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1. General remarks

Meterials: the materials used for the preparation of DNA complexes, including DNA (5’-

CCTCGCTCTGCTAATCCTGTTA-3’, M.W. = 6612.4 ) purchased from Sangon Biotech 

(Shanghai) Co. Ltd., dioctyldimethylammonium bromide (DOAB) purchased from TCI (Tokyo 

Chemical Industry Co., Ltd), were used directly without further purifications. All the solutions 

were prepared using ultrapure water through a Millipore Milli-Q 185 water purification system 

(Millipore, USA).

Characterizations of 1 and DNA melts: 1H-NMR and 13C-NMR spectra were recorded on 

Bruker Avance 500 (500 and 125 MHz, respectively) or Bruker Avance 400 (400 and 100 MHz, 

respectively) with CDCl3 as solvent. Chemical shifts were determined relative to the residual 

solvent peaks (CHCl3, δ = 7.26 ppm for 1H NMR, δ = 77.0 ppm for 13C-NMR). The following 

abbreviations are used to indicate signal multiplicity: s, singlet; d, doublet; t, triplet; m, multiplet; 

br, broad. Mass spectra were recorded on a Thermo Scientific LTQ Orbitrap XL machine. TGA 

was carried out using a Netzsch STA 449C thermal analyzer in a nitrogen atmosphere and with a 

heating/cooling rate of 10 oC min−1. DSC was performed by a Netzsch DSC204F1 machine with a 

heating rate of 5 oC min−1. POM was conducted on a Nikon ECLIPSE LV100NPOL machine with 

a computational controlled heating plate. SAXS was performed by employing a conventional X-

ray source with radiation wavelength of λ = 1.54 Å. The sample holder is a metal plate with a 

small hole (diameter ≈ 0. 5 cm, thickness ≈ 0. 5 cm), where the X-ray beam passes through and 

the sample-to-detector distance was 18 cm. The scattering vector q is defined as q = 4π sinθ/λ with 

2θ being the scattering angle. Rheology was investigated by a Discovery HR-2 hybrid rheometer 

(TA instruments-Waters LLC, USA). The viscoelastic properties were determined by an 

oscillatory measurement from 0.01 to 20 Hz. The UV-Vis absorption spectra were recorded on a 

Shimadzu UV-2600 UV-Vis spectrophotometer, and all the related studies were carried out on fast 

scan mode with slit widths of 1.0 nm, using matched quartz cells. Test solutions were 200 µL. All 

absorption scans were saved as ACS II files and further processed in OriginLab software to 

produce all graphs shown. The wavelengths of UV and Vis photoirradiations are 365 nm (31.8 

mW cm-2) and 520 nm (95.5 mW cm-2), respectively.
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2. Synthesis of ammonium surfactant 1
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Scheme S1. Synthesis of AZO surfactant 1.

Ethyl 2,4-dihydroxybenzoate (S2): To a solution of 2,4-dihydroxybenzoic acid S1 (10 g, 64.88 

mmol) in ethanol (50 mL) was added H2SO4 (2.0 mL) dropwisely. The resulted mixture was 

refluxed overnight. The mixture was cooled to room temperature and the pH was adjusted to 5~6 

by adding saturated NaHCO3 (aq). The mixture was extracted with Et2O, and the combined 

organic layers were dried over Na2SO4, concentrated in vacuo. The residue was purified by 

column chromatography on silica gel (petroleum ether/EtOAc = 8 : 1) to afford S2 (8.04 g, 68% 

yield) as colorless oil. 1H NMR spectra coincided with those reported in the literature.1

Ethyl 4-(hexyloxy)-2-hydroxybenzoate (S3): To a solution of S2 (6.0 g, 32.93 mmol) in acetone 

(40 mL) were added 1-bromohexane (5.55 mL, 39.53 mmol, 1.2eq) and K2CO3 (13.66 g, 98.84 

mmol, 3eq). The resulted mixture was refluxed for 24 h. After cooling to room temperature, the 

mixture was concentrated in vacuo and subsequently dissolved in CHCl3. The mixture was filtered 

and the filtrate was concentrated in vacuo. The residue was purified by column chromatography 

on silica gel (petroleum ether/EtOAc = 6 : 1) to afford S3 (6.23 g, 71% yield) as a white crystal. 

