Supplementary Information

for

MOF dual-purpose with rich S defects cactus like core-shell nanorods MILN-based Co(z)-NiMoS for an efficient electrocatalytic overall water splitting

Honglei Chen^{a, b}, Zebin Yu*^b, Yanping Hou^b, Ronghua Jiang^c, Jun Huang^d, Wenjun Tang^b, Zhaojun Cao^b, Bo Yang^b, Chunxiang Liu^b, Haonan Song^b

^a Guangxi key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, P. R. China

^b School of Resources, Environment and Materials, Guangxi University, Nanning
 530004, P. R. China

^c School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan
512005, P. R. China

^d College of Civil Engineering and Architecture, Guangxi University, Nanning 530004,

P. R. China

* Corresponding author. Tel./fax.: + 8613877108420

S1. Experiment Section

S1.1. Synthesis of ZIF-67.

The ZIF-67 was prepared in accordance with previously reported methods. The process was as follows: 0.01 mol $Co(NO_3)_2$ and 0.04 mol 2-methylimidazole were dispersed in 30 mL methanol respectively, and then mixed two solutions quickly and stirred for 24 h at ambient temperature. The product was centrifugated and washed with methanol several times. The obtained purple sample should be kept for 24 h in the vacuum oven at 60 °C.

S1.3. Synthesis of 20% Pt/C and RuO₂ electrode

Pt/C and RuO₂ catalysts were fabricated by methods elaborated elsewhere. In brief, 20 mg of 20 wt.% Pt/C or RuO₂ was dissolved in a mixture of 180 μ l pure water, 200 μ l isopropanol and 20 μ l Nafion. That mixture was then ultrasonicated for 1 h to form a homogeneous ink. Subsequently, 40 μ l of the ink was loaded onto the NF. Last, the sample was placed in an oven and dried for further testing.

Fig. S1. SEM images of ZIF-67.

Fig. S2. TEM images of NiMoS.

Fig. S3. TEM images of Co(z)-NiMoS.

Fig. S4. XRD pattern of ZIF-67.

Fig. S5. (a) Simulation of atomic structure, (b) XRD pattern of MIL-88B(NiMo)-NH₂.

Fig. S6. FT-IR spectrum of materials.

Fig. S7. Raman spectrum of ZIF-67.

Fig. S8 Positron lifetime spectra of NiMoS, Co(z)-NiMoS and MILN-based Co(z)-

NiMoS.

Fig. S9. IR-compensation LSV curves of (a) commercial Pt/C, (b) commercial RuO₂ and (c) two-electrode formed by commercial Pt/C and commercial RuO₂.

Fig. S10. Contact angle measurement of (a) MILN-based Co(z)-NiMoS, (b) NiMoS, (c)

Co(z)-NiMoS, (d) Co-NiMoS and (e) MILN-based Co-NiMoS.

Fig. S11. CV curves of the prepared of different samples. (a) MILN-based Co(z)-NiMoS, (b) MIL-88B(Ni/Mo)-NH₂, (c)NiMoS, (d)Co(z)-NiMoS, (e) Co-NiMoS (f) MILN-based Co-NiMoS. the corresponding CVs measured at different scan rates from 10 to 100 mV s⁻¹ current density at -0.70 V (vs. RHE) was plotted vs. scan rate.

Fig. S12. (a) Faraday efficiency and the volume of H_2 of the MILN-based Co(z)-NiMoS for HER at various reaction time and photograph of Faraday efficiency test, (b) Faraday efficiency and the volume of O_2 of the MILN-based Co(z)-NiMoS for OER at various reaction time, (c-d) Photographs of H_2 and O_2 collected at various reaction times.

Fig. S13. SEM images of MILN-based Co(z)-NiMoS after HER stability test.

Fig. S14. SEM images of MILN-based Co(z)-NiMoS after OER stability test.

Fig. S15. XRD pattern of MILN-based Co(z)-NiMoS before and after stability test.

Fig. S16. TEM images of MILN-based Co(z)-NiMoS after HER stability test.

Fig. S17. TEM images of MILN-based Co(z)-NiMoS after OER stability test.

