Electronic Supplementary Information

Synthesis and Solution Isomerization of Water-Soluble Au9 Nanoclusters Prepared by Nuclearity Conversion of [Au₁₁(PPh₃)₈Cl₂]Cl

*William Ndugire and Mingdi Yan**

Department of Chemistry, University of Massachusetts Lowell, One University Ave., Lowell, MA 01854, USA

Contents

SYNTHESES

Synthesis of triphenylphosphine monosulfonate (TPPMS)

Scheme S1. Synthesis of triphenylphosphine monosulfonate (TPPMS).

Synthesis of TPPMS followed a reported procedure.¹ Fuming sulfuric acid (6 mL, 18-24% SO₃) was placed in a 100-mL, three-necked flask charged with a 60-mL dropping funnel, and cooled in an ice bath to 0° C. The ice bath as well as the reaction were stirred, and triphenylphosphine (PPh₃) (2.0 g, 7.6 mmol) was added rapidly. The reaction mixture was kept at 0 °C until PPh₃ had completely dissolved (2 hours). The mixture was then stirred at room temperature for 18 h. Afterwards, the reaction mixture was cooled again to 0 °C, and cold water (30 mL) was added dropwise with vigorous stirring. NaOH (7.5 M, ~25 mL) was used to bring the pH to 8. A white foam-like solid was observed during neutralization process. The product was filtered with little suction then transferred to a flask, and water (50 mL) was added. The recrystallization setup was then placed in the 4° C fridge. A white solid was observed at the bottom of the flask. The product was filtered and transferred to a flask with *n*-pentane (20 mL) and sonicated for 15 minutes to remove PPh₃. This process was repeated 3 times. The pentane was discarded and the white solid freeze dried to give the product as a white solid (2.0 g, 78%). ¹H NMR (400 MHz, D₂O): δ 7.69 (d, *J* = 7.16 Hz, 1H), 7.64 (d, *J* = 7.55 Hz, 1H), 7.17 (m, 12H). ³¹P NMR (162 MHz, D₂O): δ – 5.63 (s).

Synthesis of triphenylphosphine gold (I) chloride (Au(PPh₃)CI)

Scheme S2. Synthesis of Au(PPh₃)Cl. HAuCl_4 + PPh_3 + H_2O \longrightarrow EtOH Au(PPh₃)Cl + 3 HCl + O=PPh₃

Synthesis of Au(PPh₃)Cl followed a literature protocol.² Argon was bubbled into 95% ethanol for 15 min prior to use. Hydrogen tetrachloroaurate trihydrate (HAuCl₄·3H₂O, 0.64 g, 1.6 mmol) was placed in a two-necked 100mL flask which was then evacuated and backfilled twice with argon. Ethanol (10 mL) was added to the flask and stirred, forming a yellow solution. To this solution, PPh₃ (0.86 g, 3.3 mmol) in ethanol (30 mL) was added. The mixture was colorless briefly, before a white precipitate appeared. The reaction was then stirred for 2 minutes. The product was removed by filtering through a medium porosity glass frit, washed with diethyl ether (15 mL×3), and then dried in vacuo. The solid on the frit was dissolved with DCM, which was then concentrated

to ~5 mL and then precipitated slowly on ice by pentane (added at 5 mL/hr for 4 mL). The product formed was filtered and dried in a vacuum oven. The supernatant of precipitation was repurified in the similar manner. The purified product showed a single spot on TLC (1:3 hexanes/DCM, $R_f \sim 0.5$). The final product was obtained as a white solid (0.71 g, 89%). ¹H NMR (400 MHz, CDCl₃): δ 7.46 – 7.55 (m, 15H). ³¹P NMR (162 MHz, CDCl₃): δ 33.77.

Figure S1. ³¹P NMR spectrum of TPPMS in D₂O. A very small amount (<1%) of the oxide (36.44 ppm) is observed in the recrystallized TPPMS.

Figure S2. ³¹P NMR spectrum of Au(PPh₃)Cl in CDCl₃.

Figure S3. ¹H NMR spectrum of $[Au_{11}(PPh_3)_8Cl_2]$ Cl in CDCl₃.

Figure S4³¹P NMR spectrum of $[Au_{11}(PPh_3)_8Cl_2]Cl$ in CDCl₃.

Figure S6. ³¹P NMR spectrum of $[Au_9$ (TPPMS)₈]Cl₃ in D₂O.

Figure S7. ¹H NMR spectrum of 0.6 mM of [Au₉(DPPBA)₈]Cl₃ in D₂O with 20 mM NaOH.

 $\frac{80}{\text{ppm}}$ 180 160 140 120 100 60 40 0 -20 ${\bf 20}$

Figure S8. ³¹P NMR spectrum of $[Au_9(DPPBA)_8]Cl_3$ in D_2O with 20 mM NaOH.

Figure S9. 2D DOSY NMR spectrum of TPPMS in D₂O at 289.15 K. Chemical shifts (ppm) are shown on the xaxis and the diffusion coefficients (10⁻⁹ m² s⁻¹) on the y-axis of the DOSY plot.

Figure S10. 2D DOSY NMR spectrum of DPPBA in D₂O with 20 mM NaOH at 289.15 K. Chemical shifts (ppm) are shown on the x-axis and the diffusion coefficients (10⁻⁸ m² s⁻¹) on the y-axis of the DOSY plot.

Figure S12. ¹H NMR spectra of (A) TPPMS, and (B) [Au₉(TPPMS)₈]Cl₃ in D₂O. Peak assignments are aided by the 2D COSY spectrum (Fig. S14).

Figure S13. ¹H NMR spectra of (A) DPPBA and (B) [Au₉(DPPBA)₈]Cl₃ in D₂O with 20 mM NaOH. Peak assignments are aided by the 2D COSY spectrum (Fig. S15).

