Supporting Information

MOF-derived CoNi,CoO,NiO@N–C Bifunctional Oxygen Electrocatalysts for Liquid and All-Solid-State Zn–Air Batteries

Xinde Duan¹, Shuangshuang Ren¹, Fayuan Ge¹, Xukun Zhu², Mingdao Zhang² and Hegen Zheng^{1*}

¹State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, PR China

²School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, PR China

* Corresponding author

E-mail: zhenghg@nju.edu.cn

Figure S1. A schematic illustration for the synthesis of hierarchically porous

CoNi-CoO-NiO@NC-T.

Figure S2. Coordination mode of 1,4-di(1H-imidazol-1-yl)benzene in Co-MOF.

Figure S3. The 48-membered ring formed by four nearby H_6L molecules coordinating

to metal atoms in Co-MOF.

Figure S4. View of 2D architecture of Co-MOF.

Figure S5. SEM images of CoNi-CoO-NiO@NC-700 (a) and CoNi-CoO-NiO@NC-900 (b).

Figure S6. TEM images of CoNi-CoO-NiO@NC-700 (a, d),

CoNi-CoO-NiO@NC-800 (b, e), CoNi-CoO-NiO@NC-900 (c, f) after carbonization.

Figure S7. (a) N₂ adsorption-desorption isotherms for CoNi-CoO-NiO@NC-T (700, 900). (b) Related pore size distributions for CoNi-CoO-NiO@NC-T (700, 900).

Raman (c) and XRD (d) spectra of CoNi-CoO-NiO@NC-T (700, 900).

Figure S8. XPS spectra of CoNi-CoO-NiO@NC-T (700, 900).

Figure S9. The high resolution N 1s XPS spectra of CoNi-CoO-NiO@NC-700 (a)

and CoNi-CoO-NiO@NC-900 (b).

Figure S10. The high resolution Co 2p XPS spectra of CoNi-CoO-NiO@NC-T (700,

900).

Figure S11. The high resolution Ni 2p XPS spectra of CoNi-CoO-NiO@NC-T (700,

900).

Figure S12. The high resolution C 1s XPS spectra of CoNi-CoO-NiO@NC-T.

Figure S13. The high resolution O 1s XPS spectra of CoNi-CoO-NiO@NC-700 (a)

and CoNi-CoO-NiO@NC-900 (b).

Figure S14. The ORR polarization curves at different rotating rates of

CoNi-CoO-NiO@NC-700 (a), CoNi-CoO-NiO@NC-800 (b), and

CoNi-CoO-NiO@NC-900 (c).

Figure S15. CVs for CoNi-CoO-NiO@NC-700 (a), CoNi-CoO-NiO@NC-800 (b)

and CoNi-CoO-NiO@NC-900 (c) in the region of 0.95-1.05 V vs RHE. (d) The C_{dl}

measured by taking CV at different scan rates.

Figure S16. H₂O₂ yield and electron transfer number of CoNi-CoO-NiO@NC-800.

Figure S17. CVs for CoNi-CoO-NiO@NC-700 (a), CoNi-CoO-NiO@NC-800 (b) and CoNi-CoO-NiO@NC-900 (c) in the faradic capacitance current range at scan rates from 5 to 30 mV s⁻¹ in 0.1 M KOH. (d) The corresponding plot of oxidation

peak current versus the scan rate from CVs. (e) Plot of TOF for

CoNi-CoO-NiO@NC-T as a function of overpotential.

Figure S18. PXRD pattern of Co-CoO@NC-800.

Figure S19. SEM image of Co-CoO@NC-800.

Figure S20. (a, b) LSV curves of samples obtained at an RDE (1600 rpm).

Figure S21. Optimized atomic configurations of oxygen intermediates (OOH*, O*, and OH*) adsorbed on CoN₄, CoNiN₆, and CoNiN₆@OH (Ni site) models.