1H NMR (500 MHz, CDCl3) δ 11.05 (s, 1 H)，7.73 (d, J = 9.5 Hz, 1 H), 6.43-6.41 (m, 2 H)，4.37 

(q, J = 7.0 Hz, 2 H)，3.97 (t, J = 6.5 Hz, 2 H)，1.80-1.75 (m, 2 H)，1.46-1.43 (m, 2 H)，1.39 (t, 

J = 7.0 Hz, 3 H), 1.34-1.33 (m, 4 H)，0.90 (t, J = 6.5 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 

170.1, 165.1, 163.8, 131.1, 107.8, 105.4, 101.1, 68.3, 60.9, 31.5, 29.0, 25.6, 22.5, 14.2, 14.0; 

HRMS (ESI) m/z calcd for C15H23O4
+ [M + H]+ 267.1591, found 267.1592.
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Figure S1. Copies of 1H NMR, 13C NMR and HRMS of S3.
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Ethyl 2-(4-bromobutoxy)-4-(hexyloxy)benzoate (S4): To a solution of S3 (5.0 g, 18.77 mmol) 

in acetone (30 mL) were added 1,4-dibromobutane (2.69 mL, 22.53 mmol, 1.2eq) and K2CO3 

(3.89 g, 28.15 mmol, 1.5eq). The resulted mixture was refluxed over 24 h. After cooling to room 

temperature, the mixture was filtered and the filtrate was concentrated in vacuo. The residue was 

purified by column chromatography on silica gel (petroleum ether/EtOAc = 10 : 1) to afford S4 

(6.78 g, 90% yield) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 7.82 (d, J = 8.4 Hz, 1 H)，

6.48-6.43 (m, 2 H)，4.31 (q, J = 7.2 Hz, 2 H)，4.03 (t, J = 6.0 Hz, 2 H)，3.97 (t, J = 6.4 Hz, 2 

H)，3.50 (t, J = 6.4 Hz, 2 H)， 2.16-2.10 (m, 2 H)，2.02-1.95 (m, 2 H)，1.80-1.73 (m, 2 H)，

1.48-1.41 (m, 2 H)，1.37-1.31 (m, 7 H), 0.92-0.88 (t, J = 7.2 Hz, 3 H); 13C NMR (100 MHz, 

CDCl3): δ 165.8 163.6, 160.4, 133.7, 112.6, 105.2, 100.1 , 68.2, 67.5, 60.3, 33.6, 31.5, 29.3, 29.0, 

27.7, 25.6, 22.5, 14.4, 14.0; HRMS (ESI) calcd. C19H30BrO4 [M + H]+ 401.1322, found 401.1326.
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Figure S2. Copies of 1H NMR, 13C NMR and HRMS of S4.

N-(4-(2-(ethoxycarbonyl)-5-(hexyloxy)phenoxy)butyl)-N-methyl-N-(2,5,8,11-

tetraoxatridecan-13-yl)methyliumaminium (S5): to solution of S4 (4.0 g, 9.97 mmol) in 

CH3CN (15 mL) was added Me2N(CH2CH2O)4CH3 (2.11 g, 8.97mmol, 0.9eq). The resulted 

mixture was refluxed over 24 h. After cooling to room temperature, the mixture was concentrated 

in vacuo, and the residue was put into next step without further purification. 

