Supplementary Materials for

Silicon nitride waveguides with directly grown WS_2 for efficient second-harmonic generation

Ning Liu,‡^a Xi Yang,‡^a, Zhihong Zhu,^a Feng Chen,^b Yangbo Zhou,^b Jipeng Xu,^a and Ken Liu *a

^aCollege of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha 410073, P. R. China. E-mail: <u>liukener@163.com</u> ^bSchool of Materials Science and Engineering, Nanchang University, Nanchang 330031, P. R. China.

[‡]These authors contributed equally to this work.

Fig. S1. Fundamental TE mode distribution of Si_3N_4 waveguide and silica fiber covered by a monolayer WS₂. (a) Fundamental TE mode distribution of the TE mode in the Si_3N_4/WS_2 hybrid waveguide structure. The width and the height of the Si_3N_4 waveguide is 2.0 µm and 0.6 µm, respectively. The thickness of the WS₂ monolayer is set to be 0.65 nm. (b) Fundamental TE mode distribution of a microfiber covered by a monolayer WS₂. The diameter of the core is set to be 4 µm.

We use the simulation software "*COMSOL*". The wavelength is set to be 1,550 nm and the refractive index n of monolayer WS_2 is set to be 4.5.¹ Fig. 1 shows the fundamental TE mode distribution of the Si_3N_4 waveguide covered by a monolayer WS_2 on the top and both sides and a 4 µm-diameter microfiber also covered by a monolayer WS_2 . The confinement factor of the monolayer WS_2 can be expressed as:²

$$\Gamma = \frac{\int_{ws_2} \varepsilon_{ws_2} |E_{\parallel}|^2 dV}{\int_{V} \varepsilon |E|^2 dV}$$

Where ε is the dielectric constant, and E_{\parallel} is the electric field in the analyzing plane. $\Gamma \approx 0.17\%$ for the Si₃N₄/WS₂ hybrid waveguide and $\Gamma \approx 0.065\%$ for the SiO₂/WS₂ microfiber. The confinement factor in the hybrid waveguide is 162% higher than that in the microfiber.

For the same pump power, we calculated the magnitude of electric field |E| in the monolayer WS₂ for the P₁ point in Fig. 1(a) and the P₂ point in Fig. 1(b). The results show that the value of |E| at P₁ is about 27 times as much as that of the point P₂, which means that the second-order nonlinearity of the Si₃N₄/WS₂ hybrid waveguide is much higher than that of the microfiber covered by a monolayer WS₂, since the SHG effect is proportional to $|E|^2$.

Fig. S2. SEM image of the Si_3N_4 waveguide with SiO_2 etched at both sides before the subsequent WS_2 growth.

References

1 H. L. Liu, C. C. Shen, S. H. Su, C. L. Hsu, M. Y. Li and L. J. Li, *Appl. Phys. Lett.*, 2014, **105**, 4.

2 Y. Ye, Z. J. Wong, X. F. Lu, X. J. Ni, H. Y. Zhu, X. H. Chen, Y. Wang and X. Zhang, *Nat. Photonics*, 2015, **9**, 733-737.