Figure S22. Discharging curves of the primary Zn-air batteries using

CoNi-CoO-NiO@NC-800 as ORR catalyst at a current density of 20 mA cm⁻².

Co-MOF					
Co(1)-N(1)#1	2.0649(15)	Co(1)-N(1)	2.0650(14)		
Co(1)-O(1)#1	2.1212(12)	Co(1)-O(1)	2.1212(12)		
Co(1)-O(9)#2	2.1341(12)	Co(1)-O(9)#3	2.1341(12)		
N(1)#1-Co(1)-N(1)	180.0	N(1)#1-Co(1)-O(1)#1	93.99(5)		
N(1)-Co(1)-O(1)#1	86.01(5)	N(1)#1-Co(1)-O(1)	86.01(5)		
N(1)-Co(1)-O(1)	93.99(5)	O(1)#1-Co(1)-O(1)	180.0		
N(1)#1-Co(1)-O(9)#2	90.30(5)	N(1)-Co(1)-O(9)#2	89.70(5)		
O(1)#1-Co(1)-O(9)#2	97.44(5)	O(1)-Co(1)-O(9)#2	82.56(5)		
N(1)#1-Co(1)-O(9)#3	89.70(5)	N(1)-Co(1)-O(9)#3	90.30(5)		
O(1)#1-Co(1)-O(9)#3	82.56(5)	O(1)-Co(1)-O(9)#3	97.44(5)		
O(9)#2-Co(1)-O(9)#3	180.00(6)				
Note: #1 -x+1,-y+1,-z; #2 x-1/2,-y+1/2,z-1/2; #3 -x+3/2,y+1/2,-z+1/2; #4					

Table S1. Selected bond lengths (Å) and angles (°) for Co-MOF.

-x+1,-y+2,-z; #5 -x+3/2,y-1/2,-z+1/2.

Sample	C1s (%)	N1s (%)	O1s (%)	Co2p (%)	Ni2p (%)
CoNi-CoO-NiO@NC-700	90.98	2.61	5.53	0.60	0.28
CoNi-CoO-NiO@NC-800	91.99	2.87	3.38	0.92	0.84
CoNi-CoO-NiO@NC-900	92.4	1.96	4.15	1.02	0.47

 Table S2. XPS spectra analysis for CoNi-CoO-NiO@NC-T samples.

Table S3. XPS spectra analysis for CoNi-CoO-NiO@NC-T samples of N 1s signal.

Sample	Pyridinic N	CoNi–N _x	Pyrrolic N	Graphitic N
CoNi-CoO-NiO@NC-700	397.5 eV,	398.9 eV,	399.7 eV,	400.2 eV,
	66.0%	22.4%	5.5%	6.1%
CoNi-CoO-NiO@NC-800	398.0 eV,	398.9 eV,	399.5 eV,	400.3 eV,
	49.0%	35.5%	6.4%	9.1%
CoNi-CoO-NiO@NC-900	397.2 eV,	398.6 eV,	399.8 eV,	400.8 eV,
	40.6%	28.6%	20.0%	10.8%

Table S4. Comparison of bifunctional catalytic performance in alkaline solution between

Catalysts	OER	ORR	$\triangle E$	Ref.
	performance	performance	[V]	
	Overpotential	$E_{1/2}$ [V]		
	[mV]			
CoNi-CoO-NiO@NC-800	352	0.83	0.75	This work
Cu@NCNT/Co _x O _y	370	0.82	0.78	[1]
Co@Co ₃ O ₄ /NC-2	410	0.74	0.9	[2]
ZnCo-PVP-900	420	0.83	-	[3]
CoDNi-N/C	360	0.81	0.78	[4]
FeCo/NC-800	440	0.8	-	[5]
Fe@N-C	480	0.83	-	[6]
CuCo ₂ O ₄ /N-CNTs	460	0.79	0.9	[7]
3DOM-Co@TiO _x N _y	385	0.84	-	[8]
Mo-N/C@MoS ₂	390	0.81	-	[9]
Co-BTC-bipy-700	400	0.79	0.84	[10]

CoNi-CoO-NiO@NC-800 and other previously reported catalysts.

