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Theory

Electric dyadic Green’s function

Performing a 2D spatial Fourier transform (r = {x, y} → k = {kx, ky}), and a Fourier transform

with respect to time (t → ω), enables us to express the electric field E (and other functions of

R = {r, z} and t) as

E(R, t) =

¨
d2k

(2π)2
eik·r
ˆ ∞
−∞

dω

2π
e−iωtE(k, z, ω). (S1)

In order to evaluate the electromagnetic (EM) fields, it is convenient to introduce dyadic

Green’s function (DGF) of the first kind,1 which may be derived by considering the electric Hertz

vector Π(R, t).2 Thus, using the relation between the electric field and the Hertz vector,1,2 one can

obtain the EDGF via1

←→
G e0(k, z, ω) =

(
k2
d

←→
I − kk + i

∂

∂z
(kẑ + ẑk) +

∂2

∂z2
ẑẑ

)
GΠ0(k, z, ω). (S2)

where
←→
I is a 3D identity tensor and GΠ0(k, z, ω) is the retarded scalar Green’s function (GF)

for the components of the Hertz vector. This GF is a solution to the nonhomogeneous Helmholtz

equation with a scalar electric dipole as the source term,3 which is easily obtained for the proposed

geometry of the problem as

(
∂2

∂z2
− q2

)
GΠ0(k, z, ω) = − 4πi

ωεd(ω)
δ(z), (S3)

where k =
√
k2
x + k2

y , q2 = k2 − k2
d with k2

d = ω2εd(ω)/c2, and is given by

GΠ0(k, z, ω) =
2πi

ωqεd(ω)
e−q|z|, (S4)

with q(k, ω) specified in Eq. (7) of the MT.
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Finally, using Eq. (S4), one may expand the expression in Eq. (S2) to give the full EDGF as

←→
G e0(k, z, ω) =

←→
G
||
e0(k, z, ω)

− 2πi

ωqεd

{
iq [kx (x̂ẑ + ẑx̂) + ky (ŷẑ + ẑŷ)] sign(z)−

[
k2 − 2qδ(z)

]
ẑẑ
}

e−q|z|,

(S5)

where the part of the EDGF,
←→
G
||
e0(k, z, ω), which only involves components parallel to the con-

ducting sheet is given in Eq. (6) of the MT, with x̂, ŷ and ẑ being unit vectors along the corre-

sponding Cartesian axes.

Self-consistent solution for the induced electromagnetic fields

Having obtained the EDGF in Eq. (S5), one may, straightforwardly, calculate the external and

induced electric fields by inserting the corresponding charge current densities Jext(k, z
′, ω) and

Jind(k, z′, ω) in Eq. (1) of the MT. Hence, the external electric field may be written as

Eext(k, z, ω) = A
(
Ẽext,xx̂ + Ẽext,yŷ + Ẽext,zẑ

)
eiQz, (S6)

with its amplitude A defined in Eq. (2) of the MT and Q =
(
ω − k · v‖

)
/vz, while its dimension-

less Cartesian components are given by

Ẽext,x =
1

ωk

(
k2
dvx − kxω

)
,

Ẽext,y =
1

ωk

(
k2
dvy − kyω

)
,

Ẽext,z =
1

ωk

[(
k2
d −Q2

)
vz −Qk · v‖

]
.

(S7)

Furthermore, one can use the above equations to write the external in-plane electric field as

Eext||(k, 0, ω) = A
(
Ẽext,xx̂ + Ẽext,yŷ

)
to express the total in-plane electric field on the conduct-
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ing sheet from Eq. (4) of the MT as

E||(k, 0, ω) =←→ε −1 · Eext||(k, 0, ω) ≡ A Ẽ0, (S8)

where we have factored out the amplitude A and defined the dimensionless total in-plane electric

field,

Ẽ0 ≡ Ẽ0xx̂ + Ẽ0yŷ, (S9)

with its Cartesian components given by

Ẽ0x =
1

∆kω

[(
1− ŷ ·

←→
G
||
e0(k, 0, ω) · ←→σ · ŷ

)
Ẽext,x +

(
x̂ ·
←→
G
||
e0(k, 0, ω) · ←→σ · ŷ

)
Ẽext,y

]
,

Ẽ0y =
1

∆kω

[(
1− x̂ ·

←→
G
||
e0(k, 0, ω) · ←→σ · x̂

)
Ẽext,y +

(
ŷ ·
←→
G
||
e0(k, 0, ω) · ←→σ · x̂

)
Ẽext,x

]
.

