Electronic Supplementary Information for Nanoscale

Coordination-directed self-assembly of molecular motor:

towards a two-wheel drive nanocar

Menglian Li,^a Shaorui Li,^a Kexin Zhang^{d,e}, Xin Chi,^a Hang Zhou,^a Hai-Bing Xu,^{*a,b} Yuexing Zhang,^a Quan Li^{*a}, Dong Wang^{d,e}, and Ming-Hua Zeng^{*a,c}

^a Prof. Dr. Q. Li, Prof. Dr. H. B. Xu, M. Li, S. Li, X. Chi, H. Zhou, Y. Zhang and Prof. Dr. M. H. Zeng

Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, P. R. China

E-mail: xhb@hubu.edu.cn; quanli@hubu.edu.cn

^b Prof. Dr. H. B. Xu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

^c Prof. Dr. M. H. Zeng

Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China

E-mail: zmh@mailbox.gxnu.edu.cn

^d K. Zhang and Prof. Dr. D. Wang

Key Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China

^e University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Table of Contents

1.	Synthesis1						
2.	Literature research						
3.	3. UV-Vis characterization of photochemical and THI Process						
	3.1	The selection of excitation wavelength on L and AgL_2 7					
	3.2	Calculation of quantum yields9					
	3.3	Kinetic studies of THI process10					
	3.4	Studies on fatigue resistance					
	3.5	Disassembly process of "two-wheel nanocar" monitored by UV-Vis					
	spect	roscopy12					
4	Fluor	rescence characterization					
5	NMR, ESI-MS and IR characterization14						
6	Crystal data of L and AgL ₂						
7	DFT calculation						
Ref	ference	e35					

1. Synthesis

Scheme S1. Synthesis of overcrowded alkene-based ligand motor L and its silver complex AgL₂.

Synthetic procedure

1,8-dimethoxynaphthalene (1)

1,8-dihydroxynaphthalene (0.8 g, 5 mmol) was dissolved in acetone (20 mL), then K₂CO₃ (3.46 g, 25 mmol) and methyl iodide (1.56 mL, 25 mmol) was added to the solution sequentially. The reaction mixture was refluxed for 24 h. The progress of the reaction was monitored by thinlayer chromatography. At the end of the reaction, the solution was acidified with dilute HCl (2 M, 20 mL) and extracted with CH₂Cl₂ (3 × 20 mL). The combined organic phases were washed with water and saturated NaCl, then dried over MgSO₄, and concentrated under vacuum. Finally, the pure product was obtained through further silica gel column chromatography (petroleum ether: ethyl acetate = 9:1). (light grey solid, 0.8 g, 85%). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.34 (m, 4H), 6.86 (dd, *J* = 7.7, 3.9 Hz, 2H), 3.98 (s, 6H) ppm. ESI-MS (CH₃OH, m/z): 189.0899 ([M + H]⁺, calcd for [C₁₂H₁₃O₂]⁺: 189.0916).

5,6-dimethoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalen-1-one (2)

A mixture of AlCl₃ (1.33 g, 10 mmol) and methacryloyl chloride (0.48 mL, 5 mmol) in

degassed CH₂Cl₂ (25 mL) was cooled down to -78 °C, solid complex **1** (0.94 g, 5mmol) was poured into the mixture portion wise over 10 minutes, then the mixture was allowed to attain room temperature overnight. After the reaction completed, the solution was poured into a mixture of 25 mL ice water and 12.5 mL HCl (1 M), continue stirring for 4 h, the resulting mixture was extracted with diethyl (3 × 25 mL), the combined organic layer was washed with brine (20 mL), dried over MgSO₄, and the crude product was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 9:1) to give the corresponding product (yellow solid, 0.4 g, 31%). ESI-MS (CH₃OH, m/z): 257.1150 ([M + H]⁺, calcd for [C₁₆H₁₇O₃]⁺: 257.1172), 535.2048 ([2M + Na]⁺, calcd for [C₃₂H₃₂NaO₆]⁺: 535.2097).

5,6-dimethoxy-2-methyl-2,3-dihydro-1H-cyclopenta[a]naphthalene-1-thione (3)

Compound **2** (160 mg, 0.62 mmol) was dissolved in dry THF (10 mL), then Lawesson Reagent (506 mg, 1.25 mmol) was added to the solution, the mixture stirred for 4 h at 60 °C, after that the solvent was removed in vacuum, and the crude product was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 10:1) to give the corresponding product (orange powder, 85 mg, 50%). ¹H NMR (400 MHz, CDCl₃) δ 10.01 (m, 1H), 7.64 (t, *J* =10.4 Hz, 1H), 7.00 (d, *J* = 7.1 Hz, 1H), 6.82 (s, 1H), 4.08 (s, 3H), 3.97 (s, 3H), 3.49-3.37 (m, 1H), 3.14 (m, 1H), 2.91-2.78 (m, 1H), 1.48 (d, *J* = 8.0 Hz, 3H). ESI-MS (CH₃OH, m/z): 273.0940([M + H]⁺, calcd for [C₁₆H₁₇O₂S]⁺: 273.0949).

Compounds 4-6 were prepared according to literature procedures. ^{S1}

5-(5,6-dimethoxy-2-methyl-2,3-dihydro-1*H*-cyclopenta[a]naphthalen-1-ylidene)-5*H*-cyclopenta[2,1-*b*:3,4-*b'*]dipyridine. ((±)-L)

