Supporting information for

Formamide-derived "glue" for hundred-gram scale synthesis of atomically dispersed iron-nitrogen-carbon electrocatalysts

Zongge Li^{a,b, +}, Yan Ma^{b,+}, Yiyan Wang^b, Nianxi Liu^a, Ying Zhang^{b,*}, and Guoxin Zhang^{a,*}

a. Al-ion Battery Research Center, Department of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China. E-mail: <u>zhanggx@sdust.edu.cn</u>.

b. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, P. R. China. E-mail: <u>yzhang@upc.edu.cn.</u>

+ These authors contribute equally to this work.

Figure S1. XRD curves of FeNC@AC-X, X=1, 2, or 4.

Figure S2. SEM images of (a) activated carbon black (AC) and (b) FeNC@AC samples.

Figure S3. Raman spectra of FeNC@AC-X, X=1, 2, or 4.

Figure S4. Pore distribution curves of AC, NC@AC, and FeNC@AC-3.

Figure S5. XPS survey curves of AC, NC@AC, and FeNC@AC-3.

Figure S6. ICP element weight percentages of FeNC@AC, and other four types of asmade MNC@AC materials.

Figure S7. Determination of site density of FeNC@AC-3 through reversible nitrite poisoning. (a) CV curves and (b) ORR LSV curves before and after nitrite adsorption in a 0.5 M acetate buffer at pH 5.2.

Figure S8. (a) XPS survey curves and (b) C1s spectra of AC, NC@AC, and FeNC@AC-3.

Figure S9. Percentages of different N species in NC@AC and FeNC@AC-3.

Figure S10. Fe K-edge EXAFS fitting curves of (a) FePc, (b) Fe_2O_3 , (c) Fe foil, and (d) FeNC@AC-3 in R-space.

Figure S11. Wavelet transformed (WT) EXAFS spectra of (a) Fe_2O_3 and (b) Fe foil.

Figure S12. Fe k-edge EXAFS fitting curves of (a) $\text{Fe-N}_3\text{O}_1$ and (b) C-Fe-N₄ in R-space, insets show their corresponding proposed coordination structures.

Figure S13. (a) TGA curve of pre-FeNC@AC-3. (b) XRD curves and (c) Raman spectra of Fe-NC@AC-3 synthesized at different temperatures. (d) ORR polarization curves of FeNC@AC-3 synthesized at different temperatures. Panel (e) shows a summary of onset potentials and half-wave potentials of Fe-NC@AC-3 synthesized at different temperatures.

Figure S14. HRTEM image and EDS mapping images of FeNC@AC-3 after durability test.

Figure S15. (a) HRTEM and (b) elemental mapping images of CoNC@AC sample. (c) HRTEM and (d) elemental mapping images of CuNC@AC sample. (e) HRTEM and (f) elemental mapping images of MnNC@AC sample.

Figure S16. (a) XPS survey curves and (b) C1s spectra of CoNC@AC, NiNC@AC, CuNC@AC, and MnNC@AC.

Figure S17. (a) Co2p spectra of CoNC@AC, (b) Cu2p spectra of CoNC@AC, and (c) Mn2p spectra of MnNC@AC

Figure S18. Digital image of appearance of (a) CoNC@AC, (b) CuNC@AC, and (c) MnNC@AC.

Sample	%C	%N	%0	%Fe
AC	97.33	0.39	2.28	-
NC@AC	95.25	2.1	2.65	-
FeNC@AC-3	93.99	1.45	4.38	0.19

 Table S1. XPS elemental analysis of AC, NC@AC, and FeNC@AC-3.

Table S2. A summary of site density (SD), turnover of frequency (TOF), and Fe utilization rate of FeNC@AC-3 before and after long-term use (10,000 s).

Sample	Site density (SD)/site g ⁻¹	Turnover of frequency (TOF)/s ⁻¹	Utilization rate (%)
FeNC@AC-3	1.49×10 ¹⁹	1.69	16.0% (based on XPS) 14.9% (based on ICP)
FeNC@AC-3 after long- term use (10,000 s)	1.36×10 ¹⁹	1.57	14.6% (based on XPS) 12.9% (based on ICP)

Sample	Shell	N ^a	R(Å)⁵	σ²×10³(Ų) ^c	ΔE ₀ (eV) ^d	R factor	
- 6 11	Fe-Fe	8*	2.47±0.01	4.8±0.8	6.7±1.3	0.004	
Fe foil	Fe-Fe	6*	2.85±0.01	6.0±1.7	5.4±2.6	0.001	
	Fe-O	6.1±1.1	1.93±0.02	11.7±2.7	-6.5±3.0		
Fe ₂ O ₃	Fe-Fe	2.6±1.4	2.99±0.05	9.8±4.9	-4.1±6.2	0.014	
	Fe-Fe	8.4±4.1	3.42±0.02	10.3±3.3	-7.9±3.3		
FePc	Fe-N	4.1±0.5	1.99±0.02	8.0±3.0	8.1±3.2	0.010	
	Fe-C	4.8±2.1	2.98±0.02	6.7±3.4	7.4±3.3	0.012	
Fe in Fe-N₄ for FeNC@AC-3	Fe-N	3.8±0.5	1.98±0.02	5.7±4.4	-3.8±2.9	0.016	
Fe in FeN₃O structure	Fe-N	3.1±0.3	1.97±0.05		2 7 1 0 0	0.214	
	Fe-O	1.2±0.3	2.03±0.09	0. ŏ ±4.0	-3.7±0.8	0.214	
Fe in C-FeN₄ structure	Fe-C	4.9±0.6	1.99±0.06	3.3±2.7	-4.5±1.2	0.158	

Table S3. EXAFS fitting parameters at the Fe K-edge for the FeNC@AC-3 sample with comparison to standard references of Fe foil, Fe_2O_3 , and FePc. Comparison of Fe-N₃O₁ and C-Fe-N₄ to Fe-N₄ coordination are also shown.

^{*a*}*CN*: coordination numbers; ^{*b*}*R*: bond distance; ^{*c*} σ^2 : Debye-Waller factors; ^{*d*} ΔE_0 : the inner potential correction. *R* factor: goodness of fit. S_0^2 was set to 0.729 (Fe), according to the experimental EXAFS fit of metal foil reference by fixing CN as the known crystallographic value.

Sample	%C	%N	% O	%M (M=Co, Ni, Cu, and Mn)
CoNC@AC	96.72	1.16	1.90	0.22
NiNC@AC	95.95	1.34	2.5	0.21
CuNC@AC	95.8	1.54	2.49	0.16
MnNC@AC	94.56	1.12	4.1	0.22

Table S4. XPS elemental analysis of CoNC@AC, NiNC@AC, CuNC@AC, and MnNC@AC.