Note: Me2N(CH2CH2O)4CH3 was prepared following a reported procedure.2 

N-(4-(2-carboxy-5-(hexyloxy)phenoxy)butyl)-N-(λ3-methyl)-N-methyl-2,5,8,11-
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tetraoxatridecan-13-aminium (S6): to a solution of S5 obtained from last step in MeOH/H2O 

(30 mL, 10:1) was added sodium hydroxide pellets (1.0 g, 25.00 mmol, 2.6 eq). The resulted 

mixture was refluxed over 12 h. After cooling to room temperature, the mixture was acidified to 

pH ~2-4 by HCl (conc., 12 M). The mixture was concentrated in vacuo to remove the MeOH and 

the residue was extracted with CHCl3, and the organic layer was separated, dried and concentrated 

in vacuo. The residue was put into next step without further purification.

(E)-N-(4-(5-(hexyloxy)-2-((4-((4-

(octyloxy)phenyl)diazenyl)phenoxy)carbonyl)phenoxy)butyl)-N,N-dimethyl-2,5,8,11-

tetraoxatridecan-13-aminium (1): to a solution of residue obtained from last step in dry CH2Cl2 

(15 mL) were added S7 (3.25 g, 9.97 mmol, 1.0 eq), EDC (1.90 g, 9.97 mmol, 1.0 eq), HOBt (1.35 

g, 9.97 mmol, 1.0 eq) and DIPEA (1.65 mL, 9.97 mmol, 1.0 eq). The resulted mixture was stirred 

at room temperature over 24 h. The filtrate was concentrated in vacuo and subsequently purified 

by column chromatography on silica gel (EtOAc/EtOH/H2O ＝ 3:2:0.5) to afford 1 (1.92 g, 21% 

yield over 3 steps) as yellow oil. 1H NMR (500 MHz, CDCl3) δ 8.05 (d, J = 9.0 Hz, 1 H), 7.90 (d, 

J = 9.0 Hz, 2 H), 7.87 (d, J = 9.0 Hz, 2 H), 7.25 (d, J = 9.5 Hz, 2 H), 6.98 (d, J = 9.0 Hz, 2 H), 

6.53 (dd, J = 9.0, 2.0 Hz, 1 H), 6.47 (d, J = 2.0 Hz, 1 H), 4.08 (t, J = 5.0 Hz, 2 H), 4.01 (dd, J = 

12.0, 6.5 Hz, 4 H), 3.77-3.72 (m, 4 H), 3.652-3.645 (m, 2H), 3.55-3.48 (m, 10 H), 3.45-3.43 (m, 2 

H), 3.28 (s, 3 H), 3.17 (s, 6 H), 2.09-2.01 (m, 2 H ), 1.92-1.89 (m, 2 H), 1.82-1.75 (m, 4 H), 1.48-

1.42 (m, 4 H), 1.35-1.23 (m, 12 H), 0.90-0.85 (m, 6 H); 13C NMR (100 MHz, CDCl3) δ 165.0, 

163.2, 161.9, 161.6, 152.5, 150.3, 146.7, 134.4, 124.8 (X 2), 123.7 (X 2), 122.6 (X 2), 114.8 (X 2), 

110.0, 106.1, 100.0, 71.8, 70.5, 70.4 (X 2), 70.2, 70.1, 68.5, 68.4, 68.0, 65.5, 64.9, 63.0, 58.9, 51.6 

(X 2), 31.8, 31.5, 29.3, 29.22 (X 2), 29.18, 29.0, 26.0, 25.6, 22.7, 22.6, 20.0, 14.1, 14.0; HRMS 

(ESI) m/z calcd. for C48H74N3O9
+ [M − Br]+ 836.5420, found 836.5411.