Freshly prepared **3** (250 mg, 1.28 mmol) and compound **6** (200 mg, 0.7 mmol) in THF (20 mL) were heated at reflux for 14 h under a N₂ atmosphere. The solution was naturally cooled to room temperature, followed by concentration, and the crude product was purified by silica gel column chromatography (petroleum ether : ethyl acetate = 10:1, followed by EA:DCM=4:1) to give the corresponding product (yellow solid, 160 mg, 56%).¹H NMR (400 MHz, CD₂Cl₂) δ 8.67 (d, *J*=4.5 Hz, 1H), 8.52 (d, *J*=4.4 Hz, 1H), 8.30 (d, *J*=7.7 Hz, 1H), 7.41 (dd, *J*=7.5, 4.8 Hz, 1H), 7.21 (m, 2H), 7.00 (s, 1H), 6.96-6.84 (m, 3H), 4.24 (m, 1H), 4.06 (s, 3H), 3.99 (s, 3H), 3.56 (dd, *J*=15.4, 5.7 Hz, 1H), 2.79 (d, *J*=16.2 Hz, 1H), 1.42 (d, *J*=7.7 Hz, 3H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 161.22, 158.34, 156.85, 155.91, 155.45, 150.90, 147.66, 147.45, 134.44, 133.17, 132.66, 131.90, 130.66, 128.10, 127.34, 122.56, 121.37, 121.23, 119.43, 116.31, 106.33, 103.77, 56.28, 56.24, 44.57, 41.79, 19.65. ESI-MS (CH₃OH, m/z) 407.1737 ([L+H]⁺, calcd for [C₂₇H₂₃N₂O₂]⁺: 407.1760), 835.3233 ([2L+Na]⁺, calcd for [C₅₄H₄₄N₄O₄Na]⁺: 835.32 60).

2. Literature research

Approaches	Structure	λ_{ex} (solvent)	Literature
Extension of π- system		490 nm (DCM)	Org. Lett. 2017, 19, 1402-1405; Helv. Chim. Acta. 2019, 102, e1800221
Construction of "push-pull" system	UV light $rac{1}{2}$ visible light $rac{1}{2}$ R = OMe; R' = CN 2: R = CN; R' = OMe	530 nm (DCM)	<i>Chem. Sci.</i> 2019 , <i>10</i> , 8768- 8773
Triplet-triplet sensitization	³ Energy Transfer $ \begin{array}{c} $	532 nm (1,2- dichloroetha ne)	J. Am. Chem. Soc. 2012 , 134, 17613-17619
Coordinate with Ru(II)		450 nm (DCM)	Angew. Chem. Int. Ed. 2015 , 127, 11619- 11623.

Table S1. Strategies of regulating the excitation wavelength of 2nd generation molecular motors

Approaches	Structure	$t_{1/2}$ for THI	Literature
Exchanging the size of bridging atoms	R d_2 $fjord region X Y$ $1 S S$ $2 S O$ $3 S C(CH_3)_2$ $4 CH_2 S$ $4 CH_2 S$ $5 CH_2 C(CH_3)_2$	1: 215 h 2: 26.3 h 3: 233 h 4: 0.67 h 5: 2.01 h (hexane)	<i>J. Am. Chem.</i> <i>Soc.</i> 2002 , <i>124</i> , 5037- 5051
Introducing bulky substituent at the stereogenic center		6 : 190 s 7 : 587 s 8 : 95 s 9 : 5.74×10 ⁻³ s (hexane)	J. Am. Chem. Soc. 2006 , 128, 5127- 5135
Contraction of the ring	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array}\\ \end{array} \\ 10 \\ \end{array} \\ 11 \\ \end{array} \\ 12 \\ \end{array} \\ 13 \\ 14 \\ \end{array} $	10: 1400 year 11: 3.2 min 12: 15 s 13: 70 ms 14: 1.1×10 ² ns (iso-pentane)	Chem.Soc.Rev.2017,46,2592-2621
Using the principles of allosteric effect	Pd Pt 15: Zn 16: Pd 16: Pd 17: Pt	15: 38 s 16: 9.8 s 17: 2.7 s (DCM)	J. Am. Chem. Soc. 2016 , 138, 13597- 13603
Through covalent and noncovalent binding.	$\begin{array}{c} & & \text{Speed Decrease} \\ & & \text{OH} \end{array} \xrightarrow{+} \\ & & \text{OH} \end{array} \xrightarrow{+} \\ & & \text{OH} \end{array} \xrightarrow{+} \\ & & \text{Speed increase} \end{array} \xrightarrow{+} \\ & & \text{Speed increase} \end{array} \xrightarrow{+} \\ & & \text{OH} \end{array} \xrightarrow{+} \\ & & \text{H} \xrightarrow{+} \\ & & & \text{H} \xrightarrow{+} \\ & & & \text{H} \xrightarrow{+} \\ & & & & \text{H} \xrightarrow{+} \\ & & & & & & \\ & & & & & & \\ & & & & $	18: 5×10 ³ s 19: 30 s (DCM)	Chem. Eur. J. 2017, 23, 1-5
Through host-guest non-covalent interaction	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ $	 20: 12.4 min 21: 7.6 min 22: 9.1 min 23: 7.1 min (CH₃CN) 	<i>Org. Lett.</i> 2018 , <i>20</i> , 3715- 3718

Table S2. Approaches of modulating rotate speed of 2nd generation molecular motors

Table S3. Representative artificial "four-wheels nanocar"

3. UV-Vis characterization of photochemical and THI Process

3.1 The selection of excitation wavelength on L and AgL₂

A xenon lamp light source (Perfect light, PLS-SXE300) which was equipped with different optical filters (365 nm to 700 nm) and power meter (PLS-MW2000) was used for photoisomerization studies and measuring the radiant power of the incident excitation beams at the excitation wavelength. The radiant power was obtained in mW, then the value was transformed into photo intensity (I), which was obtained in mW/cm² and was further used for quantum yield calculation.

To select a suitable wavelength that can excite the sample L and AgL_2 , we conducted selection experiments of L and AgL_2 in dry DCM solution (4 × 10⁻⁵ M) under different excitation wavelength. The solution of L and AgL_2 was exposed to different light source (365 nm to 450 nm for L; 450-500 nm for AgL_2), then utilized the UV-VIS-NIR spectrophotometer to monitor the changes of UV-Vis spectrum upon irradiation (Figure S1).

Figure S1. UV-Vis spectrum of photoisomerization process of L (a-c) and AgL_2 (d-f) in dry DCM (4×10⁻⁵ M) under different excitation wavelength (a-f: 365 nm, 420 nm, 450 nm, 475 nm, 500 nm).

3.2 Calculation of quantum yields

Figure S2. Kinetics for the photoisomerization (irradiation at 450 nm) of **L** and **AgL**₂ in dry DCM (4×10⁻⁵ M) at 250 K. The plot figure b and d is of the absorbance changes of **L** (at 479 nm) and **AgL**₂ (at 500 nm) as a function of time. The photoisomerizatio rate constant $k_{\text{stable-unstable}}$ was used for quantum yield calculations.

