Electronic Supplementary Information[†]

For

Phosphorus-decorated Mo-MXene/CQD hybrid: a 2D/0D architecture for bifunctional electrochemical water splitting

Atanu Panda^a, Hansang Kim^{a*}

^a Department of Mechanical Engineering, Gachon University, Gyeonggi-do 13120, Republic of Korea

Corresponding Authors

*E-mail: hskim70@gachon.ac.kr

Chemicals:

MAX phase of Mo₂AlC₂ were purchased from China (Beijing Dingsheng Brothers Technology

Co., Ltd). Phloroglucinol, Lithium floride (LiF), Monosodium phosphate (NaH₂PO₄), potassium hydroxide (KOH), 10% Nafion solution were purchased from Sigma- Aldrich (Canada) and used as received. High-purity Sulfuric acid, Sodium sulfate, hydrochloric acid was purchased from Sigma- Aldrich (Canada). Pure water was obtained using a NanoPure system and was used in the preparation of all solutions. Electrochemical experiments were carried out in 0.5 M (~pH 0) H₂SO₄ solution.

Characterizations:

The wide-angle powder X-ray diffraction (XRD) measurement was carried out on a Rigaku X-ray diffractometer (X-ray generator output: 3KW (target material Cu), 20-60kW, 2-60mA) with scan rate of 4°/min. The morphology of the catalysts was observed by field-emission scanning electron microscopy (FESEM) on a JEOL (JSM-7500F, 1.0nm at 15kV). The morphology of the sample was acquired on a Tecnai 2010 (Japan) transmission electron microscope (TEM) at 300 kV with resolution: 1.4Å (Fully embedded High Angle Annular Dark Field (HAADF) detector-HR STEM resolution). The Raman spectroscopy were analysed on Witec (Alpha 300M+) instrument fitted with 600 nm wavelength. X-ray photoelectron spectroscopy (XPS) was analyzed on an Multilab-2000 X-ray photoelectron spectroscopy were performed by using AVANCE III HD (400 MHz, Bruker, Germany, Spinning rate: 14 kHz,). All electrochemical experiments were performed in compact type electrochemical workstation ZIVE SP1 equipped with Smart Manager (SM) Software package.

Fig. S1. TEM and elemental mapping of 2D Mo-MXene sheet.

Fig. S2. EDAX analysis of Mo-MX/C/P hybrid.

Fig. S3. Fe-SEM of 2D Mo-MXene sheet.

Fig. S4. 1H proton NMR CQDs and Mo-MX/C/P hybrid.

Fig. S5. 13C NMR CQDs and Mo-MX/C/P hybrid.

Fig. S6. 31P NMR of Mo-MX/C/P hybrid.

Fig. S7. XPS survey spectra of (a) O1s for CQDs, Mo-MXene and Mo-MX/C/P; ((b)–(d)) High-resolution normalized XPS spectra for the following: (b) Mo 3d, (c) C 1s, (d) O 1s of Mo-MX/C hybrid.

Fig. S8. (a) HER polarization curves, (b) OER polarization curves of Mo-MX/60 % C.

Fig. S9. The exchange current density (j_0) for (a) HER and (b) OER.

Fig. S10. Fitted electronic circuit model obtained for EIS spectroscopy by using ZAMAN impedance electrochemical software.

Fig. S11. Double layer capacitance and respective CVs of (a) bare CPE electrode, (c) CQDs, (Mo-MXene), (e) Mo-MX/C and (g) Mo-MX/C/P hybrid from scan rate 20-120 mV s⁻¹.

The electrochemical surface area (ECSA) was calculated. using the following formula:

 $ECSA = C_{dl} / C_s$,

Where C_{dl} is double layer capacitance of electrode-electrolyte interaction. C_s is the specific capacitance and equal to 0.040 mF cm⁻². The roughness factor (RF) was calculated using the following relationship.

RF = ECSA / geometric area of the electrode

Where electrode geometric area is 1 cm².

Catalysts	Double layer	Electrochemical	Roughness factor
	capacitance (C _{dl})	active surface area	(RF)
		(ECSA)	
CPE	0.14 mF cm ⁻²	3.5	3.5
CQDs	8.8 mF cm ⁻²	220	220
Mo-MXene	9.1 mF cm ⁻²	227	227
Mo-MX/C	12.3 mF cm ⁻²	307	307
Mo-MX/C/P	65.1 mF cm ⁻²	1627	1627

Table S1: Summarization of electrochemical active surface area.

Fig. S12. (a) TEM and HR-TEM, (b) elemental mapping of Mo-MX/C/P hybrid after 10 hours durability test in $0.5 \text{ M H}_2\text{SO}_4$ solution.

Fig. S13. (a) XPS survey spectra. ((b)–(d)) High-resolution normalized XPS spectra for the following: (b) C 1s, (c) O 1s after HER, (d) O 1s after OER of Mo-MX/C/P hybrid.

Note: The XPS of post water electrolysis were done by using FTO as working electrode.

Table S2. Summary of Mo-based catalysts for electrochemical HER.

Catalyst	Loading amount mg/cm ²	Current density (mA cm ⁻²)	Overpotential (mV)	electrolyte	Reference
MoN	0.285	38.5	300	0.5 M H ₂ SO ₄	Chem. Sci. 2014, 5, 4615.
MoB	2.5	17	250	0.5 M H ₂ SO ₄	Angew. Chem. Int. Ed.2012, 51, 12703.

(MoS ₂) _{0.6} (SnO ₂) _{0.4} /rGO	0.27	10	263	0.5 M H ₂ SO ₄	ACS Appl. Mater. Interfaces.2017, 9, 8065.
Mo _{0.21} W _{0.79} S ₂	NA	10	346	0.5 M H ₂ SO ₄	Adv. Mater. Interfaces 2015, 2, 1500041
MoP/CF	NA	10	200	0.5 M H ₂ SO ₄	Appl. Catal. B-Environ. 2015, 164, 144.
MoS _{1.5} Se _{0.5}	0.18	10	383	0.5 M H ₂ SO ₄	Nanoscale 2014, 6, 12856
N, P-doped Mo ₂ C@C	0.9	10	141	0.5 M H ₂ SO ₄	ACS Nano 2016, 10, 9, 8851.
MoSx@Mo ₂ C	0.21	178	400	0.5 M H ₂ SO ₄	ACS Catal. 2015, 5, 6956.
MoC–Mo ₂ C	0.14	10	126	0.5 M H ₂ SO ₄	Chem. Sci. 2016, 7, 3399.
MoS ₂ /Mo ₂ CTx	NA	10	112	1 M KOH	Nanoscale, 2019, 11, 10992
Mo ₂ CTx/2H- MoS ₂	NA	10	119	1 M KOH	ACS Nano, 2020, 14, 16140
Mo-Mxene/C/P hybrid	0.25	10	58	0.5 M H ₂ SO ₄	This work