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Experimental 

Chemicals: Indium (III) chloride (99.999%), Zinc (II) chloride (> 98%), Oleylamine (OLAM) 

(technical grade, 70%), Octadecene (ODE) (technical grade, 90%), and tris-

diethylaminophosphine (TDEAP) (97%) was purchased from Sigma-Aldrich. All solvents were 

degassed and stored inside the glovebox under nitrogen environment. 

Indium Chloride in Oleylamine (0.3 M): 6 mmol indium chloride was added to a 50 mL three 

neck flask containing 20 mL degassed oleylamine inside the glovebox. The three-neck flask was 

then transferred to a Schlenk line for degassing (three cycles of vacuum and nitrogen purge) at 100 

ºC for 1 hour. The stock solution was then kept under positive nitrogen pressure at 60 ºC under 

continuous stirring for flow synthesis experiments. Before starting the flow synthesis experiment, 

24 mmol TDEAP was added to the flask and allowed to mix under continuous stirring. 

Zinc Chloride in Oleylamine (1.0 M): zinc chloride stock solution was also prepared following 

similar step as indium chloride stock solution, except 50 mmol zinc chloride was added to 50 mL 

oleylamine inside the glovebox. The stock solution was kept under nitrogen at 60ºC with 

continuous stirring after degassing. 

Automated flow synthesis of InP QDs: Indium chloride (with phosphorous precursor), zinc 

chloride stock solutions, and oleylamine solvents are pumped using three separate peristaltic 

pumps through an inline mixer (maintained at 60 ºC), followed by a nucleation and core growth 

reactor for synthesis of InP QDs. The ratio of zinc to indium precursors and the overall precursor 

concentration in the reaction mixture entering the nucleation-growth reactor are controlled by the 

flow rates of zinc chloride stock solution, indium chloride stock solution, and oleylamine solvent. 

The design of the automated continuous flow reactor platform used in this work is described in our 

previously reported work.38,39 At different positions within the reactor channel, the reaction 
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mixture is sampled using a sampling valve (M-Switch from Fluigenet Inc.) and characterized using 

an inline UV-Vis and PL flow cell to monitor the reaction for different growth time. All process 

parameters including precursor flow rates, reactor temperatures, reaction sampling, inline 

characterization, and data analysis are controlled in an automated fashion using a Matlab script. 

Ensemble neural network model: The ensemble model consists of 25 parallel artificial 

neural networks (as shown in Figure 3). For each of the network in this ensemble, the 

number of hidden layers is fixed as 2 The number of effective nodes in each hidden layer 

is 20 (half of the nodes in each layer is randomly dropped during the training, validation, 

and testing). A dropout layer with a value of 0.5 is used for all hidden layers in the 

ensemble network. A rectified linear unit is used as the activation function between each 

layer. For optimization, Adam algorithm with a learning rate between 0.01 and 0.001 is 

used to train the neural network. The median of output for each network in the ensemble 

is used to estimate the combined output and the standard deviation is used to estimate the 

uncertainty in predictions. 
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Supporting Figures 

ENN-predicted features vs experimental data for testing sets as autonomous platform performs 

more experimental iterations: 

 

 

 

 

 
Figure S1. ENN-predicted band gap and polydispersity on testing data as the number of 
autonomous experiment iterations (training-validation-testing loop) increases. The accuracy 
of the model evaluated based on the testing data improves with progression of autonomous 
experimentation. The flowsheet of this iterative framework of model development using the 
autonomous experimentation platform is shown in Figure 1d  
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Relative frequency distribution of prediction certainty across the entire synthesis parameter space: 

 

 

 

 

 

 
Figure S2. Relative frequency distribution of predictions with estimated certainty in 
prediction as the number of autonomous experiment iterations (training-validation-testing 
loop) increases. After four complete iterations of self-driven experiments, more than 85% 
of the entire synthesis parameter space is predicted with certainty higher than 0.90.  
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Figure S3. ENN-predicted peak wavelength (band gap) for different combinations of 
synthesis conditions.  
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Figure S4. ENN-predicted FWHM (polydispersity) for different combinations of synthesis 
conditions.  
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Figure S5. Polydispersity map expressed as FWHM (eV) / Bandgap (eV) fraction based 
on experimental data at different nucleation and growth temperature across the growth time 
(equivalent to the map shown in Figure 5d in the manuscript).  


