Supporting Information

Layered (n-C₄H₉NH₃)₂CsAgBiBr₇ Perovskite for Bipolar Resistive Switching Memory with High ON/OFF Ratio

So-Yeon Kim, June-Mo Yang, Sun-Ho Lee and Nam-Gyu Park*

School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea

*Corresponding author

E-mail: npark@skku.edu

Figure S1. Resistance vs number of cycles with compliance current as a parameter for the BA₂CsAgBiBr₇ based memristor.

Figure S2. Reproducibility test of different 50 cells in one device. (a) The resistance values of HRS and LRS are read at the +0.02 V during DC voltage sweeps at the forming step. (b) Cumulative probability of the resistance values. (c) Statistical SET and RESET voltages. All sweeps in 50 cells were measured at the same applied voltages of +3.0 V for electroforming processes and -1.0 V for RESET processes.

Figure S3. Reproducibility test of different 10 devices. (a-c) Forming process and (d-f) the next SET and REST processes. (a,d) The resistance values of HRS and LRS read at the +0.02 V during DC voltage sweeps. (b,e) Cumulative probability of the resistance values. (c,f) Statistical SET and RESET voltages. All sweeps in 10 devices were measured at the same applied voltages of +3.0 V for the forming process, +0.5 V and -0.1 V for the next SET and RESET processes.

Figure S4. Dependence of HRS and LRS on the area of top Ag electrode. Black empty circles were read at +0.02 V at forming SET step and colored triangles at SET process after forming of the Ag/BA₂CsAgBiBr₇/Pt device.

Figure S5. I-V characteristics of the BA₂CsAgBiBr₇-based device with an Au top electrode.

Figure S6. (a) Log-log plot of the I-V data for electroforming process. (b) I-V data for LRS, showing ohmic conduction. (c) I-V data for HRS, showing Schottky conduction.

Figure S7. (a) Temperature-dependent HRS. (b) Linear fit of $\ln(I/T^2)$ versus 1000/T read at 0.05 V, 0.10 V and 0.15 V.

Figure S8. I-V characteristics of Ag/BA₂CsAgBiBr₇/Pt device at high temperature at 150 °C.

(hkl)	2 theta (degree)	d (Å)	I/I ₀
001	4.55	19.4046	100
002	9.10	9.7099	2.8
003	13.66	6.4771	11.7
004	18.24	4.8597	7.7
005	22.86	3.8870	1.0
006	27.51	3.2396	19.8
007	32.21	2.7768	35.5
008	36.97	2.4295	7.0

Table S1. Powder XRD data of BA₂CsAgBiBr₇

Table S2. Comparison of memristive performance parameters of the current work with the reported lead-free halide perovskites.

Device Structure	SET/RESET voltage (V)	ON/OFF ratio	Retention (s)	Endurance	Ref.
Ag/BA ₂ CsAgBiBr ₇ /Pt	+0.13/ -0.20	~107	2×10 ⁴	1000	This work
Au/Cs2AgBiBr6/ITO	+1.53/ -3.40	10 ³	105	1000	[1]
Au/Cs ₃ Bi ₂ I ₉ /ITO/PET	+0.3/ -0.5	10 ³	10^{4}	1000	[2]
Au/Rb ₃ Bi ₂ I ₉ /Pt	+0.09/ -0.48	107	103	200	[3]
Au/Cs ₃ Bi ₂ I ₉ /Pt	+0.1/ -0.63	106	10 ³	400	[3]
Ag/PMMA/CsSnI ₃ /Pt	+0.13/ -0.08	7×10^{3}	7×10^{3}	600	[4]
Au/PMMA/CsSnI ₃ /Pt	+0.5/ -1.5	10 ³	-	120	[4]
Al/CsBi ₃ I ₁₀ /ITO	-1.7/+0.9	10 ³	10^{4}	150	[5]
Au/MA3Bi2I9/ITO	+1.6/ -0.6	10 ²	10^{4}	300	[6]
Ag/PMMA/MA ₃ Sb ₂ Br ₉ /ITO	-0.5/ +0.37	10 ²	104	300	[7]
Ag/PMMA/(BzA) ₂ CuBr ₄ /Pt	+0.2/ -0.3	~108	10 ³	~2000	[8]

References

[1] X.-F. Cheng, W.-H. Qian, J. Wang, C. Yu, J.-H. He, H. Li, Q.-F. Xu, D.-Y. Chen, N.-J. Li, J.-M. Lu, *Small* 2019, **15**, 1905731.

[2] Y. Hu, S. Zhang, X. Miao, L. Su, F. Bai, T. Qiu, K. Liu, G. Yuan, *Adv. Mater. Interfaces* 2017, **4**, 1700131.

[3] C. Cuhadar, S.-G. Kim, J.-M. Yang, J.-Y. Seo, D. Lee, N.-G. Park, ACS Appl. Mater. Interfaces 2018, **10**, 29741-29749.

[4] J. S. Han, Q.V. Le, J. Choi, H. Kim, S. G. Kim, K. Hong, C.W. Moon, T. L. Kim, S.Y. Kim, H.W. Jang, *ACS Appl. Mater. Interfaces* 2019, **11**, 8155-8163.

[5] Z. Xiong, W. Hu, Y. She, Q. Lin, L. Hu, X. Tang, and K. Sun., *ACS Appl. Mater. Interfaces* 2019, **11**(33), 30037-30044.

[6] B. Hwang, J.-S. Lee, Nanoscale 2018, 10, 8578-8584.

[7] J.-M. Yang, E.-S. Choi, S.-Y. Kim, J.-H. Kim, J.-H. Park, N.-G. Park, *Nanoscale* 2019, **11**, 6453-6461.

[8] S.-Y. Kim, J.-M. Yang, E.-S. Choi, N.-G. Park, Adv. Funct. Mater. 2020, 30, 2002653.