The quantum yields of photo-isomerization reactions was measured following the reported literature.^{S2} Firstly, the solution of L and AgL₂ in DCM(4×10^{-5} M) were prepared to monitor UV-Vis absorption spectrum under irradiation of 450 nm at 250 K through Agilent Cary 6000i UV-VIS-NIR spectrophotometer (Figure S2 (a) and (c)). For ligand L, it was exposed to xenon lamp light source equipped with 450 nm filter, monitored the absorbance changes against irradiation time; then the maximum of absorbance difference (L at 479 nm, AgL₂ at 500 nm) was monitored and plotted against time affording the photo-dynamic profile of light-induced stable motor to unstable one (Figure S2 (b) and (d)). After that, the experimental curve is fitted to the monoexponential function (Y=Y₀ +A×exp(-k×t).) so as to obtain the rate constant (k_{stable} -unst) of photo-isomerization process. Then the rate constant was employed to calculate the quantum yield according to the following equations 1-4. Among which, σ_{ex} (cm²/molecule) is the absorption cross-section at excitation wavelength λ_{ex} (nm). Ψ_{ex} is the photon flux. I (W/cm²) is the optical intensity of irradiation light performed on the sample, N_a is the Avogadro's constant, and κ_{ex} is the rate constant for absorption at excitation wavelength. The relative optical parameters are listed in Table S4; From these values and equations 1-4, the quantum yield ($\Phi_{\text{stable-unstable}}$) of photochemical process was obtained.

$$\sigma_{ex} = (10^3 \times \ln(10/N_a) \times \varepsilon_{ex} \tag{1}$$

$$\Psi_{\rm ex} = 5 \times 10^{15} \times \lambda_{\rm ex} \times I \tag{2}$$

$$\kappa_{\rm ex} = \sigma_{\rm ex} \times \Psi_{\rm ex}$$
 (3)

$$\Phi_{\text{stable-unstable}} = k_{\text{stable-unstable}} / \kappa_{\text{ex}}$$
(4)

Complexes	λ_{ex} (nm)	ε _{ex} (L/(mol*cm))	I (mW/cm ²)	Ψ _{ex} (/10 ¹⁶)	σ _{ex} (×10 ¹⁷)	$k_{ m stable-unstable}$	k _{ex}	Ф (stable-unstable) (%)
L	450	20213	30	8 70	7.73	0.103	6.8	1.5
AgL ₂	430 gL ₂	33663	57	8.79	1.29	0.0433	11.32	0.38

Table S4. Relative optical parameters for calculating the quantum yields

3.3 Kinetic Studies of THI process

Since the thermal half-lives of L and AgL_2 for THI process is very short at room temperature, the kinetics of this process were studied at 265 K and monitored through Agilent Cary 6000i UV-VIS-NIR spectrophotometer. They were dissolved in dry DCM (4×10⁻⁵ M) and irradiated to PSS with 450nm light source, the light source was removed and the sample was remained at 265 K under darkness, meanwhile the absorbance changes against time was recorded (Figure S3a and S3c).

Changes in the absorbance at 476nm for L and 500nm for AgL_2 were monitored to afford decay profile of THI process (Figure S3b and S3d). The rate constant (k₁) of the first order decay at 265 K was determined by fitting the decay curve to the equation $Y=Y_0+A\times exp(-k/t)$ using Origin software.

The value of k_1 (265 K) was measured and then used to calculate the energy barriers for the thermal helix inversion process using the Eyring equation (Eq. 5.). With the energy barriers (ΔG^{\dagger}) in hand, the Arrhenius equation (Eq. 6) was used to extrapolate the rate constants (k_2) at 293 K, from which the room-temperature thermal half-lives were determined ^{S3}. The relative parameter refers to calculate the ΔG^{\dagger} (293 K) are listed in Table S5.

Figure S3. Thermal helix inversion of L and AgL_2 in dry DCM at 265 K. The plot is of the absorbance changes of L (at 476 nm) and AgL_2 (at 500 nm) as a function of time. The resulting k₁ value was calculated through fitted with monoexponential functions $Y=Y_0+A\times exp(-k/t)$.

$$\Delta G^{\ddagger} = 8.314 \times T \times [23.760 + \ln(T/K)]$$
 (5)

$$\ln(k_2/k_1) = \Delta G^{\ddagger}/R \times [(1/T_1) - (1/T_2)]$$
(6)

Complex	с T _l (K) Т	k ₁ (2), T ₂ (K)	k ₁ (265K)	$\Delta G^{\ddagger} (k I/mol)$	k ₂ (293K)	t _{1/2} (293K)	
Complex			s ⁻¹	ΔO^{*} (kJ/mor)	s ⁻¹	(s)	
L	265	293	0.00014	84	0.0053	130.3	
AgL ₂	265	293	0.000806	80.1	0.0260	26.6	

Table S5. The kinetic parameters of L and AgL₂ for THI process

3.4 Studies on fatigue resistance

Figure S4. Isomerization behavior of (a) L; (b) AgL_2 at 298 K and fatigue-resistance studies of (c) L and (d) AgL_2 . The absorbance change at 479 nm and 500 nm was monitored for L and AgL_2 , respectively.

3.5 Disassembly process of "two-wheel nanocar" monitored by UV-Vis spectroscopy

Figure S5. Disassembly process of AgL_2 monitored through UV–Vis spectroscopy. Spectra of AgL_2 (2×10⁻⁵ M) in DCM solution (pink line); after addition of pyridine (blue line) and L (2×10⁻⁵ M) in DCM solution (black line). Insert: The color of AgL_2 , after addition of pyridine (AgL_2 -Py), L. (from left to right)

4 Fluorescence characterization

Figure S6. Spectrum of L and AgL₂ measured in DCM (4×10^{-5} M) solution at 200 K. (a) UV-Vis absorption spectrum; (b) Emission spectrum (λ_{ex} =430 nm and 460 nm); Emission decay behaviors of (c) L and (d) AgL₂ (under excitation of 375 nm laser).

5 NMR, ESI-MS and IR characterization

in CD₂Cl₂ at 298 K.

