Supporting Information

In-situ Surface Reduction to Accessing Atomically Dispersed Platinum on Carbon Sheets for Acidic Hydrogen Evolution

Weiwei Quan^{abc§}, Xinglin Ruan^{d§}, Yingbin Lin^{abc}, Jiewei Luo^{e*}, Yiyin Huang^{abc*} ^a Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China

^b Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou,350117, China

^c Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China

^d Department of Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road Gulou District, Fuzhou 350001, China

^e Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China

Email: hyy@fjnu.edu.cn

§ These authors contributed equally to this work.

Figure 1. (a) Low and (b) high magnification scanning electron microscopy (SEM) images of the synthetic Pt-DC material.

Figure 2. (a) Survey X-ray photoelectron spectroscopy (XPS) of the synthetic Pt-DC material. (b) The Pt 4f region of the XPS for Pt/C (JM) sample.

Figure 3. Linear sweep voltammetry (LSV) with iR compensation at a scan rate of 10 mV/s in 0.5 M H₂SO₄ electrolyte for the Pt-DC catalyst compared to the Pt-C catalyst.

Figure 4. (a and c) Long-term cyclic voltammetry (2000 cycles) tests for Pt-DC and Pt/C (JM) catalysts in 0.5 M H_2SO_4 electrolyte, and (b and d) the LSV curves with iR compensation before and after the CV tests.

Figure 5. Cyclic voltammetry tests of (a) Pt-DC, (B) DC and (c) C at different scan rates in a non-Faradaic region, and the corresponding relationship of current and scan rate (b, d and f) for the calculation of the electrochemical double-layer capacitance (C_{dl}).

Electrocatalyst	Noble metal loading (mg cm ⁻ ²)	Overpotential@10 mA cm ⁻² (mV)	Overpotential at other currents	Tafel slope (mV dec ⁻¹)	Reference
Pt-DC	0.00416	25	55 mV@100 mA cm ⁻²	30	This work
Ru/triNC	0.0479	2	25 mV@35 mA cm ⁻²	32.1	Adv. Energy Mater., 2020, 2000067.
RuNP@PDA	0.0476	27.5	160 mV@100 mA cm ^{-2 #}	37	ACS Catal., 2018, 8, 5714.
Ru/GDY	0.00475	44	125 mV@100 mA cm ^{-2#}	30	Nano Energy, 72, 104667
Ir-NSG	0.025	27#	33 mV@30 mA cm ^{-2 #}	19.2	Nat. Commun., 2020, 11, 4246.
Ir- SA@Fe@NCNT	0.0011	26	85 mV@100 mA cm ^{-2 #}	31.8	Nano Lett., 2020, 20, 2120.
RuB ₂	0.47	52	52 mV@50 mA cm ⁻²	66.9	ACS Energy Lett., 2020, 5, 2909.
Rh ₃ Cu ₁	0.0249	-	80 mV@90 mA cm ^{-2 #}	33	Adv. Energy Mater., 2020, 1903038.
Li-IrSe ₂	0.137	225	75 mV@40 mA	-	Angew.

Table 1. Acidic HER performance comparison of different noble metal-based catalysts.

			cm ^{-2 #}		Chem. Inter. Ed., 58, 14764.
RuTe ₂	0.0575	38	60 mV@25 mA cm ^{-2 #}	-	Nat. Commun., 2019, 10, 5692.
Pt ₆₂ Co ₂₃ Ir ₁₅	0.0103	14	17 mV@40 mA cm ^{-2 #}	-	Chem. Mater., 2019, 31, 8136.
Co-RuIr	0.0423	14	23 mV@17.5 mA cm ^{-2 #}	31.1	Adv. Mater., 2019, 1900510.
IrNi	0.0078	25	32 mV@20 mA cm ^{-2 #}	29.7	Small Methods, 2019, 1900129.

#: data were read from figures in literature.