Supporting Information (SI):

Fe₂P-encapsulated in carbon nanowalls decorated by welldispersed Fe₃C nanodots for efficient hydrogen evolution and oxygen reduction reaction

Liangliang Feng ^a, Xiao Zhang ^a, Jianfeng Huang ^{a,*}, Danyang He ^a, Xiaoyi Li ^a,

Qianqian Liu^a, Yongqiang Feng^a, Guodong Li^b, Guanghui Xu^c, Liyun Cao^{a,*}

^a School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi'an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China

^b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

^c Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China

E-mail: huangjf@sust.edu.cn; 2644245930@qq.com

Figure S1. XRD patterns of (a) Fe_3C and Fe_2P ; (b) sample-600, $Fe_2P@Fe_3C/CNTs$ -700 and sample-800; (c) sample-0.5C, $Fe_2P@Fe_3C/CNTs$ -1.0C and sample-1.5C; (d) sample-0.5P, $Fe_2P@Fe_3C/CNTs$ -1.0P and sample-1.5P.

Figure S2. SEM images of sample-0.5C.

Figure S3. SEM images of sample-1.5P.

Figure S4. SEM images of (a, b) Fe_3C , (c, d) Fe_2P , (e, f) sampe-800, (g, h) sample-1.5C and (i, j) sample-0.5P.

Figure S5. (a) TEM image of $Fe_2P@Fe_3C/CNTs$; (b, c) High-resolution TEM images of $Fe_2P@Fe_3C/CNTs$.

Figure S6. (a) The survey spectrum of $Fe_2P@Fe_3C/CNTs$. High-resolution XPS spectra: (b) Fe 2p, (c) P 2p, (d) N 1s and (e) C1s of $Fe_2P@Fe_3C/CNTs$, Fe_3C and Fe_2P .

Figure S7. (a) HER Polarization curves of sample-600, $Fe_2P@Fe_3C/CNTs$ -700 and sample-800. (b) HER Polarization curves of sample-0.5C, $Fe_2P@Fe_3C/CNTs$ -1.0C and sample-1.5C. (c) HER Polarization curves of sample-0.5P, $Fe_2P@Fe_3C/CNTs$ -1.0P and sample-1.5P. (d) The potentials of $Fe_2P@Fe_3C/CNTs$, Fe_3C , Fe_2P , sample-800, sample-1.5C and sample-0.5P at 10 mA/cm² (E_{10}) and 100 mA/cm² (E_{100}).

Figure S8. Electrochemical impedance spectroscopy (EIS) Nyquist plots of Fe₂P@Fe₃C/CNTs, Fe₃C, Fe₂P, sample-800, sample-1.5C and sample-0.5P.

Figure S9. CV curves of (a) Fe_3C , (b) Fe_2P , (c) sample-800, (d) sample-1.5C and (e) sample-0.5P. (f) Electrochemical double-layer capacitance (C_{dl}) of $Fe_2P@Fe_3C/CNTs$, Fe_3C , Fe_2P , sample-800, sample-1.5C and sample-0.5P.

Figure S10. The enlarged XRD pattern of Fe₂P@Fe₃C/CNTs.

Figure S11. High-resolution XPS spectra: (a) Survey, (b) Fe 2p, (c) P 2p, (d) N 1s and (e) C 1s of $Fe_2P@Fe_3C/CNTs$ after the stability test of i-t curve for 200 h at pH 14.

Figure S12. (a) ORR LSV curves of sample-600, $Fe_2P@Fe_3C/CNTs$ -700 and sample-800; (b) ORR LSV curves of sample-0.5C, $Fe_2P@Fe_3C/CNTs$ -1.0C and sample-1.5C; (c) ORR LSV curves of sample-0.5P, $Fe_2P@Fe_3C/CNTs$ -1.0P and sample-1.5P; (d) Onset potential (E_{oneset}) and half-wave potential ($E_{1/2}$) of $Fe_2P@Fe_3C/CNTs$, Fe_3C , Fe_2P , sample-800, sample-1.5C and sample-0.5P in O₂-saturated 0.1 M KOH solutions with a rotation speed of 1600 rpm and a sweep rate of 10 mV/s.

Figure S13. I-t curves obtained for ORR with Fe₃C and Fe₂P in 0.1 M KOH solutions.