Figure S8. ¹H NMR (400 MHz) (top) and ¹³C NMR (100 MHz) (bottom) spectra of AgL_2 measured in CD_2Cl_2 at 298 K.

Figure S9. COSY (top) and NOESY (bottom) spectrum of L measured in CD₂Cl₂ at 298 K.

Figure S10. COSY (top) and NOESY (bottom) spectrum of AgL₂ measured in CD₂Cl₂ at 298 K.

Figure S11. Stability of AgL_2 in CD_2Cl_2 solution monitored by ¹H NMR (400 MHz) at 298 K

Figure S12. High resolution mass spectrum of (a, b) L and (c, d) AgL₂.

Figure S13. FT-IR spectrum of L and AgL₂.

Crystal data of L and AgL_2 6

 Table S6. Crystal parameters of L and AgL2

Table S6. Crystal parameters of L and AgL_2				
Complex	L	AgL ₂		
Empirical formula	C ₅₄ H ₄₄ N ₄ O ₄	$C_{54}H_{44}Ag_1N_4O_4$		
Formula weight	812.93	922.82		
Temperature / K	293(2)	293(2)		
Crystal system	triclinic	monoclinic		
Space group	<i>P</i> -1	C2/c		
<i>a</i> / Å	10.8590(2)	38.1630(11)		
<i>b</i> / Å	11.9981(2)	17.6194(7)		
<i>c</i> / Å	16.6267(2)	7.3988(3)		
lpha / °	76.3770(10)	90		
eta / °	89.7630(10)	92.801(3)		
γ / °	76.2500(10)	90		
V / Å ³	2041.89(6)	4969.1(3)		
Ζ	2	4		
<i>F</i> (000)	856.0	1908.0		
$D_{c.}$ / g cm ⁻³	1.322	1.234		
μ / mm ⁻¹	0.665	3.622		
Reflns coll.	18429	15454		
Unique reflns	7281	4418		
R _{int}	0.0255	0.0431		
${}^{a}R_{I} [I \ge 2\sigma(I)]$	0.0409	0.0421		
$^{b}WR_{2}$ (all data)	0.1164	0.1122		
GOF	1.065	1.047		
CCDC	2015771	2076183		

t_z

Figure S14. Perspective views of the 3D framework with 1D channels in AgL_2 . The anion NO₃⁻ molecules may occupy the channels as the pore shows larger volume than NO₃⁻.

Figure S15. Packing mode of crystal structure in AgL_2 viewed in b direction.

Figure S16. The width (b) and the length (a') in crystal structure of AgL_2 .

7 DFT calculation

The DFT calculations were carried out using the Gaussian 16 program^{S4}. The ground state geometries of L and AgL₂ were optimized using the B3LYP functional, and the LANL2DZ basis set for Ag atom, the 6-31G(d,p) basis set for lighter atoms. In addition, the relative free energies (Δ G) of the stable and unstable isomers, as well as the transition states (TS) for THI were also calculated with the same method.

Figure S17. Structures and calculated (TD-DFT, B3LYP, 6-31G (d, p)) frontier orbitals of (a) L; (b) AgL₂.

Figure S18. Energy optimization of stable, unstable, transition state (TS) on (a) L and (b) AgL_2 .

 Table S7. Cartesian coordinates of B3LYP optimized stable-L.

_

Stable-L

Atom	X	V	7
C		_1 75/01500	0.687/1100
C	-3.35046800	-0.61708200	0.00741100
C	-3.33040000	-0.01/06200	0.21040000
C N	-4.13388900	0.55534700	0.04860900
N	-5.44419200	0.65593900	0.27131000
C	-6.05214100	-0.46014600	0.69358100
C	-5.38/21100	-1.66942200	0.91690100
C	-1.9300/900	-0.30599600	-0.08145800
C	-0.95764800	1.95118300	-1.05388500
С	-1.33793400	3.24113500	-1.42679800
С	-2.66179200	3.65399600	-1.24432400
Ν	-3.62839400	2.86291400	-0.76173300
С	-3.25033200	1.63208400	-0.41522000
С	-1.93003100	1.11891300	-0.49311800
С	0.89004500	1.04690400	1.26907100
С	2.50327000	-2.04359200	-1.16281600
С	3.32520700	-1.01112700	-0.74239800
С	2.81511400	0.06030300	0.06587500
С	1.13956400	-2.02487400	-0.85704300
С	0.56668600	-0.94854700	-0.18318600
С	1.40329100	0.07318200	0.37365200
С	3.62866600	1.11615700	0.61457100
С	3.07614900	2.06841900	1.45388000
С	1.71042300	2.01420700	1.79459400
С	0.10431800	-3.08145300	-1.14880900
С	-0.88308300	-1.18939600	-0.06607300
С	-1.04672700	-2.70973000	-0.16770500
С	-0.86792600	-3.43108100	1.18208500
Н	-3.49756800	-2.68662300	0.88308700
Н	-7.12352900	-0.38514200	0.87002400
Н	-5.93977400	-2.53340000	1.27263000
Н	0.05975100	1.61826100	-1.21024500
Н	-0.61328400	3.92345400	-1.85996200
Н	-2.96122200	4.66448100	-1.51659900

800 00 00						
00 00						
00						
00						
-00						
00						
'00						
00						
00						
00						
00						
200						
00						
00						
'00						
00						
00						
00						
00						
00						
Sum of electronic and thermal Free Energies = -1301.708442						
+ 3 7 0 0 0 2 9 9 7 0 0 5 S						

Table S8. Cartesian coordinates of B3LYP optimized TS-L

TS-L

Atom	Х	Y	Z
С	-3.93786100	-1.91805700	-0.00519100
С	-3.22467700	-0.71497300	-0.06608300
С	-3.81280900	0.30581400	-0.86928100
Ν	-4.88528300	0.17589500	-1.64562900
С	-5.49126800	-1.01876400	-1.62282100
С	-5.07994500	-2.06580800	-0.79950200
С	-1.94003700	-0.18183000	0.51315000
С	-1.73939100	2.39132000	1.17013300
С	-2.17017700	3.66824800	0.80172800
С	-3.01192200	3.81511900	-0.30282500
Ν	-3.54729400	2.77504800	-0.95369900

