bimetallic catalysts and the effect on benzyl alcohol oxidation, J. Catal., 375 (2019) 32-43.

[6] S. Iraqui, S.S. Kashyap, M.H. Rashid, NiFe2O4 nanoparticles: an efficient and reusable catalyst for the selective oxidation of benzyl alcohol to benzaldehyde under mild conditions, Nanoscale Advances, 2 (2020) 5790-5802.

[7] M.J. Ndolomingo, R. Meijboom, Selective liquid phase oxidation of benzyl alcohol to

benzaldehyde by tert-butyl hydroperoxide over γ -Al2O3 supported copper and gold nanoparticles, Appl. Surf. Sci., 398 (2017) 19-32.

[8] Y. Lin, Z. Liu, Y. Niu, B. Zhang, Q. Lu, S. Wu, G. Centi, S. Perathoner, S. Heumann, L. Yu, D.S. Su, Highly Efficient Metal-Free Nitrogen-Doped Nanocarbons with Unexpected Active Sites for Aerobic Catalytic Reactions, ACS Nano, 13 (2019) 13995-14004.

[9] B.-S. Koo, C.K. Lee, K.-J. Lee, OXIDATION OF BENZYL ALCOHOLS WITH OXONE® AND SODIUM BROMIDE, Synth. Commun., 32 (2002) 2115-2123.

[10] J. Li, M. Li, H. Sun, Z. Ao, S. Wang, S. Liu, Understanding of the Oxidation Behavior of Benzyl Alcohol by Peroxymonosulfate via Carbon Nanotubes Activation, ACS Catal., 10 (2020) 3516-3525.