Fig. S18. FT-IR spectrum of MILN-based Co(z)-NiMoS before and after stability test.

Fig. S19. Raman spectrum of MILN-based Co(z)-NiMoS before and after stability test.

Fig. S20. XPS spectra of MILN-based Co(z)-NiMoS before and after stability test.

Fig. S21. Structural inference (taking a basic unit as an example). (a) MILN-based Co(z)-NiMoS, (b) after HER stability test, (c) after OER stability test.

element	Sample element content	W%		
	$C_x (mg/kg)$			
Со	7759.26	0.78%		
Мо	12097.80	1.21%		
Ni	796678.24	79.67%		

Table S1. Ni, Mo and Co cation content level of MILN-based Co(z)-NiMoS electrodes calculated by ICP-MS.

 $\label{eq:table_set} \textbf{Table S2.} \ Comparison \ of \ electrochemical \ performance \ for \ MILN-based \ Co(z)-NiMoS$

with other non-noble metal bifunctional electrocatalysts for water splitting (1.0 M KOH

solution)

Catalysts	HER activity		OER activity		OWS activity			
	µ10 (mV)	Tafel slope (mV dec ⁻¹)	µ10 (mV)	Tafel slope (mV dec ⁻¹)	μ10 (V)	μ50 (V)	— <i>C_{dl}</i>	References
MILN-based Co(z)-	169	71	170	33	1.466	1.75	17.4	This work
C03O4@M0-C03S4-	116	97	295	98	1.62	1.85	21	1
Ni ₃ S ₂ defect-Ni-MOF	101	42.3	219	48.2	1.5	1.6	2.92	2
CoNi2S4/Ni3S2	171	88.6	243	28.1	1.65	1.85	35.1	3

Ni _x Co _{1-x} MoO ₄ @Co	51	63	180	43	1.46	1.65	4.5	4
MoO ₄								
$\{111\}$ faceted Ni_3S_2	189	89.3	296	65.1	1.55	-	2.38	5
Ni ₃ S ₂ /MoS ₂	78	62	260	59	1.53	1.69	-	6
0.4 Co:FePi	82.3	221	227	42.6	1.72	2.4	-	7

Table S3. Comparison of electrochemical performance for prepared catalysts for HER,

Overpotential	MILN-based		MILN-based			MIL-88B(Ni/Mo)-NH ₂	
	Co(z)-NiMoS	Co(z)-N1M0S	Co-NiMoS	Co-N1M0S	NIMOS		
HER	1(0	205	200	210	220	235	
µ10 (mV)	108	205	200	219	230		
OER	170	205	207	220	234	239	
µ10 (mV)	170	205					
OER	270	333	306	339	381	510	
μ50 (mV)	279						
OER	300	447	197	178	602	656	
µ100 (mV)	377	44/	402	470	002	030	
OWS	1 466	1 59	1 588	1 607	1 66	1 827	
μ10 (V)	1.400	1.30	1.300	1.00/	1.00	1.027	

OER and OWS (1.0 M KOH solution)

References

- Q. Wu, A. Dong, C. Yang, L. Ye, L. Zhao and Q. Jiang, *Chem. Eng. J*, 2020, **12**, 127482.
- J. Zhou, Y. Dou, X. Q. Wu, A. Zhou, L. Shu and J. R. Li, Small, 2020, 16, 1906564.
- W. Dai, K. Ren, Y.-a. Zhu, Y. Pan, J. Yu and F. Lu, J. Alloy. Compd., 2020, 844, 156252.
- Z. Li, M. Zheng, X. Zhao, J. Yang and W. Fan, *Nanoscale*, 2019, 11, 22820-22831.
- 5. L. Li, C. Sun, B. Shang, Q. Li, J. Lei, N. Li and F. Pan, *Journal of Materials Chemistry A*, 2019, 7, 18003-18011.
- C. Wang, X. Shao, J. Pan, J. Hu and X. Xu, *Appl. Catal. B-environ*, 2020, 268, 118435.
- 7. S. A. Khalate, S. A. Kadam, Y.-R. Ma, S. S. Pujari and U. M. Patil, *J. Alloys Compd.*, 2021, **885**, 160914.