С	-3.13384700	1.56894200	-0.56814900				
С	-2.11847800	1.29711600	0.38893200				
С	1.24370700	1.51755600	1.05725000				
С	2.50053700	-2.31145700	-0.16239500				
С	3.34153000	-1.23659700	-0.38221800				
С	2.91082700	0.09060900	-0.02052700				
С	1.19287100	-2.10953400	0.29424600				
С	0.65246800	-0.84986600	0.55967700				
С	1.57883900	0.26405600	0.51317900				
С	3.76391200	1.24779200	-0.10969500				
С	3.35130000	2.47479400	0.38860500				
С	2.09692500	2.59298400	1.00281700				
С	0.21449200	-3.22258800	0.48138400				
С	-0.83045000	-0.99506400	0.70226900				
С	-1.08354100	-2.50436300	0.87712900				
С	-1.51556100	-2.82227200	2.32019000				
Н	-3.67711400	-2.71747400	0.67530600				
Н	-6.36341900	-1.12943500	-2.26414800				
Н	-5.65518100	-2.98561100	-0.75990300				
Н	-1.18144800	2.27242600	2.09038200				
Н	-1.87975000	4.53582800	1.38572300				
Н	-3.32182200	4.80417500	-0.63469000				
Н	0.30557600	1.60146500	1.56355200				
Н	2.82352700	-3.32194700	-0.37804400				
Н	3.99955000	3.33877400	0.32955300				
Н	1.80233200	3.54355200	1.43792600				
Н	0.55571500	-3.92347000	1.25424500				
Н	0.09677100	-3.80880100	-0.43865700				
Н	-1.86714300	-2.82601400	0.19410800				
Н	-0.72403300	-2.54775300	3.02616600				
Н	-1.71435700	-3.89379000	2.43721100				
Н	-2.41639500	-2.27017200	2.60265200				
0	4.58425700	-1.38305200	-0.89770100				
0	4.98326300	1.07877600	-0.68819100				
С	5.85839500	2.19064500	-0.77553800				
Н	6.75908400	1.81844000	-1.26572800				
Н	5.42848400	3.00105800	-1.37781500				
Н	6.12143200	2.58126800	0.21580000				
С	5.03241100	-2.68382700	-1.24839800				
Н	4.38925600	-3.14112100	-2.01024800				
Н	6.03527400	-2.54891600	-1.65512300				
Н	5.08205800	-3.34484900	-0.37424400				
Sum of electronic and thermal Free Energies = -1301.673762							

Table S9. Cartesian coordinates of B3LYP optimized unstable-L

Unstable-L

	Cliste		
Atom	Х	Y	Z
С	-0.48780100	3.24426600	0.59604300
С	0.76947200	1.23748900	0.02371300
С	0.90014300	2.77422300	0.07060000
С	2.01893200	3.32597600	0.96670100
Н	3.13435900	2.48576500	-1.60953900
Н	6.82858300	0.28121200	-1.65690100
Н	5.50213300	2.26529300	-2.35019300
Н	0.02593800	-1.34939100	1.66280100
Н	0.83141800	-3.49562900	2.64312300
Н	3.16200500	-4.24548700	2.21660000
Н	0.31513100	-1.25581000	-1.24005900
Н	-3.28609300	2.95068500	0.86200800
Н	-3.38165200	-3.42918700	-1.44513200
Н	-0.93161300	-3.25147500	-1.94550600
Н	-0.41091500	3.51617400	1.65757100
Н	-0.86512800	4.13118900	0.07425600
Н	1.02635100	3.16082400	-0.95161500
Н	1.94588600	4.41805600	1.01675000
Н	3.01933600	3.07393500	0.61803400
Н	1.91378400	2.93552600	1.98414000
С	3.72664200	1.63243200	-1.29593500
С	3.20067900	0.63087200	-0.47446900
С	4.03751300	-0.48404600	-0.19833200
Ν	5.30206500	-0.62093700	-0.60048400
С	5.79261200	0.38230000	-1.33868300
С	5.04888400	1.50547500	-1.72118600
С	1.84600200	0.37563100	0.05575100
С	1.03710000	-1.69127400	1.47694200
С	1.49068400	-2.88774200	2.03135400
С	2.80652900	-3.30574300	1.79779600
Ν	3.69714400	-2.60351900	1.08666800
С	3.25038200	-1.46108100	0.56214800
С	1.92735600	-0.95860200	0.68636900

С	-0.74398400	-1.32467600	-1.03790200			
С	-2.77708300	2.04586300	0.55461100			
С	-3.48788300	0.88167300	0.30552100			
С	-2.81797600	-0.29333900	-0.20117700			
С	-1.38508400	2.05710900	0.41087200			
С	-0.66061100	0.92427900	0.05219800			
С	-1.38455500	-0.24953600	-0.37652200			
С	-3.50187500	-1.49170800	-0.58619500			
С	-2.82169000	-2.53777200	-1.18174300			
С	-1.44584400	-2.44076700	-1.43838900			
О	-4.84396700	-1.66929600	-0.33855200			
Ο	-4.83088700	0.80361600	0.46823300			
С	-5.52783300	1.92801900	0.98848300			
Н	-5.14554600	2.21484800	1.97514300			
Н	-5.46811400	2.78991400	0.31247400			
Н	-6.56751800	1.61252400	1.08026200			
С	-5.71002400	-1.38140200	-1.43321400			
Н	-5.43524900	-1.96183300	-2.32351000			
Н	-6.71535100	-1.66490400	-1.11484800			
Н	-5.69749200	-0.31310900	-1.67873200			
Sum of electronic and thermal Free Energies = -1301.704457						

Table S10. Cartesian coordinates of B3LYP optimized stable-AgL₂

Atom	Х	Y	Z
Ag	0.00063500	0.00917400	0.50608700
Ν	-1.61442300	1.50141300	1.59076500
С	-2.81119500	1.23857800	1.06030200
С	-1.57114200	2.48100400	2.50711800
С	-4.02851900	1.89452100	1.36379500
С	-3.06953600	0.22589000	0.05630400
С	-2.71190100	3.18680600	2.90291900
Н	-0.59980700	2.70243400	2.93887400
С	-3.95776100	2.89597500	2.34017800
С	-5.11589600	1.26734900	0.57423700
Ν	-2.13427600	-0.53584600	-0.51784900