(S10)

Similarly, one may decompose the induced electric field into Cartesian components by factor-

ing out the amplitude A and its exponential dependence on z. Thus, from Eq. (3) of the MT, one

finds

Eind(k, z, ω) = A
(
Ẽind,xx̂ + Ẽind,yŷ + sign(z) Ẽind,zẑ

)
e−q|z|, (S11)

where

Ẽind,x = x̂ ·
←→
G
||
e0(k, 0, ω) · ←→σ · Ẽ0,

Ẽind,y = ŷ ·
←→
G
||
e0(k, 0, ω) · ←→σ · Ẽ0,

Ẽind,z =
2π

ωεd

(
k · ←→σ · Ẽ0

)
.

(S12)
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For the induced magnetic field, we obtain

Bind(k, z, ω) =
c

iω

(
ik +

∂

∂z
ẑ

)
× Eind(k, z, ω)

≡ A
(

sign(z) B̃ind,xx̂ + sign(z) B̃ind,yŷ + B̃ind,zẑ
)

e−q|z|,

(S13)

where

B̃ind,x =

[
2πky
ck2

d

k +
cq

iω
ŷ ·
←→
G
||
e0(k, 0, ω)

]
· ←→σ · Ẽ0,

B̃ind,y = −
[

2πkx
ck2

d

k +
cq

iω
x̂ ·
←→
G
||
e0(k, 0, ω)

]
· ←→σ · Ẽ0,

B̃ind,z =
c

ω
(kxŷ − kyx̂) ·

←→
G
||
e0(k, 0, ω) · ←→σ · Ẽ0.

(S14)

Finally, the joint probability density for the radiative energy loss in the upper/lower half-space

can be obtained from the z component of the real part of the Poynting vector,

<{ẑ ·P(k, z, ω)} =
c |A|2

4π
sign(z)

[
Ẽind,xB̃

∗
ind,y − Ẽind,yB̃

∗
ind,x

]
= −|A|

2

2

κ2

k2
d

GΠ0(k, 0, ω) sign(z)
∣∣∣k · ←→σ · Ẽ0

∣∣∣2 , (S15)

which is nonzero only inside the light cone. One should note that the above expression may also

be written in terms of the in-plane EDGF, as seen in Eq. (S18) below.

Energy loss probability densities

Considering the Physical definition of each contribution and following the formalism presented in

Ref.,3 we first obtain the total energy loss of the external charged particle due to the work done by

the induced field on that particle,

Fext (k, ω) =
1

4π3ω
<
{
EH

ext‖(k, 0, ω) · ←→σ (k, ω) · ←→ε −1(k, ω) · Eext‖(k, 0, ω)
}
, (S16)
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where the superscript H indicates the Hermitian transform (conjugate transpose) of a tensor. Re-

calling Eq. (7) of the MT, one notices that the total energy loss density of the external particle Fext

may be decomposed into two contributions, F<
ext and F>

ext, coming from different regions of the

(k, ω) space, both inside the light cone, k < kd, and outside the light cone, k > kd, respectively.

On the other hand, as a result of the work done by the total electric field acting on the induced

current density in the conducting sheet, one may evaluate the joint probability density for the

Ohmic energy loss as

FOhm (k, ω) =
1

4π3ω
<
{

EH
ext‖(k, 0, ω) ·

(←→ε −1
)H · ←→σ · ←→ε −1 · Eext‖(k, 0, ω)

}
. (S17)

We note that the Ohmic energy loss density FOhm may also be decomposed into two contributions,

F<
Ohm and F>

Ohm, coming from the regions inside and outside the light cone, respectively. Finally,

the joint probability density for the radiative energy loss, which only arises in the region of the

(k, ω) space inside the light cone, is obtained from the flux of the Poynting vector in the far field

regions above and below the conducting sheet as

Frad(k, ω) =
−1

4π3ω

{
EH

ext‖(k, 0, ω) ·
(←→ε −1

)H · ←→σ H ·
←→
G
||
e0(k, 0, ω) · ←→σ · ←→ε −1 · Eext‖(k, 0, ω)

}
.

(S18)

To simplify the notation in Eqs. (S17) and (S18), we have dropped the variables (k, ω) in the

tensors←→σ and←→ε , but we kept them in the electric field components. Referring to Eqs. (6) and

(7) of the MT, one should note that inside the light cone and for a lossless surrounding dielectric,
←→
G
||
e0(k, 0, ω) appearing in Eq. (S18) is a purely real-valued symmetric tensor.