Note: S7 was prepared following a reported procedure.2 
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The 1H NMR of 1 gives information on the purity. The m peak at 0.90-0.85 ppm with 6.29 H 
integration is assigned to two CH3- groups from -C6H13 and -C8H17 chains of 1, while, in principle 
it should be 6 H. In the last three steps, the intermediate compound S4 is the direct starting 
material to 1, which is in good purity according to the t peak from the end CH3- group of -C6H13 
of S4 in 1H NMR spectra in Figure S2 (a slight higher integration more than 3 H for this CH3- 
group of S4 should originate from the standard integration for 1 H from phenyl group.) Thus, the 
extra 0.29 H at 0.90-0.85 ppm of 1 1H NMR spectrum is from the unreacted S7 in the final 
synthetic step, which means that in molecular concentration ~9% of S7 is still inside the obtained 
1. The peak at 3.28 ppm with (3 + 0.23) H integration is assigned to –OCH3 group of 1 and the 
unreacted amine compound from S4-to-S5 step, indicating ~7% molecular concentration of amine 
in 1. The peaks at 2.84, 2.78 and 1.05 ppm are from unknown impurities, which were hardly 
assigned to known functional groups. These unknown impurities were probably introduced from 
the solvents during the workups. From the region at 8.06-6.47 ppm, four groups of d peak with 
integration of ~0.18 H at 7.75, 7.57, 7.07 and 6.74 ppm were found, in accordance with ~9% of S7 
in 1. Four groups of d peak with integration of ~0.33 H at 7.75, 7.57, ~7.22 and 6.90 ppm were 
found, which were assigned to be the cis-isomer of 1, indicating the isomer ratio in about 5:1. 
Here, the peak at ~7.22 ppm is combined with the two phenyl protons neighboring –OC8H17 and 
the residual solvent peak at 7.26 ppm. The peaks at 7.75 and 7.57 ppm were the combination of 
0.18 H and 0.33 H. An interaction between the phenyl groups from 1 and S7 might be the reason 
for this coincident combination. The final obtained product 1 was purified by chromatography on 
silica gel repeatedly over two times, but it is still very hard to remove the residual S7 and 
Me2N(CH2CH2O)4CH3 due to the strong molecular interactions from 1) azobenzene groups from 
S7 and 1, and 2) PEG chains from Me2N(CH2CH2O)4CH3 and 1. In general, the purity of 1 in 
mass concentration is around 94.8%, if not taking the unknown impurities into account. It is worth 
noting that these unknown impurities from solvents are normally small molecules, as compared to 
the molecular weight (917.04 g/mol) of 1. Therefore, the calculated 94.8% purity would be close 
to the actual purity.

~9% S7 inside

~7% Me2N(CH2CH2O)4CH3 inside

unknown
impurities

~9% S7 inside
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Figure S3. Copies of 1H NMR, 13C NMR and HRMS of 1.

3. Synthesis of DNA melts

DNA-1 (1:5): the aqueous solution of 1 (23.6 mM, 140 μL) was added into the aqueous DNA (5’-

CCTCGCTCTGCTAATCCTGTTA-3’) solution (1.5 mM, 20 μL) using a pipette, which led to the 

precipitate of DNA-1 complex. The precipitate was purified by centrifugation over three times and 

lyophilization to afford the needed DNA-1 (1:5) TLC. 

DNA-1-DOAB (1:x:y): DNA-1-DOAB (1:x:y) was prepared following a procedure as that of 

DNA-1 (1:5), but using 1 (23.6 mM, 112 μL) and DOAB (65 mM, 10.2 μL) for DNA-1-DOAB 
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(1:4:1), 1 (23.6 mM, 84 μL) and DOAB (65 mM, 20.3 μL) for DNA-1-DOAB (1:3:2), 1 (23.6 mM, 

56 μL) and DOAB (65 mM, 30.5 μL) for DNA-1-DOAB (1:2:3), 1 (23.6 mM, 28 μL) and DOAB 

(65 mM, 40.6 μL) for DNA-1-DOAB (1:1:4), respectively.

4. Characterizations of ammonium surfactant 1 and DNA TLCs
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The trans-cis isomerization yields of 1 between the most trans-rich and the most cis-rich states 

were estimated by following the methods: cis-1% = (APSS-UV – Atrans)/(Acis – Atrans) = 97.5% and 

trans-1% = (APSS-Vis – Acis)/(Atrans – Acis) = 96.6%.3 1 undergoes utmost trans-cis conversion after 

~15 s UV light irradiation, while then gradually reach to the photostationary state with slightly 

decreasing the ratio of cis-1. (The ratio decrease of cis-1 after 15 s under continuous UV light 

irradiation should be caused by the molecular orientation during the trans-cis isomerization.4) 

Here, we determine the utmost conversion to cis-1 to be the most cis-rich state (Acis = 0.221). 