С	-4.45053000	0.23009400	-0.24743100
Н	-2.62126900	3.96255000	3.65587800
Н	-4.82988500	3.44307700	2.67416100
С	-6.43391100	1.66296700	0.54399200
С	-2.55425600	-1.36079300	-1.48991900
С	-4.85363800	-0.60023500	-1.30102600
С	-7.59805600	1.01609800	-0.06513000
С	-6.91005600	3.04807700	0.98763800
С	-3.88716400	-1.40326700	-1.91223800
Н	-1.80118400	-1.99066900	-1.95371000
Н	-5.87660000	-0.62566400	-1.65088600
С	-8.47631800	2.01352100	-0.49661900
С	-7.97559500	-0.36597300	-0.16245500
С	-7.97416100	3.37761900	-0.10023900
С	-7.54805800	3.04010100	2.39177300
Н	-6.09174600	3.77143900	0.95687200
Н	-4.16412300	-2.06492100	-2.72615600
С	-9.63804600	1.69605100	-1.20149500
С	-7.24213900	-1.38838600	0.48948100
С	-9.18290200	-0.70124800	-0.88041800
Н	-8.77332300	4.02919000	0.26813700
Н	-7.50397700	3.88793300	-0.95072200
Н	-8.42143000	2.38128800	2.41358900
Н	-7.87513300	4.04831500	2.66547200
Н	-6.85230900	2.68730500	3.15866500
С	-9.97182700	0.36813400	-1.42879800
Н	-10.28754200	2.46739300	-1.60312000
С	-7.63786100	-2.70239100	0.39204200
Н	-6.37891400	-1.12099400	1.08507800
С	-9.54525700	-2.09412200	-0.97621000
0	-11.06141100	0.12699400	-2.21474400
С	-8.77267500	-3.06462500	-0.35543500
Н	-7.07543000	-3.47780600	0.90379500
0	-10.67164000	-2.39104500	-1.66923200
С	-12.33085300	0.11735300	-1.55529100
Н	-9.05106200	-4.10835400	-0.41733500
С	-11.06033400	-3.75363800	-1.80228400
Н	-12.49908200	1.05422300	-1.00973900
Н	-13.08086200	0.01641200	-2.34108600
Н	-12.40808100	-0.73055000	-0.86685100
Н	-11.96685700	-3.74248000	-2.40784800
Н	-10.28952200	-4.34155300	-2.31438100
Н	-11.27792900	-4.20835900	-0.82821200
Ν	1.61176000	-1.48577500	1.59739000

С	2.80904500	-1.22763100	1.06584200
С	1.56627500	-2.46245000	2.51670500
С	4.02480600	-1.88565800	1.37102000
С	3.06968900	-0.21860300	0.05867000
С	2.70535000	-3.16996500	2.91437300
Н	0.59450100	-2.68010100	2.94942300
С	3.95179400	-2.88398100	2.35046100
С	5.11354700	-1.26356000	0.57930000
Ν	2.13617900	0.54371500	-0.51768700
С	4.45059000	-0.22709100	-0.24532700
Н	2.61294100	-3.94318400	3.66971300
Н	4.82262500	-3.43227400	2.68586900
С	6.43056700	-1.66253900	0.54991800
С	2.55797900	1.36473200	-1.49231300
С	4.85554700	0.59916900	-1.30142400
С	7.59620100	-1.02041200	-0.06139100
С	6.90331000	-3.04752200	0.99754500
С	3.89093600	1.40272500	-1.91488900
Н	1.80638000	1.99498700	-1.95795500
Н	5.87851800	0.62110200	-1.65149300
С	8.47184900	-2.02133000	-0.49009800
С	7.97720500	0.36040500	-0.16289600
С	7.96633800	-3.38297700	-0.08958500
С	7.54165400	-3.03702600	2.40150800
Н	6.08317100	-3.76890000	0.96908200
Н	4.16936000	2.06130700	-2.73079400
С	9.63430000	-1.70887100	-1.19601500
С	7.24645100	1.38659900	0.48613700
С	9.18523200	0.69051600	-0.88205800
Н	8.76393200	-4.03547300	0.28054200
Н	7.49466300	-3.89461300	-0.93844700
Н	8.41673400	-2.38041600	2.42117600
Н	7.86617900	-4.04526800	2.67812100
Н	6.84699400	-2.68015500	3.16750100
С	9.97145800	-0.38248300	-1.42723300
Н	10.28186100	-2.48301000	-1.59537300
С	7.64538500	2.69932300	0.38463500
Н	6.38272800	1.12313800	1.08276000
С	9.55090300	2.08221500	-0.98226600
0	11.06174300	-0.14656300	-2.21380500
С	8.78086400	3.05649800	-0.36426600
Н	7.08500700	3.47766300	0.89419300
0	10.67773400	2.37427900	-1.67662400
С	12.33101400	-0.13712100	-1.55400000

Н	9.06175900	4.09935400	-0.42948100
С	11.06960700	3.73552400	-1.81408800
Н	12.49727600	-1.07251100	-1.00531100
Н	13.08143500	-0.04021600	-2.33990800
Н	12.40968200	0.71290000	-0.86834900
Н	11.97586700	3.72031700	-2.41995800
Н	10.29999000	4.32365700	-2.32772900
Н	11.28865400	4.19277200	-0.84152600
Sum of electronic and thermal Free Energies = -2749.043464			

Table S11. Cartesian coordinates of B3LYP optimized $TS\mathchar{-}AgL_2$

TS-AgL₂

Atom	Х	Y	Z
Ag	0.01720000	0.10504300	-0.42819400
Ν	1.46999000	-1.87474300	-0.50343600
С	2.73109700	-1.43735600	-0.47698700
С	1.30239300	-3.20281600	-0.59936900
С	3.89980200	-2.23306100	-0.54767900
С	3.12430800	-0.04569200	-0.38193900
С	2.38104800	-4.09145200	-0.65595700
Н	0.27898700	-3.56459700	-0.62641500
С	3.69510800	-3.61644400	-0.62297800
С	5.08480600	-1.34636000	-0.45173300
Ν	2.27754300	0.98748500	-0.37195100
С	4.53630000	0.02694100	-0.36566200
Н	2.18779800	-5.15688900	-0.72271500
Н	4.51413300	-4.32357500	-0.65063700
С	6.40221300	-1.73364600	-0.54434400
С	2.83193400	2.20997900	-0.36449500
С	5.08906900	1.31310900	-0.41195500
С	7.62831500	-0.97001300	-0.30184400
С	6.85125900	-3.05802600	-1.16594600
С	4.21663600	2.40461500	-0.40207500