When the in-plane conductivity of an anisotropic sheet is considered in the local limit (k → 0),

then its tensor may be diagonalized in the Cartesian coordinates, giving

←→σ (ω) = σx(ω) x̂x̂ + σy(ω) ŷŷ. (S19)
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Then, also, the effective 2D dielectric tensor of the sheet, defined in Eq. (5) of the MT, takes a

simpler form. As a result, one can further streamline the expressions for the energy loss probability

densities, given in Eqs. (S16), (S17) and (S18), into

Fext (k, ω) =
|A|2

4π3ω

[
Ẽext,x<

{
σx Ẽ0x

}
+ Ẽext,y<

{
σy Ẽ0y

}]
, (S20)

FOhm (k, ω) =
|A|2

4π3ω

[∣∣∣Ẽ0x

∣∣∣2<{σx}+
∣∣∣Ẽ0y

∣∣∣2<{σy}] , (S21)

and

Frad(k, ω) =
|A|2

4π3ω

2π

ωκεd

[(
k2
d − k2

x

) ∣∣∣σx Ẽ0x

∣∣∣2 +
(
k2
d − k2

y

) ∣∣∣σy Ẽ0y

∣∣∣2 − 2kxky<
{
σx Ẽ0x σ

∗
y Ẽ
∗
0y

}]
,

(S22)

respectively. In the above expressions, the dimensionless components of the total in-plane electric

field, which are defined in Eq. (S10), may also be written in a simpler form for the case of diagonal

conductivity tensor in Eq. (S19), as follows

Ẽ0x =
1

∆

{
Ẽext,x −

2πi

qkc2
σy
[(
k2
d − k2

y

)
vx + kx (kyvy − ω)

]}
,

Ẽ0y =
1

∆

{
Ẽext,y −

2πi

qkc2
σx
[(
k2
d − k2

x

)
vy + ky (kxvx − ω)

]}
.

(S23)

with Ẽext,x and Ẽext,y given in Eq. (S7) and ∆ given in Eq. (11) of the MT.

In the MT, we have used FOhm(k, ω) to define the momentum-integrated and the frequency-

integrated marginal probability densities P (ω) and Γ(k), respectively. While the latter function

provides insight into the direction of excited plasmon polariton modes in phosphorene, it combines

contributions from elliptic and hyperbolic dispersion regimes. Therefore, it is worthwhile defining

yet another marginal density function, Υ(φ, ω), which is obtained by switching wavevector to polar
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coordinates, k = k(cosφ, sinφ), and integrating over its magnitude k = ‖k‖, as follows,

Υ(φ, ω) =

ˆ ∞
0

dk k FOhm (k, φ, ω) . (S24)

This function is particularly suitable in representing the anisotropy in exciting hyperbolic modes,

because its angular dependence should peak at the directions of their asymptotes for (reduced)

frequencies ω > ωt = 0.69. Obviously, P (ω) =
´ 2π

0
dφΥ(φ, ω).

Finally, we comment on the expected directionality in exciting plasmon polariton modes in

phosphorene, which is expected to be pronounced for grazing incidence of the external charged

particle. One can see in Eqs. (S20), (S21) and (S22), that the all joint probability densities are

proportional to the factor |A|2, which enforces the kinematic resonance condition, ω = k · v‖,

in the limit of an extremely oblique incidence, or near-parallel incidence of the charged particle,

where θ0 → π
2
, i.e., vz � ‖v‖‖. Assuming that v < c/

√
εd, one can then show that

|A|2 → 16π3 (Ze)2k2

vzα3
δ
(
ω − k · v‖

)
, (S25)

where the delta function expresses the kinematic resonance condition, ω = k · v‖, which auto-

matically places the relevant regions of the (k, ω) space outside the light cone, hence justifying

the choice q = α. Accordingly, the TR from the sheet is heavily suppressed for near-parallel

incidence.4,5 Of course, the directional effects from the particle’s trajectory also come from the

velocity components vx and vy in the factors Ẽ0x and Ẽ0y, defined in Eq. (S23) with Eq. (S7).

Modal decomposition of plasmon excitations

Using matrix representation, ε, for the effective 2D dielectric function of an anisotropic sheet,

given in Eq. (5) of the MT, in the case when its in-plane conductivity is considered in the local

limit, Eq. (S19), we can solve the corresponding eigenvalue problem εu∓ = λ∓ u∓. This enables
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us to express the function in Eq. (11) of the MT as ∆ = λ−λ+, where

λ∓(k, ω) = 1 + 2πi
q

ω

(
σm ∓

√
σ2
d + σ2

int

)
, (S26)

with

σm,d =
1

2q2

[(
k2
y − k2

d

)
σy(ω)±

(
k2
x − k2

d

)
σx(ω)

