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Figure S1 Based on the electric near-field distribution, a significant enhancement of the 

electric field (with more than 35-fold at the maximum position) at the resonance frequency 

point with L2 = 55 μm. 

 

Figure S2 (a, b) Distribution of electric and magnetic field components for bound states in 

the continuum (BIC). (c) The Ez distribution of the dimer microrods with the same size as 

a contrast. 



The defined building blocks of the metasurface is to be gold microrods trimer with adjustable 

mid-microrod length to enhance the near-filed amplitude of the Fano resonance. In the resonator, the 

electric and magnetic field distribution of the symmetry-protected BIC mode can be observed 

directly in the Figure S2(a,b), which is superior to the dimer microrods in the literature in the Figure 

S2(c). More importantly, one can find that the electric and magnetic field distributions of the BIC 

and quasi-BIC are similar by comparing Figure S2(a,b) and Figure 2(c,d), which indicate the 

quasi-BIC resonance inherits the BIC and Fano resonance is BIC-inspired. 

 

 

In the section, we would introduce the multipoles scattering method in detail. Electric Fano 

resonance is formed by the destructive interference between a leaky electric dipole resonance and a 

bounded toroidal dipole mode, thus resulting in the sharp resonance. Furthermore, to quantitatively 

analyze the cause of forming this high Q resonance, we integrate the electric current density over the 

surface of the PEC microrods through simulation. The obtained surface current describes the 

effective current that creates the scattered field from our PEC microrods. [a, b] We then perform the 

spherical multipolar decomposition using these calculated surface currents and obtained the 

contributions from different multipolar components. [c] Furthermore, based on the obtained current, 

we perform the Cartesian multipolar decomposition to obtain the contributions of electric dipole 

mode and toroidal dipole mode. [d] The following representations of the multipole distribution are 

based on the Cartesian basis ( , , ,x y z  = ). [e, f] 
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Where J is the surface current density, c is the speed of light in vacuum and r  is the displacement 

vector. We used the charge conservation relation 0iw J +  =  to eliminate the charge density (ρ) 

in favor of current density (J) in the electric dipole and quadrupole. 
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