Ultrahigh-energy sodium ion capacitors enabled by enhanced intercalation

pseudocapacitance of self-standing Ti₂Nb₂O₉/CNF anodes

Liaona She^{1, 2}, Feng Zhang¹, Congying Jia¹, Liping Kang¹, Qi Li¹, Xuexia He¹, Jie Sun¹, Zhibin Lei¹, Zong-Huai Liu^{1*}

¹ Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China; Shaanxi Key Laboratory for Advanced Energy Devices; Xi'an, 710119, P. R. China; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China.

² Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China.

*Correspondence should be addressed to:

Prof. Zong-Huai Liu

School of Materials Science and Engineering, Shaanxi Normal University

Xi'an, Shaanxi, 710062, P. R. China

Tel: ++86-29-81530706

Fax: ++86-29-81530702

E-mail: <u>zhliu@snnu.edu.cn</u>

ORCID iD: 0000-0003-4263-0628

Fig. S1. XRD patterns of bulk KTiNbO₅, bulk HTiNbO₅, delaminated HTiNbO₅ slurry, and HTiNbO₅ nanosheets.

Fig. S2. FE-SEM images of bulk KTiNbO₅ (a), bulk HTiNbO₅ (b), HTiNbO₅ nanosheets (c), TEM image (inserted for the delaminated HTiNbO₅ nanosheets suspension) (d), AFM image (e), and the thickness profile (f) of the delaminated HTiNbO₅ nanosheets.

Fig. S3. SEM (a), TEM (b), and HRTEM (c) images of $Ti_2Nb_2O_9$.

Fig. S4. Cross-sectional morphology of $Ti_2Nb_2O_9/CNF$ film.

Fig. S5. XPS spectra of $Ti_2Nb_2O_9/CNF$ film: survey spectrum (a), high-resolution Nb 3d (b), and Ti 2p (c).

Fig. S6. SEM image of $Ti_2Nb_2O_9/CNF$ electrode after 2000 cycles at 1 A g⁻¹.

Fig. S7. CV curves at different scan rates (a) and b-value calculated through cathodic scan and peak currents (b) of $Ti_2Nb_2O_9$ electrode, the capacitive and diffusive contribution to the current density at 1 mV s⁻¹ of $Ti_2Nb_2O_9/CNF$ electrode (c), and capacitive-controlled contribution at different scan rates (d) of $Ti_2Nb_2O_9$ electrode.

Fig. S8. CV curve at 1 mV s⁻¹(a), galvanostatic charge and discharge curves at 0.05 A g^{-1} between 3.0-4.5 V(b),rate capability at different currentdensities (c), and cycling stability at 0.2 A g^{-1} (d) ofAC electrode.

The quasi-rectangular CV curve at 1 mV s⁻¹ and linear GCD curves at 0.05 A g⁻¹ indicate electric double-layer capacitive behavior of AC electrode. Its specific capacity at 0.05 A g⁻¹ is estimated to be 46 mAh g⁻¹, with outstanding rate capability and good cycling stability at 0.2 A g⁻¹ (\approx 95 % after 200 cycles).

Fig. S9. CV curves at different scan rates from 2 to 100 mV s⁻¹of $Ti_2Nb_2O_9/CNF//AC$ SIC.