]
, (S27)

and σint = kxky
q2

√
σx(ω)σy(ω). One may compare this equation with Eq. (14) in Ref.6 describing

hybridization of plasmon polaritons in double-layer graphene. Therefore, solving the equation

∆(k, ω) = 0 in the limit of vanishing real parts of the conductivity tensor components is naturally

decomposed into two equations, λ−(k, ω) = 0 and λ+(k, ω) = 0, giving the dispersion relations

of two eigen-modes, ω = ω−(k) and ω = ω+(k), respectively. Those eigenfrequencies represent

longitudinal and transverse modes, which are hybridized when they propagate with the wavevector

k = (k, θ) at an arbitrary angle θ with respect to the principal axes of phosphorene.7

The eigenvectors corresponding to the eigenvalues λ∓, given in Eq. (S26), may be written as

u∓ = N∓

 kxky
α2 σy

σd ∓
√
σ2
d + σ2

int

 , (S28)

where N∓ are normalization factors. Using eigenvalue decomposition, we may write the ma-

trix representation of the 2D dielectric tensor as ε = U Λ U−1, where U =
[
u− u+

]
and Λ =

diag [λ− λ+]. Thus, one may express the tangential components of the total in-plane electric field

as a modal decomposition, E0 = ε−1 Eext||(k, 0, ω) = U Λ−1 U−1Eext||(k, 0, ω). Consequently,

each component of the total tangential electric field may be written as

Ẽ0x,y =
C−x,y
λ−

+
C+
x,y

λ+

, (S29)
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where

C∓x =
1

2

[(
1± σd√

σ2
d + σ2

int

)
Ẽext,x ∓

kxky σy

α2
√
σ2
d + σ2

int

Ẽext,y

]
,

C∓y =
1

2

[
∓ kxky σx

α2
√
σ2
d + σ2

int

Ẽext,x +

(
1∓ σd√

σ2
d + σ2

int

)
Ẽext,y

]
,

(S30)

with Ẽext,x and Ẽext,y given in the first two lines of Eq. (S7).

Notice that the singular nature of the terms in Eq. (S29) exposes possibly strong roles of the

two eigen-modes when calculating various energy loss channels in the regions of the (k, ω) space

where λ∓(k, ω) → 0 in the limit of vanishing dissipation in the conducting sheet. Considering

that the corresponding dispersion relations, ω = ω∓(k), are located outside the light cone, k > kd,

and taking the limit <{σx(ω)} = <{σy(ω)} → 0+, one expects that the total energy loss outside

the light cone is dominated by the Ohmic energy loss that goes entirely to the excitation of the

two long-lived eigen-modes, i.e., F>
ext (k, ω) = F>

Ohm (k, ω) → Fpl (k, ω), where Fpl (k, ω) is

defined as the joint probability density for plasmon excitations. Inserting Eq. (S29) into Eq. (S20)

then shows that the plasmon excitation probability density may be decomposed into two modal

contributions, Fpl (k, ω) = F−pl (k, ω) + F+
pl (k, ω), which are given by

F∓pl (k, ω) =
|A|2

4π3ω
<
{

1

λ∓

[
Ẽext,x σx(ω)C∓x + Ẽext,y σy(ω)C∓y

]}∣∣∣∣∣
<{σx}=<{σy}→0+

=
|A|2

4π2ω

{
1

2
Ẽ2

ext,x

[
={σx}

(
1± ={σd}
D(kx, ky)

)]
∓ kxky

α2
Ẽext,xẼext,y

[
={σx}={σy}
D(kx, ky)

]
+

1

2
Ẽ2

ext,y

[
={σy}

(
1∓ ={σd}
D(kx, ky)

)]}
δ
(
<
{
λ∓|<{σx}=<{σy}→0+

})
.

(S31)

Notice that the above expression involves a Dirac delta function peaked at the zeros of the function

that gives rise to the corresponding dispersion relation ω = ω∓(k), which may be written in the
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limit of vanishing damping in the sheet as

<
{
λ∓|<{σx}=<{σy}→0+

}
= 1− π

ωα

[(
k2
x − k2

d

)
={σx}+

(
k2
y − k2

d

)
={σy} ∓ D(kx, ky)

]
,

(S32)

where

D(kx, ky) =

√
(k2
x − k2

d)
2={σx}2 +

(
k2
y − k2

d

)2={σy}2 + 2
(
k2
xk

2
y + α2k2

d

)
={σx}={σy}.