Н	2.14957400	3.05435700	-0.34545800
Н	6.15691100	1.47606300	-0.46330100
С	8.61597600	-1.44176200	-1.17027100
С	7.95370500	0.01680100	0.68923000
С	8.11225700	-2.61771400	-1.96621700
С	7.21729200	-4.12066400	-0.10983900
Н	6.08699900	-3.45311200	-1.83940800
Н	4.60888700	3.41574600	-0.42881900
С	9.87235100	-0.83732100	-1.23010100
С	7.06605900	0.33328000	1.74769200
С	9.25648500	0.63803700	0.64096400
Н	8.85848500	-3.41368600	-2.05838000
Н	7.83148800	-2.31523600	-2.98331400
Н	8.03989200	-3.76898200	0.52020600
Н	7.53465400	-5.04749900	-0.59836100
Н	6.37587500	-4.35333100	0.54937000
С	10.18133000	0.20948000	-0.37275600
Н	10.61955300	-1.15042600	-1.95244700
С	7.41229700	1.27130100	2.69256400
Н	6.12057600	-0.18880300	1.81750100
С	9.56611200	1.63277900	1.63855700
0	11.38544500	0.82645300	-0.55384200
С	8.64820700	1.93971100	2.63216700
Н	6.72981900	1.49972000	3.50591500
Ο	10.78673200	2.21787000	1.56652100
С	12.50894900	0.23134200	0.10176900
Η	8.88496500	2.67741000	3.38744800
С	11.13032600	3.21591800	2.52103000
Н	12.61628900	-0.82377100	-0.17912800
Η	13.38606500	0.78632700	-0.23417500
Н	12.41825500	0.31705500	1.18956800
Η	12.13292200	3.54802300	2.25058000
Η	10.44160800	4.06775100	2.47506100
Η	11.14247600	2.81221600	3.54076000
Ν	-1.82393300	0.66890700	-1.91261200
С	-2.90006200	0.92988000	-1.16043800
С	-1.97763100	0.77307600	-3.23746600
С	-4.17880400	1.32899100	-1.61826600
С	-2.94431000	0.80228900	0.27337600
С	-3.21334800	1.08502800	-3.81684700
Н	-1.10283500	0.57970800	-3.85087100
С	-4.32656300	1.33962100	-3.01716900
С	-5.11003600	1.41089600	-0.45172300
Ν	-1.88015100	0.51991500	1.03333800

С	-4.26348900	1.08550400	0.72200800
Н	-3.30288400	1.11231800	-4.89768900
Н	-5.27649400	1.52235600	-3.50266800
С	-6.47363200	1.65448200	-0.65019200
С	-2.06409000	0.54107200	2.35886000
С	-4.38383000	1.20311000	2.11538400
С	-7.73042400	1.00342100	-0.23133700
С	-6.89484200	2.63563300	-1.75384400
С	-3.28895200	0.90535800	2.92609400
Н	-1.20739600	0.29372000	2.97846400
Н	-5.28915800	1.54082700	2.59112200
С	-8.57896500	1.02505400	-1.35257400
С	-8.15540500	0.24708900	0.92055200
С	-8.09392300	1.95541100	-2.42972700
С	-7.28594600	3.97286700	-1.08012700
Н	-6.08933400	2.86571600	-2.44420600
Н	-3.37831700	0.97289200	4.00515000
С	-9.68031300	0.17243700	-1.45735700
С	-7.59785400	0.47054200	2.19452000
С	-9.25635600	-0.67825300	0.79894600
Н	-8.87259600	2.65976700	-2.74304900
Н	-7.79479300	1.39323200	-3.32427100
Н	-8.13824800	3.84605900	-0.40597000
Н	-7.55925500	4.70430100	-1.84743400
Н	-6.45046300	4.38100900	-0.50408700
С	-9.98479000	-0.71383000	-0.43892200
Н	-10.27602700	0.14292500	-2.36428100
С	-7.98655700	-0.26913700	3.28855200
Н	-6.92529200	1.30264600	2.30773500
С	-9.60386900	-1.47194900	1.95030900
0	-10.97889500	-1.61790800	-0.67105400
С	-8.95873400	-1.27365600	3.16366000
Н	-7.55245500	-0.07083600	4.26412100
0	-10.59602700	-2.38135200	1.79241700
С	-12.31182300	-1.18554500	-0.38092800
Н	-9.23194500	-1.85740300	4.03263400
С	-10.96484800	-3.19897400	2.89778100
Н	-12.55111700	-0.25954500	-0.91823000
Н	-12.97131100	-1.98420600	-0.72329100
Н	-12.44989500	-1.03523400	0.69476900
Н	-11.75095900	-3.85671300	2.52635900
Н	-10.12014000	-3.80445100	3.24666700
Н	-11.35328100	-2.60062400	3.73085000
Sum o	f electronic and thermal I	Free Energies $= -274$	49.006061