Table S5. The ΔE_{ads} and ΔG_{ads} of oxygenated intermediates involved in OER/ORR processes

Intermediates	CoN ₄	CoNiN ₆	CoNiN ₆ (eV)	CoNiN ₆ (eV)
	(eV)	(eV)	(Co site)	(Ni site)
$\Delta E_{ m OH}*$	0.82	-0.05	0.93	0.90
$\Delta G_{ m OH}*$	0.86	0.23	1.59	1.55
$\Delta E_{\mathrm{O}}*$	3.21	0.73	2.75	2.64
ΔG_{O^*}	3.16	0.68	2.69	2.59
$\Delta E_{ m OOH}*$	3.79	3.44	4.06	3.80
$\Delta G_{ m OOH}*$	3.80	3.65	4.42	4.16

on CoN₄, CoNiN₆, and CoNiN₆@OH.

Catalyst	Current density (mA cm ⁻²)	Peak power density (mW cm ⁻²)	Ref.
CoNi-CoO-NiO@NC-800	310	223	This work
Co ₄ N/CNW/CC	250	174	[11]
FeNi-NC	115	80.8	[12]
NCNT/CoO-NiO-NiCo	-	102	[13]
S-GNS/NiCo ₂ S ₄	-	216	[14]
Co-MOF	150	86.2	[15]
CuCo ₂ O ₄ /N-CNTs	150	83.8	[7]
NiO/CoN PINWs	200	79.6	[16]
Fe _{0.5} Ni _{0.5} @N-GR	150	85	[17]
NCNF-1000	300	185	[18]
Co/CoO@Co-N-C	220	157	[19]

Table S6. The Peak power density of recently reported bifunctional electrocatalysts.

 Table S7. The rechargeable ZAB performance of recently reported bifunctional

Catalyst	Current density (mA cm ⁻²)	Number of cycle	Voltage gap increased (V)	Ref.
CoNi-CoO-NiO@NC-800	2	450	0.18	This work
NPMC-1000	2	180	0.7	[20]
N-GRW	2	160	0.16	[21]
Fe/N-C	10	100	0.16	[6]
RuO ₂ -coated MCNAs	2	100	0.1	[22]
Co-N,B-CSs	5	128	1.35	[14]
S,N-Fe/N/C-CNT	5	100	1	[15]
Co ₃ O ₄ -NP/N-rGO	5	118	0.87	[7]

ORR/OER electrocatalysts.