(S33)

Note that the above result in Eq. (S31) provides a good approximation for Ohmic energy losses

outside the light cone in the case of small but finite damping in the conducting sheet, FOhm (k, ω) ≈

F>
Ohm (k, ω) ≈ Fpl (k, ω). More importantly, the singular behavior of the expression in Eq. (S31) at

frequencies ω = ω∓(k), when coupled with the expression for |A|2 given in Eq. (S25) in the limit

of oblique incidence, which involves a delta function δ
(
ω − k · v‖

)
, provides a mechanism for

exciting the plasmon modes in the conducting sheet by a kinematic resonance condition, ω∓(k) =

k · v‖. It is expected that, in the regime of hyperbolic plasmon dispersion in the sheet, a suitable

choice of the incident charged particle trajectory may give rise to strong directionality effects in

exciting such plasmon modes.

In the case of isotropic conductivity, i.e., when σx(ω) = σy(ω) = σiso(ω), the longitudinal

and transverse modes are no longer hybridized. We then have ∆ = λtλl, with λ− → λt and

λ+ → λl, where λt = 1 − 2πi ω
c2q
σiso(ω) and λl = 1 + 2πi q

ω
σiso(ω) correspond to the transverse

and longitudinal modes, respectively.

In a high frequency range, which is relevant for the hyperbolic regime, we may can take a

nonretarded limit, giving ∆ → 1 + 2πi k
ω
σl(φ, ω), where we define the orientation dependent

longitudinal conductivity by σl(φ, ω) = cos2 φσx(ω) + sin2 φσy(ω). In this regime, only the lon-

gitudinal hyperbolic plasmon mode exists with a particularly simple expression for the excitation
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probability density,

FNR
pl (k, ω) =

∣∣ANR
∣∣2

8π3k
δ

(
1− 2π

k

ω
={σl(φ, ω)}

)
, (S34)

where

ANR = −i4πZe
εd

kvz

k2v2
z +

(
ω − k · v||

)2 . (S35)

Results

All results in this section will be shown in reduced units using the normalization defined in the

MT.

Figure S1: Real and imaginary parts of the normalized conductivity components, σx = σx/c and
σy = σy/c, for the model of anisotropic 2D material given in Eq. (12),8 shown as a function of
the reduced frequency ω. Also shown is the normalized conductivity of a hypothetical isotropic
material, σiso = σiso/c.

In Fig. S1, we show the real and imaginary parts of the optical conductivity tensor compo-

nents for an anisotropic 2D material, Eq. (12) of the MT, evaluated with the parameters given by

Nemilentsau et al.8 We shall refer to that material as “phosphorene” in the rest of the text. The

vertical bar in the inset at the reduced frequency ωt = 0.6932 marks a transition point from the

elliptic to the hyperbolic regime of phosphorene, which are indicated by the green and yellow
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shading. Also shown in Fig. S1 is the conductivity of a hypothetical isotropic material, defined as

σiso(ω) = 1
2

[σx(ω) + σy(ω)].
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Figure S2: In panel (a), green surface shows the dispersion relation ω = ωd(kx, ky) for plasmon
polaritons, computed from the conductivity model in Eq. (12).8 Also shown are the light cone
ω = k (blue) and the plane ω = 0.69 (red), which indicates a topological transition where closed
iso-frequency curves become open curves. In panels (b), (c) and (d), we show iso-frequency curves
for several frequencies in the elliptic, an intermediate, and the hyperbolic regimes, respectively.
The solid and dotted lines show fully retarded and non-retarded iso-frequency curves, while the
dashed lines are the circles originating from the light cone.

In Fig. S2 we show the dispersion surface in reduced units, ω = ωd(kx, ky), along with the

plane ω = ωt and the light cone ω =
√
k

2

x + k
2

y. One notices that intersections of the dispersion

surface with planes of constant ω corresponding to frequencies� 1 give rise to the iso-frequency

curves in the (kx, ky) plane characterized by elliptically shaped closed curves that enclose circles

resulting from the corresponding intersections with the light cone. Notice that the close prox-

imity of the elliptic dispersion curves and the light circles implies strong retardation effects on
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the plasmon dispersion in the THz frequency range. Accordingly, it is important to use fully re-

tarded calculations in the elliptic regime, i.e., when ω � 1. We note that the iso-frequency curves

get increasingly elongated in the ky direction (ZZ direction) as the frequency increases, attaining

the shape of the numeral 8, while remaining closed curves as long as ω < ωt. The iso-frequency

curves become open once the (reduced) frequency exceeds ωt and they attain the shape of hyperbo-

las with branches opening along the positive and negative directions of the kx axis (AC direction).

It is permissible to neglect retardation effects in the hyperbolic regime with frequencies ω ∼ 1.