Under Vis light irradiation, 1 undergoes utmost cis-trans conversion after ~180 s irradiation, and 

then reach to the photostationary state, with the absorption intensity lower than the initial thermal 

stationary state. Therefore, we determine the initial thermal stationary state to be the most trans-

rich state (Atrans = 1.012). The APSS-UV (0.235) and APSS-Vis (0.985) are the absorption values from 

the final photostationary states under UV and Vis light irradiations at 60 s and 210 s, respectively.

a
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Figure S4. Time-dependent UV-Vis absorption spectral changes of 1 in aqueous solution (60.4 

μM) at r.t. under a) UV light, b) firstly UV light over 15 s and then Vis light and c) firstly UV 

light over 60 s and then in dark. The maximum absorption peak at 342 nm for π-π* absorption is 

used for drawing the plotted graphs.
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Figure S5. a) Time-dependent UV-Vis absorption spectral changes of 2 in aqueous solution (43.9 

μM) at r.t. under firstly UV light over 60 s and then in dark. b) The maximum absorption peak at 

360 nm for π-π* absorption of 2 is used for drawing the plotted graph, affording the half-life (14.0 

h) for cis-2 in aqueous condition. c) Time-dependent UV-Vis absorption spectral changes of 2 in 

solid state at r.t. under firstly UV light over 10 min and then in dark. d) The absorption peak at 

360 nm for π-π* absorption of cis-2 is used for drawing the plotted graph, affording the half-life 

(4.18 h) for solid-state cis-2. Equation of ln[(A∞-At)/(A∞-A0)] = -κrevt is used for obtaining the 

thermodynamic cis-trans isomerization rate of AZO, κrev = 0.166 h-1, and t1/2 = ln2/κrev is used for 

obtaining the half-life of AZO, t1/2 = ln2/0.166 = 4.18 h. A∞ is the absorption intensity of trans-

AZO rich state after cis-trans isomerization. At is the absorption intensity of AZO at “t” time. A0 

is the absorption intensity of cis-AZO rich state after UV irradiation. Please note: 2 could not 

under solid-liquid phase change under UV light irradiation. The half-life of solid-state cis-2 is 
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obtained from a solid sample.

 
400 450 500 550 600

0.0

0.3

0.6

0.9

1.2

1.5

Ab
so

rb
an

ce
 (a

.u
.)

Wavelength (nm)

 dark 24h
 dark 48h

a  UV 4min

 

 UV 0min

 dark 10min
 dark 30min
 dark 1h
 dark 2h
 dark 4h
 dark 6h
 dark 10h

443 nm

0 10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

 

 

Ab
so

rb
an

ce

Time (h)

b

Figure S6.  a) Time-dependent UV-Vis absorption spectral changes of pure 1 at r.t. under firstly 

UV light over 4 min and then in dark. Over 48 h, the absorbance between 400 and 500 nm have 

not been back to the original state, indicating a slow cis→trans isomerization process. This slow 

isomerization process results in a relative stable IL state of pure surfactant 1 at r.t. after ceasing 

the UV light. b) The absorption peak at 443 nm for π-π* absorption of cis-1 is used for drawing the 

plotted graph, affording the half-life (10.20 h) for cis-1, by using a similar calculation method as 

that in Figure S5d. Please note: the half-life of cis-1 was obtained in liquid state. c) The POM 

analysis on thermodynamic stability of IL phase of 1 after ceasing UV light at r.t.. Scale bar is 100 

μm.
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Figure S7. The geometric optimizations of the proposed states of cis-1 were performed within 
Gaussian 16 program package (Revision D.01)5 at the level of density functional theory (DFT) 
B3LYP functional6 coupled with Grimme D3 dispersion correction7 and 6-31G (d, p) basis set. To 
confirm the nature of obtained minima, vibrational frequency calculations were then carried out at 
the same level of theory as geometric optimizations.

