Supplementary Information

In-situ encapsulation engineering boosts electrochemical performance of highly graphitized N-doped porous carbon-based copper-cobalt selenides for bifunctional oxygen electrocatalysis

Hang Zhang,^{a,b} Xuemin Wang,^{b,c,d} Zhengzheng Li,^{*a} Cui Zhang,^{*b,c,d} and Shuangxi Liu^{*b,c,d,e}

^{a.} College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, PR China. E-mail: li.z.z@tust.edu.cn

^{b.} Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China. E-mail: zhangcui@nankai.edu.cn; sliu@nankai.edu.cn

^c National Institute of Advanced Materials, Nankai University, Tianjin 300350, PR China.

^{*d.*} Tianjin Collaborative Innovation Center for Chemistry & Chemical Engineering, Tianjin 300072, PR China.

^{e.} Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, PR China.

Fig. S1. XRD patterns of CuCoSe@NC-2, CuCoSe and CoSe@NC-2.

Fig. S2. SEM and TEM images of (a, b) CuCo-BDC and (c, d) CuCo-BDC-2@2-MIM.

Fig. S3. SEM and TEM images of (a, e) CuCoSe@NC-1, (b, f) CuCoSe@NC-3, (c, g) CoSe@NC-2 and (d, h) CuCoSe.

Fig. S4. ORR polarization curves of (a) CuCoSe@NC-1 and (b) CuCoSe@NC-3 measured at different rotating speeds in 0.1 M KOH solution and the corresponding K-L plots at different potentials (inset).

Fig. S5. RRDE voltammograms and amperometric responses of CuCoSe@NC-x at a scan rate of 10 mV s⁻¹ and a rotating speed of 1600 rpm in O₂ saturated 0.1 M KOH solution.

Fig. S6. LSV curves of CuCoSe, CoSe@NC-2 and CuCoSe@NC-2 at a rotating speed of 1600 rpm in O₂-saturated 0.1 M KOH solution.

Fig. S7. *I-t* plots of CuCoSe@NC-2 and Pt/C for the evaluation of anti-methanol poisoning performance.

Fig. S8. LSV curves of CuCoSe, CoSe@NC-2 and CuCoSe@NC-2 in 1 M KOH solution toward the OER.

Fig. S9. CV curves of CuCoSe@NC-1, CuCoSe@NC-2 and CuCoSe@NC-3 at different scan rates in 1 M KOH solution.

Fig. S10. (a) XRD spectrum of CuCoSe@NC-2 after OER durability test. XPS spectra for (b) Co 2p, (c) Cu 2p and (d) S 2p of CuCoSe@NC-2 before and after OER durability test. (e) SEM image and (f) TEM image of CuCoSe@NC-2 after OER durability test.

 Table S1. The BET specific surface area of CuCoSe@NC-x.

Samples	$S_{\rm BET}~({ m m}^2~{ m g}^{-1})$
CuCoSe@NC-1	226
CuCoSe@NC-2	342
CuCoSe@NC-3	169

Samples	Electrolyte	Onset Potentials (V vs. RHE)	Half-wave Potentials (V vs. RHE)	References
CuCoSe@NC-2	0.1 M KOH	0.951	0.846	This work
Co _{0.85} Se@CNFs	0.1 M KOH	0.84	0.82	<i>Chem. Eur. J.</i> , 2019, 25: 1-8
Ni _x Co _{0.85-x} Se	0.1 M KOH	0.89	0.82	<i>Sci. China Mater.</i> , 2020, 63(3): 347-355
(Ni,Co)Se ₂	0.1 M KOH	/	0.70	Journal of Energy Chemistry, 2019, 38: 34-40
Co-Fe-P-Se/NC	0.1 M KOH	/	0.76	Nanoscale, 2019, 11(42): 20144- 20150
Co _{0.62} Zn _{0.38} - ZIF@NCF-800	0.1 M KOH	0.913	0.78	ACS Sustainable Chem. Eng., 2020, 8, 8391- 8401
CoIn ₂ Se ₄	0.1 M KOH	0.88	0.77	ACS Appl. Mater. Interfaces, 2020, 12(7): 8115-8123
Cu-14-Co ₃ Se ₄ /GC	0.1 M KOH	0.892	0.782	ACS Catal., 2019, 9(12): 10761- 10772
Ni _{0.85} Se-NHCS	0.1 M KOH	0.850	/	J. Mater. Sci., 2019, 54(12): 9063-9074

Table S2. Comparison of the ORR performance of CuCoSe@NC-2 and other metal selenide electrocatalysts reported in the literature.

Samples	Electrolyte	Overpotentials at 10 mA cm ⁻² (mV)	References
CuCoSe@NC-2	1.0 M KOH	300	This work
CoIn2Se4	1.0 M KOH	305	ACS Appl. Mater. Interfaces, 2020, 12(7): 8115-8123
Co _{0.85} Se-NC/C-T	1.0 M KOH	298	Chemical Engineering Journal, 2021,420(15):130461
Ni _{0.85} Se-NHCS	1.0 M KOH	353	<i>J. Mater. Sci.</i> , 2019, 54(12): 9063-9074
Cu-14-Co3Se4/GC	1.0 M KOH	280	ACS Catal., 2019, 9(12): 10761-10772
Ni _x Co _{0.85-x} Se	0.1 M KOH	305	<i>Sci. China Mater.</i> , 2020, 63(3): 347-355
(Ni,Co)Se ₂	0.1 M KOH	360	Journal of Energy Chemistry, 2019, 38: 34-40
FeSe/NC-PoFeSe	0.1 M KOH	350	ACS Appl. Mater. Interfaces, 2018, 10(38):32133-32141

Table S3. Comparison of the OER performance of CuCoSe@NC-2 and other metal selenide electrocatalysts reported in the literature.

Samples	Power density (mW cm ⁻²)	Durability @ J (mA cm ⁻²)	References
CuCoSe@NC-2	137.1	Cycle times over 75 h @ 10	This work
Ni _x Co _{0.85-x} Se	/	Cycle times over 84 h @ 10	<i>Sci. China Mater.</i> , 2020, 63(3): 347-355
(Ni,Co)Se ₂	110	Cycle times over 120 h @ 2	Journal of Energy Chemistry, 2019, 38: 34-40
CoIn2Se4	107	Cycle numbers over 410 @ 10	ACS Appl. Mater. Interfaces, 2020, 12(7): 8115-8123
Ni _{0.85} Se-NHCS	89.41	Cycle times over 18 h @ 20	J. Mater. Sci., 2019, 54(12): 9063-9074
Co-Fe-P-Se/NC	104	Cycle numbers over 120 @ 10	<i>Nanoscale</i> , 2019, 11(42): 20144-20150
Ni-Fe-Se _{1:1} -180	148.6	Cycle times over 300 h @ 10	<i>Electrochimica Acta</i> , 2018, 291: 64-72.

Table S4. Comparison of the Zn-air baterries performance of CuCoSe@NC-2 and other metal selenide electrocatalysts reported in the literature.