Figure S3: The total energy loss density, F ext(kx, ky, ω), is shown in the elliptic regime as a
function of the reduced wavenumbers (kx, ky) at fixed frequency ω = 0.03 for a charged particle
at the reduced speed β = 0.5, with the oblique incidence angles θ0 = 45◦ (a,c,e) and θ0 = 75◦

(b,d,f), in the in-plane directions φ0 = 0 (a,b), φ0 = 45◦ (c,d) and φ0 = 90◦ (e,f). Also shown are
the iso-frequency curve ω̄d(k̄x, k̄y) = 0.03 (white lines), the trace of the light cone (circles with
dashed yellow lines) and the straight lines k̄xβx + k̄yβy = 0.03 (solid yellow lines).

Figures S3 and S4 show the total energy loss density, F ext(kx, ky, ω), in the elliptic regime (for
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a low frequency of ω = 0.03 and a fast charged particle with β = 0.5) and the hyperbolic regime

(for a high frequency of ω = 1 and a slow charged particle with β = 0.035), respectively. These

figures show the effects of variation in the angles (θ0, φ0) for obliquely incident particles and, in

that way, they complement Fig. 2 in the MT, which discusses normal incidence at both speeds. One

can notice that the largest values of F ext outside the light cone occur due to Ohmic losses in the

regions of close proximity, or intersection of the corresponding dispersion iso-frequency curves

ω̄d(k̄x, k̄y) = ω̄ and the line k̄xβx + k̄yβy = ω, where βx = vx/c and βy = vy/c.

Figure S4: The total energy loss density, F ext(kx, ky, ω), is shown in the hyperbolic regime as a
function of the reduced wavenumbers (kx, ky) at fixed frequency ω = 1 for a charged particle at
the reduced speed β = 0.035, with the oblique incidence angles θ0 = 45◦ (a,c,e) and θ0 = 75◦

(b,d,f), in the in-plane directions with φ0 = 0 (a,b), φ0 = 45◦ (c,d) and φ0 = 90◦ (e,f). Also shown
is the iso-frequency curve ω̄d(k̄x, k̄y) = 1 (white lines), the trace of the light cone (circles with
dashed yellow lines) and the straight lines k̄xβx + k̄yβy = 1 (solid yellow lines).

In Figs. S5, S6, S7 and S8, we show the function Υ(φ, ω), defined in Eq. (S24), for normal

incidence and oblique incidence of fast (β = 0.5, upper rows) and slow (β = 0.035, lower rows)
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charged particles. All results in Figs. S5, S6 and S7 are shown for phosphorene (left columns) and

are compared to isotropic material (right columns). The horizontal lines at ωt = 0.69 indicate a

transition frequency from the elliptic (ω < ωt) to the hyperbolic (ω > ωt) regimes in phosphorene.

A comparison between phosphorene and isotropic material for β = 0.5 in those figures reveals that

the distribution Υ(φ, ω) has similar shapes at low frequencies, indicating that the Ohmic energy

loss due to excitation of the elliptical modes in phosphorene is qualitatively similar to the excitation

of modes in an isotropic material by relativistic particles. On the other hand, a comparison for β =

Figure S5: The function Υ, defined in Eq. (S24), is shown in reduced units as a function of the
reduced frequency ω and polar angle φ of excited modes for a charged particle under normal
incidence at two speeds: β = 0.5 (a,b) and β = 0.035 (c,d). Results for phosphorene (a,c) are
compared with those for isotropic material (b,d).

0.035, shows significant differences between phosphorene and isotropic material. In particular, one

notices a strong anisotropy at high frequencies in the former case due to the excitation of hyperbolic

modes, which is indicated by a marked depletion in the Υ(φ, ω) values at φ ≈ ±π
2

for ω > ωt,

corresponding to the directions of the mode propagation between two branches of the hyperbolas.

At the same time, one also notices a strong anisotropy for β = 0.035 at low frequencies, pertaining

to the excitation of elliptic modes. For the case of normal incidence in Fig. S5, one notices broad

peaks in Υ(φ, ω) for β = 0.035 near the angles φ = ±90◦ at low frequencies, which correspond to

the Ohmic energy loss in the ZZ direction, as seen in Fig. 2(b) of the MT in the elliptic regime.
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Figure S6: The same as Fig. S5, but for oblique incidence with angles (θ0, φ0) = (45◦, 0).

Figure S7: The same as Fig. S5, but for oblique incidence with angles (θ0, φ0) = (75◦, 0).