Table S1. Summary of the potentials for all the compared electrocatalysts at 10

$mA/cm^{2}(E_{10})$	and 100 mA/cm ²	$(E_{100}).$
---------------------	----------------------------	--------------

	E ₁₀ (V vs. RHE)	E ₁₀₀ (V vs. RHE)
Fe ₂ P@Fe ₃ C/CNTs	83 mV	364 mV
sample-600	497 mV	702 mV
sample-800	181 mV	312 mV
sample-0.5C	580 mV	685 mV
sample-1.5C	303 mV	433 mV
sample-0.5P	305 mV	425 mV
sample-1.5P	329 mV	462 mV
Fe ₃ C	383 mV	622 mV
Fe ₂ P	400 mV	593 mV
25% Pt/C	28 mV	183 mV
Pure GCE	1530 mV	1787 mV

Table S2. The details for calculated fractions of each iron species in the Fe 2p XPS spectrum.

Fraction of	Fe-C [%]	Fe-P [%]	Fe ²⁺ [%]	Fe ³⁺ [%]	Satellite
each iron species		101 [/0]		10 [/0]	Succince
Fe ₂ P@Fe ₃ C/CNTs	5.55	4.39	61.87	13.59	14.60
Fe ₂ P@Fe ₃ C/CNTs-	4 44	5 53	32 78	52 54	4 71
200h		2.00	52.70	.2	/ 1

Catalysts	E ₁₀ (V vs. RHE)	Tafel slope (mV/dec)	stability	Reference
Fe ₂ P@Fe ₃ C/CNTs	83	53	200 h	This work
Ni-GF/Fe ₃ C	93	63	20 h	Adv. Energy Mater. 2020, 10, 2002260
FNP	235	76	16 h	Chemical Engineering Journal 390 (2020) 124515
Ni ₂ P-Fe ₂ P/NF	128	86	24 h	Adv. Funct. Mater. 2020, 2006484
Fe ₃ C-Co/NC	238	108.8		Adv. Funct. Mater. 2019, 29, 1901949
Fe ₃ C@G	264		14 h	Applied Catalysis B: Environmental 248 (2019) 277-285
NHPBAP	121	67	20 h	Adv. Energy Mater. 2018, 1800484
Fe ₅ C ₂ -Fe ₃ C@NC	209	155	1000 cycles	Dalton Trans., 2019,48, 4636-4642
Fe ₃ C/Mo ₂ C-1:2	172	87.8	50 h	ChemSusChem 2020,13,5280-5287
P9.03%-(Ni, Fe) ₃ S ₂ /NF	98	88	15 h	ACS Appl. Mater. Interfaces 2019, 11, 27667-27676
Fe ₂ P/CoP/Ni ₅ P ₄ /RGO	57	47	24 h	ACS Sustainable Chem. Eng. 2019, 7, 13523-13531
0.75-NC-Fe _x P	193	60		ChemElectroChem 2019, 6, 3437-3444
CoFeSP/CNT	130	70	50 h	Electrochimica Acta 318 (2019) 892-900
Ni ₂ P/Fe ₂ P/NF	115	193.6	20 h	Journal of Colloid and Interface Science 541 (2019) 279-286
FeCNFs-NP	~250	100		Journal of Power Sources 413 (2019) 367-375
CoFeP NFs/NPCNT	137	64.1	40 h	Nanoscale, 2019, 11, 17031- 17040
Ni(OH) ₂ -Fe ₂ P/TM	76	105	20 h	Chem. Commun., 2018, 54 , 1201-1204

Table S3. Comparison of HER performance of this work with recently reportedsimilar catalysts in 1.0 M KOH.

