Urchin-like hybrid nanostructures of CuOx/Fe2O3 from Cu-mediated pyrolysis of Fe-MOFs for catalytic reduction of organic pollutants

Min Zhang^{a,b}, Aihui Cao^{a,b}, Heng Zhang^a, Yunlong Zhao^a, Xintai Su^{c,*}, Lu Wang^a, Ronglan Wu^a,

Chao Yang^{a,d,*}

- [a] Ministry Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
- [b] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China
- [c] Engineering and Technology Research Center for Environmental Nanomaterials, School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
- [d] Xinjiang De'an Environmental Protection Technologies Inc, Urumqi 830046, China E-mail addresses: jerryyang1924@163.com (C. Yang); suxintai827@163.com (X. T. Su)

Figure S1 STEM, and EDS mapping of nanorods from Urchin-like CuO_x/Fe₂O₃.

Figure S2 XRD patterns and TEM images: (a, b) Fe_2O_3 framework; (c, d) CuO nanocages.

(Synthesis of Fe_2O_3 and CuO: MIL-101 (Fe), HKUST-1 was directly annealed at 350 °C in air for 2 h with a heating rate of 1 °C min⁻¹, respectively.)

Figure S3 Diagram of formation mechanism: (a) MIL-101-Fe derived Fe_2O_3 ; (b) $Cu(NO_3)_2/MIL-101$ -Fe derived CuO_x/Fe_2O_3 .

Figure S4 FT-IR spectra of $CuO_x/Fe_2O_3@350$ and $Fe_2O_3@350$.

Figure S5 TEM images: (a) Ni(NO₃)₂/MIL-101-Fe derived Ni-Fe Oxide; (b) $Co(NO_3)_2/MIL$ -101-Fe derived Co-Fe Oxide.

Figure S6 The reduction of 4-NP by $CuO_x/Fe_2O_3@350$ with different dose of NaBH₄: (a-e) UV-vis spectra; (f) Plots of C/C_0 vs t; (g) plots of $ln(C/C_0)$ vs t; (h, i) Plots of constant rate vs proportion of 4-NP to NaBH₄.

Reduction conditions: 4-NP (3.0 mL, 0.12 mmol L⁻¹), catalyst (30 μ L, 0.5 mg mL⁻¹), and temperature (298.15 K).

Figure S7 The reduction of 4-NP to 4-AP over different dose of $CuO_x/Fe_2O_3@350$: (ae) UV-vis spectra; (f) Plots of $C/C_0 vs t$; (g) Plots of $ln(C/C_0) vs t$; (h) Plots of constant rate vs catalyst dosage.

Reduction conditions: 4-NP (3.0 mL, 0.12 mmol L⁻¹), catalyst (0.5 mg mL⁻¹), NaBH₄ (0.12 mmol), and temperature (298.15 K).

Figure S8 UV-vis spectra of reduction of 4-NP over CuO_x/Fe_2O_3 derived from $Cu(NO_3)_2/MIL-101$ -Fe at different temperature: (a) 300 °C; (b) 350 °C; (c) 400 °C; (d) 450 °C.

Reduction conditions: 4-NP (3.0 mL, 0.12 mmol L⁻¹), catalyst (10 μ L, 0.5 mg mL⁻¹), NaBH₄ (0.12 mmol), and temperature (298.15 K).

Figure S9 UV-vis spectra of reduction of 4-NP over different component catalyst: (a) CuO nanocage; (b) Fe_2O_3 ; (c) mixture of CuO+Fe_2O_3; (d) CuO_x/Fe_2O_3@350.

Reduction conditions: 4-NP (3.0 mL, 0.12 mmol L⁻¹), catalyst (10 μ L, 0.5 mg mL⁻¹), NaBH₄ (0.12 mmol), and temperature (298.15 K).

Figure S10 Photograph of dye molecules before and after addition of NaBH₄ without catalysts.

Table S1 Comparison of catalytic results for the reduction of 4-NP by NaBH₄ in the

presence of various catalysts.

Catalysts	4-NP	$NaBH_4$	Kinetic rate	Ratio	Turnover frequency	Reference
	(mM)	(M)×10 ⁻²	constant	constant	TOF (h ⁻¹)	
			<i>K_{app}</i> (min⁻¹)	<i>К</i> (min ⁻¹ g ⁻¹)		
CuO _x /Fe ₂ O ₃ @350	0.12	4.8	0.3122	6.244×10 ⁴	574.5	this work
Ag-OMS-C	0.1	0.01	1.8	9.000×10 ³	90.2	[S1]
Pd/C	1.67	120	0.52980	6.915×10 ²	82.8	[S2]
Pt nanotubes	0.09	10	0.2	13.3		[S3]
PdPt nanotubes	0.09	10	0.5	33		[S3]
Au	0.103	1	0.126	21	0.00046	[S4]

The TOF is calculated by moles of reduced 4-NP molecules per mole copper of catalyst per hour.

Reference

S1 H.-T. Fan, X.-G. Liu, X.-J. Xing, B. Li, K. Wang, S.-T. Chen, Z. Wu and D.-F. Qiu, *Dalton Transactions* 2019, **48**, 2692-2700.

S2 Y. Fang and E. Wang, *Nanoscale* 2013, **5**, 1843-1848.

S3 Y. Wang, Q. Li, P. Zhang, D. O'Connor, R. S. Varma, M. Yu, and D. Hou, *J. Colloid Interface Sci*.2019, **539**, 161-167. [S4] M. H. Rashid, R. R. Bhattacharjee, A. Kotal, and T. K. Mandal, *Langmuir* 2006, 22, 7141-7143.