While in Figs. S6 and S7 the in-plane direction of an obliquely incident particle was φ0 = 0

(AC direction), in Fig. S8, we show the effects of changing the in-plane direction to φ0 = 45◦ and

φ0 = 90◦ (ZZ direction) in the shape of Υ(φ, ω) for the same set the oblique angles θ0 and speeds

β as in Figs. S6 and S7. In the panels (f) and (h) of Fig. S8, Υ(φ, ω) exhibits a strong asymmetry

in the hyperbolic regime when the incident particle moves in the φ0 = 90◦ (ZZ) direction at the

speed β = 0.035, with the “V” shaped maxima at ω > ωt corresponding to the increase in the
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Figure S8: The function Υ, defined in Eq. (S24), is shown in reduced units as a function of the
reduced frequency ω and polar angle φ of the excited modes for a charged particle under a generally
oblique incidence upon phosphorene at two speeds: β = 0.5 (a,b,c,d) and β = 0.035 (e,f,g,h) for
the combination of angles: (θ0, φ0) = (45◦, 45◦) (a,e), (θ0, φ0) = (45◦, 90◦) (b,f), (θ0, φ0) =
(75◦, 45◦) (c,g) and (θ0, φ0) = (75◦, 90◦) (d,h).

opening angles of the asymptotes of corresponding iso-frequency hyperbolas, as seen in the panel

(d) of Fig. S2. At the same time, we see in Fig. S8(f,h) for the speed of β = 0.035 that one of the

peaks that occurred for normal incidence in Fig. S5(c) in the directions φ = −90◦ in the elliptic

regime, is depleted in favor of a broader peak at φ = 90◦, which is aligned with the direction of

motion of the charged particle in Fig. S8(f,h).

In Fig. S9, we show the frequency-integrated marginal probability density Γ(kx, ky) for the

same set of parameters as in Fig. 3 of the MT, but for a high incident speed of β = 0.5. As opposed

to Fig. 3 of the MT, where a low incident speed of β = 0.035 was used, we see in Fig. S9 that the

main contributions to Γ̄(k̄x, k̄y) come from the regions βxk̄x + βyk̄y < ω̄t, corresponding to the

elliptic regime. While the distributions of Γ̄(k̄x, k̄y) are still narrow in Fig. S9(i,k,m) for the angle

of incidence θ0 = 75◦ upon phosphorene, and they follow the lines ω̄d(k̄x, k̄y) = βxk̄x + βyk̄y,

we see that those distributions are not very different from the corresponding distributions in the

isotropic material in Fig. S9(j,l,n). This is yet another evidence that probing the elliptic regime by

relativistic particles in phosphorene is qualitatively similar to that in isotropic materials.
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Figure S9: Plots of Γ̄(k̄x, k̄y) for phosphorene (a,c,e,g,i,k,m) and an isotropic material (b,d,f,h,j,l,n)
with the reduced speed β = 0.5. Besides normal incidence (a,b), the two cases of oblique incidence
with θ0 = 45◦ (c,d,e,f,g,h) and θ0 = 75◦ (i,j,k,l,m,n) are shown for the in-plane directions of φ0 = 0
(c,d,i,j), φ0 = 45◦ (e,f,k,l) and φ0 = 90◦ (g,h,m,n). White solid lines show the curves obtained
from the kinematic resonance with plasmon dispersion, ω̄d(k̄x, k̄y) = βxk̄x + βyk̄y, whereas the
white dashed lines show the line βxk̄x + βyk̄y = ω̄t, with ω̄t ≈ 0.69 indicating a transition from
the elliptic to hyperbolic regime in phosphorene.
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Figure S10: Angular distribution of transition radiation, S(θ, φ, ω), at three reduced frequencies:
ω = 0.03 (a,d), ω = 0.3 (b,e) and ω = 1 (c,f) for normal incidence of a charged particle with the
reduced speed β = 0.035 upon: phosphorene (a,b,c) and an isotropic material (d,e,f).

In Fig. S10, we show the spectral angular distribution S(θ, φ, ω) of TR, induced by a normally

incident particle moving at the speed β = 0.035. This figure complements Fig. 5 in the MT, the

only difference being that the TR in Fig. S10 is induced by a particle at β = 0.035, as opposed

to β = 0.5 used in Fig. 5 of the MT. Notwithstanding the substantially smaller magnitudes of

S(θ, φ, ω) in Fig. S10, as expected for the TR, it is interesting that the shape of all the spectra

are quite similar to the shapes seen in Fig. 5 of the MT, except for phosphorene in the hyperbolic

regime in Fig. S10(c). This is perhaps not surprising, given that the excitation of hyperbolic modes

in phosphorene is more efficient for slower particles, even though their contribution to radiation

energy loss is negligible.