Catalysts	E _{onset} (V vs. RHE)	E _{1/2} (V vs. RHE)	n ^{a)}	Reference
Fe ₂ P@Fe ₃ C/CNTs	1.06	0.93	3.95	This work
Fe/Fe ₃ C@NC-G-2	0.97	0.88	3.98	Chemical Engineering Journal 401 (2020) 126001
Fe ₃ C@MHNFs		0.9	about 4	J. Mater. Chem. A, 2020,8, 18125-18131
Fe ₂ N/C	1	0.86	3.97	Nano Research 14, 122-130 (2021)
CNC0-5@Fe-2	0.971	0.861	3.9	Applied Catalysis B: Environmental 261 (2020) 118224
C-ZIF/LFP	0.98	0.88	3.92	Nano Research 13, 818–823 (2020)
CNS-900	0.976	0.844	3.96	J. Mater. Chem. A, 2019, 7, 11321-11330
Fe ₂ P/NPC	0.997	0.872	3.95~3.99	Carbon 158 (2020) 885-892
Fe ₃ C-Co/NC	0.94	0.885	3.9	Adv. Funct. Mater. 2019, 29, 1901949
Fe ₃ C/NCNF	1.012	0.873	~3.98	Carbon 142 (2019) 115-122
Fe-NSDC	0.96	0.84	above 3.8	Small 2019, 1900307
Fe ₃ C/Fe ₂ O ₃ @NGNs		0.86	3.94	Carbon 146 (2019) 763-771
Fe ₃ C@Fe,N,S-GCM	0.98	0.779	3.92	Carbon 150 (2019) 93-100
Fe ₃ C@NP-PCFs	0.9037	0.8015	~3.98	J. Mater. Chem. A, 2019, 7, 17923-17936
Fe ₃ C@NSC/900	1.059	0.938	3.94~3.97	J. Mater. Chem. A, 2019, 7, 16920-16936
Fe-SAs/Fe ₃ C-Fe@NC		0.93	3.9	Small 2019, 1906057
FeS/Fe ₃ C@NS-C-900	1.03	0.78	3.93	ACS Appl. Mater. Interfaces 2020, 12, 44710-44719
Fe/N/C-1000-0.05	0.98	0.86		ACS Sustainable Chem. Eng. 2020, 8, 3208-3217
CoFe/FeNC		0.832	3.98	ACS Sustainable Chem. Eng. 2020, 8, 9009-9016
Fe-NCNWs		0.91	3.98	ACS Catal. 2019, 9, 5929-5934
D-BNGFe-2-900	0.95	0.82	3.96	ACS Sustainable Chem. Eng. 2019, 7, 19104-19112

Table S4. Comparison of ORR performance of this work with recently reportedsimilar catalysts in 0.1 M KOH.

FeCN-S-800	0.91	0.76	3.99	ACS Sustainable Chem. Eng. 2019, 7, 3185-3194
Fe/Fe ₃ C@NC/CB	0.93	0.83	3.91~4.00	Journal of Materials Science & Technology 35 (2019) 2543- 2551
C-FeTA@g-C ₃ N ₄ -950-0.5	0.99	0.86	3.9	Journal of Power Sources 417 (2019) 117-124
Fe-N _x -C-1	0.93	0.85		Journal of Power Sources 412 (2019) 125-133
Fe-N/P-C-700	0.941	0.867	3.94	J. Am. Chem. Soc. 2020, 142, 2404-2412
Fe ₂ P(3 nm)@BC	0.96	0.82	3.9	Journal of Power Sources 435 (2019) 226770

^{a)} the electron transfer numbers (n).

Table. S5. Summary of Onset potential (E_{oneset}) and half-wave potential ($E_{1/2}$) for all the compared electrocatalysts in O₂-saturated 0.1 M KOH solutions with a rotation speed of 1600 rpm and a sweep rate of 10 mV/s.

	Eonset (V vs. RHE)	E _{1/2} (V vs. RHE)	I _d (mA/cm ²)
Fe ₂ P@Fe ₃ C/CNTs	1.060 V	0.930 V	4.4 mA/cm ²
sample-600	0.855 V	0.685 V	0.55 mA/cm^2
sample-800	1.025 V	0.865 V	3 mA/cm ²
sample-0.5C	0.775 V	0.645 V	0.7 mA/cm ²
sample-1.5C	1.020 V	0.910 V	4.5 mA/cm^2
sample-0.5P	1.055 V	0.875 V	2.5 mA/cm ²
sample-1.5P	0.805 V	0.805 V	1.0 mA/cm ²
Fe ₃ C	0.970 V	0.840 V	4 mA/cm ²
Fe ₂ P	0.830 V	0.665 V	0.65 mA/cm ²
25% Pt/C	1.040 V	0.870 V	2.75 mA/cm ²