Table S12. Cartesian coordinates of B3LYP optimized unstable-AgL₂

Unstable-AgL ₂				
Atom	Х	Y	Z	
Ag	0.00008800	-1.03089100	0.00063200	
Ν	1.78903200	-2.18130900	-1.24906100	
С	2.94294700	-1.69439700	-0.78396500	
С	1.88121700	-3.13092400	-2.19172900	
С	4.24275700	-2.09860800	-1.17591600	
С	3.06976900	-0.63705000	0.19627100	
С	3.11151400	-3.57759200	-2.69172000	
Н	0.94720400	-3.53807100	-2.56711800	
С	4.30837300	-3.05793800	-2.19520600	
С	5.23552300	-1.26174100	-0.47421300	
Ν	2.05255800	-0.06247000	0.84569200	
С	4.44500900	-0.34989500	0.37422300	
Н	3.12402800	-4.33029900	-3.47292100	
Н	5.25340300	-3.39887200	-2.60359100	
С	6.61564100	-1.37977600	-0.54482700	
С	2.37811800	0.86154600	1.76269100	
С	4.75970100	0.58650200	1.36798100	
С	7.63309900	-0.36701700	-0.30737800	
С	7.33085400	-2.72164100	-0.79308300	
С	3.70675200	1.19439500	2.05452600	
Н	1.55583700	1.33880600	2.28704100	
Н	5.78473600	0.83840500	1.60981300	
С	8.87277200	-0.98766600	-0.11320900	
С	7.57813800	1.07490100	-0.40088100	
С	8.78365800	-2.47154000	-0.29870800	
С	6.72135100	-3.93656000	-0.07448500	
Н	7.36265900	-2.91481700	-1.87519100	
Н	3.90989000	1.93139800	2.82436600	
С	10.01549500	-0.25551200	0.20587000	
С	6.45499100	1.75071100	-0.93358200	
С	8.74817900	1.83834400	-0.03184100	

Н	8.95495200	-2.99906800	0.64850400
Н	9.54408500	-2.83639800	-0.99783500
Н	6.67397100	-3.75335700	1.00389500
Н	7.35406000	-4.81516200	-0.23731200
Н	5.71574700	-4.18358900	-0.41384900
С	9.95316100	1.12637600	0.30466600
Н	10.97080900	-0.73849500	0.38325000
С	6.44768600	3.12322400	-1.05057900
Н	5.61161400	1.17647900	-1.28908300
С	8.67831500	3.27490900	-0.12524500
0	11.11595000	1.76175500	0.62444200
С	7.54105800	3.89339900	-0.62450300
Н	5.58629000	3.62388600	-1.48276200
0	9.76735700	3.97168800	0.28066700
С	11.28156300	2.11920300	2.00078100
Н	7.49556300	4.97100600	-0.71061000
С	9.78808400	5.38488600	0.11033700
Н	11.22806300	1.22969800	2.64086200
Н	12.27460100	2.56367900	2.07973400
Н	10.53034000	2.85051200	2.31380200
Н	10.76829700	5.70854000	0.46099900
Н	9.66907300	5.66134500	-0.94358400
Н	9.00871100	5.87469300	0.70666400
Ν	-1.78904000	-2.18122900	1.24915900
С	-2.94290700	-1.69427100	0.78402200
С	-1.88127100	-3.13099700	2.19166000
С	-4.24273200	-2.09855900	1.17580800
С	-3.06969400	-0.63677600	-0.19608400
С	-3.11160800	-3.57776700	2.69148700
Н	-0.94729200	-3.53820600	2.56705600
С	-4.30842400	-3.05803400	2.19496300
С	-5.23549700	-1.26163800	0.47419100
Ν	-2.05249100	-0.06213400	-0.84540000
С	-4.44494700	-0.34962900	-0.37403300
Н	-3.12415600	-4.33058300	3.47258200
Н	-5.25350400	-3.39897800	2.60322300
С	-6.61561000	-1.37979800	0.54459900
С	-2.37803900	0.86197700	-1.76232200
С	-4.75961900	0.58688400	-1.36767000
С	-7.63310100	-0.36707100	0.30710600
С	-7.33077900	-2.72173600	0.79255700
С	-3.70664700	1.19486200	-2.05413700
Н	-1.55572600	1.33927700	-2.28659700
Н	-5.78463500	0.83884500	-1.60951700

С	-8.87269400	-0.98778000	0.11261900
С	-7.57825200	1.07483700	0.40080000
С	-8.78351000	-2.47167400	0.29794000
С	-6.72105300	-3.93652200	0.07392000
Н	-7.36277500	-2.91505600	1.87463300
Н	-3.90981300	1.93192800	-2.82390800
С	-10.01541300	-0.25566100	-0.20655800
С	-6.45525000	1.75066500	0.93379200
С	-8.74827600	1.83824600	0.03164000
Н	-8.95460100	-2.99910300	-0.64936200
Н	-9.54403400	-2.83666700	0.99689300
Н	-6.67348900	-3.75318400	-1.00442900
Н	-7.35372600	-4.81519200	0.23652400
Н	-5.71549200	-4.18351900	0.41343500
С	-9.95315700	1.12624500	-0.30514400
Н	-10.97066900	-0.73868200	-0.38414800
С	-6.44806700	3.12316100	1.05096100
Н	-5.61189200	1.17644800	1.28936500
С	-8.67851300	3.27480800	0.12518100
Ο	-11.11593800	1.76161200	-0.62499000
С	-7.54140500	3.89331500	0.62475000
Н	-5.58679600	3.62383400	1.48338200
О	-9.76750300	3.97155400	-0.28093200
С	-11.28142600	2.11911400	-2.00132600
Н	-7.49599200	4.97091500	0.71098000
С	-9.78837700	5.38473200	-0.11045800
Н	-11.22773700	1.22965600	-2.64145700
Н	-12.27450700	2.56347600	-2.08038100
Н	-10.53024900	2.85053300	-2.31421000
Н	-10.76853400	5.70834900	-0.46131200
Н	-9.66962900	5.66108900	0.94352000
Н	-9.00890500	5.87466200	-0.70655400
Sum of electronic and thermal Free Energies = -2749.034720			

Reference

- S1. P. J. Davis, L. Harrisa, A. Karim, A. L.Thompson, M. Gilpin, M. G. Moloney, M. J. Pound and C. Thompson. *Tetrahedron Letters*. 2011, 52, 1553-1556.
- S2. C. Li, H. Yan, L. X. Zhao, G. F. Zhang, Z. Hu, Z. L. Huang and M. Q. Zhu. Nat. Commun., 2014, 5, 5709.
- S3. S. Wiedbrauk, B. Maerz, E. Samoylova, A. Reiner, F. Trommer, P. Mayer, W. Zinth and H. Dube. Twisted hemithioindigo photoswitches: Solvent polarity determines the

type of light-induced rotations. J. Am. Chem. Soc., 2016, 138, 12219-12227.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox,Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.