In Figs. S11 and S12, we study the TR spectra for a particle moving at the speed β = 0.5
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with the oblique angle of incidence θ0 = 45◦. In Fig. S11, we compare the spectra of phos-

phorene emitted when the particle moves in the φ0 = 0 (AC) direction with the corresponding

spectra from isotropic material. One can see that, even though the spectra from isotropic material

in Fig. S11(d,e,f) exhibit some asymmetry, as observed before for graphene,5 phosphorene main-

tains a strong asymmetry in the spectra in Fig. S11(a,b,c), which is similar to that observed in

Fig. 6(a,b,c) of the MT for a larger incidence angle of θ0 = 75◦.

(a) (b) (c)

(f)(e)(d)     = 0.03      = 0.3      = 1
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y
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y

Figure S11: Angular distribution of transition radiation, S(θ, φ, ω), at three reduced frequencies:
ω = 0.03 (a,d), ω = 0.3 (b,e) and ω = 1 (c,f) for a charged particle at the reduced speed β = 0.5,
moving under oblique incidence with the angles (θ0, φ0) = (45◦, 0) upon: phosphorene (a,b,c) and
an isotropic material (d,e,f).

In Fig. S12, we analyze the effects of changing the in-plane direction to φ0 = 45◦ and φ0 = 90◦

(ZZ direction) for the same oblique angle, θ0 = 45◦, as in Fig. S11. When the particle moves in the

ZZ direction, the spectra in Fig. S12(d,e,f) exhibit a similar asymmetry as the spectra in Fig. 6(d,e,f)
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of the MT for θ0 = 75◦. Therefore, it appears that the TR spectra do not change much for a fast

charged particle as the angle θ0 of oblique incidence upon phosphorene increases, at least when

the particle in-plane directions are oriented along the AC and ZZ symmetry axes.
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Figure S12: Angular distribution of transition radiation, S(θ, φ, ω), at three reduced frequencies:
ω = 0.03 (a,d), ω = 0.3 (b,e) and ω = 1 (c,f) for a charged particle at the reduced speed β = 0.5
with the oblique incidence angle θ0 = 45◦ upon phosphorene, moving in the in-plane directions
defined by φ0 = 45◦ (a,b,c) and φ0 = 90◦ (d,e,f).

Finally, in Fig. S12(a,b,c), we show the TR spectra from phosphorene when the charged particle

moves with an in-plane direction of φ0 = 45◦, which is intermediate between the AC and ZZ

directions. Comparing them to the spectra for φ0 = 0 in Fig. S11(a,b,c) and those for φ0 =

90◦ in Fig. S12(d,e,f), one can notice a closer similarity to the latter case, i.e., the spectra in

Fig. S12(d,e,f). In a way, one could say that motion in the ZZ direction exerts a stronger “pull”

on the TR spectra than the motion in the AC direction. A similar observation could be also made

for the TR spectra in Fig. S13, corresponding to a particle moving at the speed β = 0.5 with

the oblique angle θ0 = 75◦ upon phosphorene, in the in-plane direction of φ0 = 45◦, which is

intermediate to the in-plane directions displayed in the top (φ0 = 0) and bottom (φ0 = 90◦) rows
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in Fig. 6 of the MT for the same oblique angle. Namely, the TR spectra in Fig. S13 are more

similar to those in the bottom row than in the top row in Fig. 6 of the MT.
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Figure S13: Angular distribution of transition radiation, S(θ, φ, ω), at three reduced frequencies:
ω = 0.03 (a), ω = 0.3 (b) and ω = 1 (c) for a charged particle at the reduced speed β = 0.5, with
the oblique incidence angle θ0 = 75◦ upon phosphorene, moving in the in-plane direction defined
by φ0 = 45◦.

24



References

(1) Tai, C.; Antennas, I.; Society, P.; Theory, I. M.; Society, T. Dyadic Green Functions in Elec-

tromagnetic Theory; IEEE Press Series on Electromagnetic Waves; IEEE Press, 1994.

(2) Stratton, J. Electromagnetic Theory; An IEEE Press classic reissue; Wiley, 2007.

(3) Miskovic, Z. L.; Segui, S.; Gervasoni, J. L.; Arista, N. R. Energy losses and transition radiation

produced by the interaction of charged particles with a graphene sheet. Physical Review B

2016, 94, 125414.

(4) Miskovic, Z. L.; Akbari, K.; Segui, S.; Gervasoni, J. L.; Arista, N. R. Relativistic effects

in the energy loss of a fast charged particle moving parallel to a two-dimensional electron

gas. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with

Materials and Atoms 2018, 422, 18 – 23.
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