It is conceivable that, the molecules investigated here should have several possible 
conformations, in particular the alkyl chains of cis-1. Two possible conformations of cis-1 have 
been optimized using the hybrid B3LYP functional coupled with the 6-31G (d,p) basis set (see 
conformation a and b). With the same theory level, frequency analysis was performed to confirm 
the nature of obtained minima (their structures and relative energies are given) and it is shown that 
the “closed” conformation from the two alkyl chains is more stable with lower relative energies 
than the “open” one. This is consistent with our original intention on the design of 1.

Meanwhile, the visualization of van der Waals interaction between the two alkyl chains can be 
achieved from the “closed” state through the reduced density gradient (RDG) calculation based on 
electron density and its derivatives of the corresponding molecule8-9. As depicted in c-d, the low-
density and low gradient region in “closed” state of cis-1 mainly corresponds to the non-bounded 
overlaps between alkyl chains, which are originated from van der Waals interactions. The 
evidently bigger overlapping portion inside the “closed” state than the “open” state further interpret 
the inherent reason of the relative stability of “closed” state. 

“closed state”
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Figure S8. Repeated UV-Vis illuminations induce repeated reversible LC⇄IL phase transitions of 

1 at r.t..

Figure S9. UV-Vis illuminations induce reversible LC⇄IL phase transitions of 1 at a) 40oC and b) 

45oC, respectively.

b

a
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Figure S10. POM images of DNA-1-DOAB (1:1:4) at r.t., indicating an isotropic state.
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Figure S11. DSC profiles of DNA TLCs. Before the DSC measurements, all the samples were 

pre-treated by heating to above their clearing points and cooling to r.t. two times.
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Figure S12. POM images of light-induced phase transitions of a) DNA-1 (1:5) and b) DNA-1-

DOAB (1:4:1) at 35 oC. The scale bar is 50 μm.

a

b
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Figure S13. Infrared thermometer images of the testing conditions under irradiation with 365 nm 

(32 mW cm-2) light over 90 min. The highest surface temperature could only reach to 26 oC.10

Figure S14. POM images of UV light induced DNA ILs after ceasing UV light at r.t. over 48 h. 

The scale bar is 50 μm.
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Figure S15. A summary on the temperature-dependent POM analysis of DNA TLCs and DNA IL. 

The scale bar is 50 μm.

0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

40

45

50

 

 

In
te

ns
ity

q vector (Å-1)

0.149

0.330 0.493

b

Figure S16. a) POM images of the phase transitions of DNA-2-DOAB (1:3:2) under UV light and 

after ceasing UV light at r.t.. b) The SAXS profile of DNA-2-DOAB (1:3:2) at r.t.. Broad 

diffraction peak at 0.149 Å-1 with no following harmonics were observed, indicating the nematic 

arrangement, which is in accordance with the reported AZO-containing solvent-free biomaterials 

from the previous studies.1, 11 The diffraction peaks correspond to the diffraction spacing distances 

from 4.21 nm, composing of 1.1 nm thickness of DNA12 and 3.11 nm thickness of surfactants. 

a



20

Additionally, two peaks at ~0.330 Å-1 and ~0.493 Å-1 were also observed, while, the ratio between 

these peaks and the broad diffraction peak at 0.149 Å-1 does not correspond to a layered structure 

or other structures. We attribute them to the harmonic peaks of the first-ordered subsidiary 

satellite peaks of nematic diffraction peak, indicating an in-plane layer undulation for DNA-2-

DOAB (1:3:2),13 of which the first-order subsidiary satellite peak is probably overlapped by the 

broad diffraction peak. 

As compared to 1, the lack of one alkyl chain in 2 leads to the absence of “locked” cis-AZO 

conformation. As a result, DNA-2-DOAB (1:3:2) could not maintain the IL state after ceasing the 

UV light, transiting back to LC state in short time. The fabrication of DNA-2-DOAB (1:3:2) 

complex was similar to that of DNA-1 TLCs.
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