Figure S14. ¹H-¹H correlation spectra (COSY) of [Au₉(TPPMS)₈]Cl₃ in D₂O.

Figure S15¹H-¹H correlation spectra (COSY) of $[Au_9(DPPBA)_8]^{3+}$ in D₂O with 20 mM of NaOH.

ESI-MS SPECTRA

Figure S16. Experimental and simulated isotope peak pattern overlays of for 1528.33 $m/z = [Au_9(TPPMS)_8]^{3}$ ⁺ SO₃Na].

Figure S17. Experimental and simulated isotope peak pattern overlays of (A) 1053.81 m/z = [Au₉(DPPBA)₈ – 7H]⁴⁻, (B) 1539.04 m/z = [[Au₃(DPPBA)₃]²⁻ + 2H + CH₃O⁻] and (C) 2108.70 m/z = [Au₉(DPPBA)₈ – 5H]²⁻.

UV-VIS SPECTRA

Figure S19. UV-Vis spectrum of $[Au_9(TPPMS)_8]Cl_3$ in water (0.125 mg/mL).

Figure S20. UV-Vis spectrum of $[Au_9(DPPBA)_8]Cl_3$ in 20 mM NaOH (0.5 mg/mL).

Figure S21. UV-Vis spectra of $[Au_9(DPPBA)_8]Cl_3$ (0.25 mg/mL) in pH 3 water (dashed line), and in pH 3 MeOH/water (1:1) (solid line).

Figure S22. UV-Vis spectra of $[Au_9(DPPBA)_8]Cl_3 (0.25 mg/mL)$ in pH 5.5 water (dashed line) and in pH 5.5 MeOH/water (1:1) (solid line).

Figure S23. UV-Vis spectra of $[Au_9(DPPBA)_8]Cl_3 (0.25 mg/mL)$ in pH 12 water (dashed line) and in pH 12 MeOH/water (1:1) (solid line).

Figure S24. Absorption spectra of $[Au_9(DPPBA)_8]Cl_3$ in EtOH (20 mM NaOH), immediately after heating to 60 °C (red line) and after cooling to 15 °C (black line). The spectra were smoothed using an FFT filter function in OriginPRO to reduce noise.

Figure S25. Raw Vis-NIR absorption spectra of Au₉(DPPBA)₈Cl₃ in ethanol. An artifact present at 535 nm arises from the light source.

Figure S26. Au₉(TPPMS)₈Cl₃ in conc. HCl (86%, 9 M). No color change was detected. The suspension turned into a completely clear solution after 2 days.

Figure S27. Proposed C_4 'crown' isomer structure of Au₉(TPPMS)₈Cl₃. The structure shows Au in yellow, P in orange, S in greenish yellow, O in red and C in grey. H atoms are omitted for clarity. Structures were obtained by replacing P(C₆H₄OMe-*p*)₃ ligands in the *C₄* isomer in Ref. 3 (*cf* **Fig. 1A**) with TPPMS and minimizing the energy using the Universal force field algorithm (UFF) in Avogadro software.

Figure S28. Proposed structure of Au₉(DPPBA)₈Cl₃ as (A) the *C₄* (crown) isomer and (B) the *D_{2h}* (butterfly) isomer. The structures show Au in yellow, P in orange, O in red and C in grey. H atoms are omitted for clarity. Structures were obtained by replacing P(C₆H₄OMe-*p*)₃ ligands with DPPBA in the *C₄* and *D*_{2h} crystal structures in Ref. 3 (*cf* **Fig. 1**), and minimizing the energy using the universal force field algorithm (UFF) in the Avogadro software.

CYTOTOXICITY OF AuNCs AGAINST 3T3 CELLS.

Dose response curves were fitted using OriginPRO software.

Figure S29. Dose-response curves of $[Au_9(TPPMS)_8]Cl_3$ on 3T3 cells: experimental data (solid squares) and the fits (lines). Each data point was the average of 3 repeats.

Figure S30. Dose-response curves of $[Au_9(DPPBA)_8]Cl_3$ on 3T3 cells: experimental data (solid squares) and the fits (lines). Each data point was the average of 3 repeats.

Figure S31. Dose-response curves of DPPBA on 3T3 cells: experimental data (solid squares) and the fits (lines). Each data point was the average of 3 repeats.

Figure S32. Dose-response curves of TPPMS on 3T3 cells: experimental data (solid squares) and the fits (lines). Each data point was the average of 3 repeats.

Figure S33. Dose-response curves of [Au₉(TPPMS)₈]Cl₃ on A549 cells: experimental data (solid squares) and the fits (lines). Each data point was the average of 3 repeats.

Figure S34. Dose-response curves of $[Au_9(DPPBA)_8]Cl_3$ on A549 cells: experimental data (solid squares) and the fits (lines). Each data point was the average of 3 repeats.

Figure S35. Dose-response of TPPMS on A549 cells. Each data point was the average of 3 repeats. Data are insufficient to fit a sigmoidal curve.

Figure S36. Dose-response of DPPBA on A549 cells. Each data point was the average of 3 repeats. Data are insufficient to fit a sigmoidal curve.

REFERENCES

- 1. Karschin, A.; Kläui, W.; Peters, W.; Spingler, B., *Eur. J. Inorg. Chem.* **2010,** *2010* (6), 942-946.
- 2. Braunstein, P.; Lehner, H.; Matt, D.; Burgess, K.; Ohlmeyer, M. J., *Inorg. Synth.* **1990,** *10*, 218-221.
- 3. Briant, C. E.; Hall, K. P.; Mingos, D. M. P., *J. Chem. Soc., Chem. Commun.* **1984,** (5), 290-291.