Reference

- X.L. Zhao, F.Li, R.N. Wang, J.M. Seo, H.J. Choi, S.M. Jung, J. Mahmood, I.Y. Jeon and J.B. Baek, *Adv. Funct. Mater.*, 2017, 27, 1605717.
- A. Aijaz, J. Masa, C. Rçsler, W. Xia, P. Weide, A.J.R. Botz, R.A. Fischer, W. Schuhmann and M. Muhler, *Angew. Chem. Int. Ed.*, 2016, 55, 4087-4091.
- C. Deng, K.H. Wu, J. Scott, S.M. Zhu, X.F. Zheng, R. Amal and D.W. Wang, ACS Appl. Mater. Interfaces, 2019, 11, 9925-9933.
- Z.H. Li, H.Y. He, H.B. Cao, S.M. Sun, W.L. Diao, D.L. Gao, P.L. Lu, S.S. Zhang, Z. Guo,
 M.J. Li, R.J. Liu, D.H. Ren, C.M. Liu, Y. Zhang, Z. Yang, J.K. Jiang and G.J. Zhang, *Appl. Catal. B Environ.*, 2019, 240, 112-121.
- 5. N. Wu, Y.P. Lei, Q.C. Wang, B. Wang, C. Han and Y.D. Wang, *Nano Res.*, 2017, **10**, 2332-2343.
- J. Wang, H.H. Wu, D.F. Gao, S. Miao, G.X. Wang and X.H. Bao, *Nano Energy*, 2015, 13, 387-396.
- 7. H. Cheng, M.L. Li, C.Y. Su, N. Li and Z.Q. Liu, Adv. Funct. Mater., 2017, 27, 1701833.
- G.H. Liu, J.D. Li, J. Fu, G.P. Jiang, G. Lui, D. Luo, Y.P. Deng, J. Zhang, Z.P. Cano, A. Yu, D.
 Su, Z.Y. Bai, L. Yang and Z.W. Chen, *Adv. Mater.*, 2019, **31**, 1970043.
- 9. I.S. Amiinu, Z.H. Pu, X.B. Liu, K.A. Owusu, H.G.R. Monestel, F.O. Boakye, H.N. Zhang and S.C. Mu, *Adv. Funct. Mater.*, 2017, **27**, 1702300.
- X.P. Sun, S.X. Sun, S.Q. Gu, Z.F. Liang, J.X. Zhang, Y.Q. Yang, Z. Deng, P. Wei, J. Peng, Y. Xu, C. Fang, Q. Li, J.T. Han, Z. Jiang and Y.H. Huang, *Nano Energy*, 2019, **61**, 245-250.
- 11. F.L. Meng, H.X. Zhong, D. Bao, J.M. Yan and X.B. Zhang, J. Am. Chem. Soc., 2016, 138,

10226-10231.

- 12. L. Yang, X.F. Zeng, D. Wang and D.P. Cao, Energy Storage Mater., 2018, 12, 277-283.
- X.E. Liu, M. Park, M.G. Kim, S. Gupta, G. Wu and J. Cho, *Angew. Chem. Int. Ed.*, 2015, 54, 9654-9658.
- W.W. Liu, J. Zhang, Z.Y. Bai, G.P. Jiang, M. Li, K. Feng, L. Yang, Y.L. Ding, T.W. Yu, Z.W. Chen and A.P. Yu, *Adv. Funct. Mater.*, 2018, 28, 1706675.
- G.B. Chen, J. Zhang, F.X. Wang, L.L. Wang, Z.Q. Liao, E. Zschech, K. Müllen and X.L.
 Feng, *Chem. Eur. J.*, 2018, 24, 18413-18418.
- J. Yin, Y.X. Li, F. Lv, Q.H. Fan, Y.Q. Zhao, Q.L. Zhang, W. Wang, F.Y. Cheng, P.X. Xi and S.J. Guo, ACS Nano, 2017, 11, 2275-2283.
- P.T. Liu, D.Q. Gao, W. Xiao, L. Ma, K. Sun, P.X. Xi, D.S. Xue and J. Wang, *Adv. Funct. Mater.*, 2018, 28, 1706928.
- 18. Q. Liu, Y.B. Wang, L.M. Dai and J.N. Yao, Adv. Mater., 2016, 28, 3000-3006.
- X. Zhang, R.R. Liu, Y.P. Zang, G.Q. Liu, G.Z. Wang, Y.X. Zhang, H.M. Zhang and H.J. Zhao, Chem. Commun., 2016, 52, 5946-5949.
- 20. J.T. Zhang, Z.H. Zhao, Z.H. Xia and L.M. Dai, Nat. Nanotechnol., 2015, 10, 444-452.
- H.B. Yang, J.W. Miao, S.F. Hung, J.Z. Chen, H.B. Tao, X.Z. Wang, L.P. Zhang, R. Chen, J.J. Gao, H.M. Chen, L.M. Dai and B. Liu, *Sci. Adv.*, 2016, **2**, e1501122.
- 22. Z.Y. Guo, C. Li, W.Y. Li, H. Guo, X.L. Su, P. He, Y.G. Wang and Y.Y. Xia, *J. Mater. Chem. A.*, 2016, **4**, 6282-6289.