Supporting Information

Cs₃Bi₂I₉ Nanodiscs with Phase and Bi (III) State Stability under Reductive Potential or Illumination for H₂ Generation from Diluted Aqueous HI

Sonu Pratap Chaudhary,¹ Subhajit Bhattacharjee,¹ Vishwadeepa Hazra,¹ Sanjib Shyamal,² Narayan Pradhan,² and Sayan Bhattacharyya^{1,*}

¹Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur - 741246, India ²School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata700032, India

*Email for correspondence: sayanb@iiserkol.ac.in

Figure S1. Variation of FWHM with 2θ for $Cs_3Bi_2I_9$ NDs.

Figure S2. Additional TEM and HRTEM images of Cs₃Bi₂I₉ NDs.

Figure S3. AFM image, height profile and 3D AFM image of $Cs_3Bi_2I_9$ NDs prepared with reaction times of (a-c) 3 s, (d-f) 15 s, and (g-i) 60 s.

Figure S4. (a) HAADF-STEM mapping showing the elemental distribution. (b) FE-SEM image of agglomerated $Cs_3Bi_2I_9$ ND clusters. (c) EDAX spectrum showing surface elemental stoichiometry of the NDs. (d) Elemental mapping from a selected region shown on the left.

Figure S5. (a) FTIR and (b) Raman spectra of Cs₃Bi₂I₉ NDs.

Raman spectral bands	Assignment
63 cm ⁻¹	bending mode of Bi-I
82 cm ⁻¹	asymmetric stretching of bridged Bi-I
104.5 cm ⁻¹	symmetric stretch of bridging Bi-I
119.8 cm ⁻¹	asymmetric stretching of terminal Bi-I
146.6 cm ⁻¹	symmetric stretching of terminal Bi-I

Figure S6. Absorption spectra of $Cs_3Bi_2I_9$ NDs in 6.34M aqueous HI with different molar concentrations of the NDs (in mol L⁻¹).

Figure S7. (a) Chronoamperometric stability plots of $Cs_3Bi_2I_9$ NDs at -0.5V and -1V versus SCE where 0.66 mg/cm² ND loaded CFP was dipped inside 0.005M ND saturated 0.63M and 6.34M HI solutions. Fitted XPS Bi *4f* level for the NDs in (b) 6.34M HI at -0.5V after 16h, (c) 0.63M HI at -0.5V after 8h, and for the bulk $Cs_3Bi_2I_9$ in (d) 6.34M HI at -1V after 16h, (e) 0.63M HI at -1V after 8h. The open circles are the experimental data, and the solid line represent the best fit. Sat. denotes the satellite peaks. (f) PXRD patterns of the NDs and bulk $Cs_3Bi_2I_9$ after the electrochemical stability tests.

Figure S8. PXRD pattern of Cs₃Bi₂I₉ NDs before and after dispersing in DI water for 12h.

Figure S9. Schematic showing the plausible reason for the $Cs_3Bi_2I_9$ ND stability in 0.63 M saturated HI solution.

Table S1. XPS fitting parameters of $Cs_3Bi_2I_9$ ND and bulk phases after chronoamperometry tests at -0.5 and -1.0 V versus SCE, for 16h in 6.34M HI and 8h in 0.63M HI solution.

Condition	XPS levels	BE (Bi ^{δ+})	Area (Bi ^{δ+})	BE (Bi ³⁺)	Area (Bi ³⁺)	BE (Sat.)	Area (Sat.)	Bi ^{δ+} Wt %	Av. Bi ^{δ+} Wt%	Av. Bi ³⁺ Wt%
Cs ₃ Bi ₂ I ₉ NDs post chronoamperometry										
6.34 M -0.5 V	$4f_{7/2}$	157.1	1155.6	158.9	3211.9	160.0	1059.7	26.5	22	78
	$4f_{5/2}$	162.5	443.2	164.2	1985.4	165.5	518.8	18.2		
6.34 M	$4f_{7/2}$	157.0	2252.7	159.2	4518.0	160.2	819.9	33.2	28	72
-1.0 V	$4f_{5/2}$	162.3	957.5	164.6	3074.0	165.6	934.6	23.7	20	12
0.63 M	$4f_{7/2}$	157.1	47.4	159.1	1401.9	160.8	88.7	3.3	3	97
-0.5 V	$4f_{5/2}$	163.5	19.7	164.4	829.3	165,3	110.9	2.3		
0.63 M -1.0 V	$4f_{7/2}$	157.6	249.4	159.1	1907.1	160.0	172.8	11.5	7	93
	$4f_{5/2}$	163.3	40.5	164.4	1449.2	165.5	146.2	2.7		

Figure S10. (a) Absorption spectrum, (b) PL spectrum, (c) UV photoelectron spectrum with inset showing the band alignment, and (d) valence band XPS spectrum of $Cs_3Bi_2I_9$ NDs.

Figure S11. Solubility plot of $Cs_3Bi_2I_9$ NDs in 6.34M (50%) aqueous HI solution at different temperatures. Error bars indicate standard deviation from three trials.

Figure S12. (a) Photocatalytic H_2 evolution by splitting of aqueous HI solution in the presence (saturation) and absence of $Cs_3Bi_2I_9$ NDs. (b) Photocatalytic H_2 evolution from 6.34M HI solution saturated by 0.005M $Cs_3Bi_2I_9$ NDs under dark condition and in the presence of visible light illumination.

Figure S13. (a) Absorption spectra showing the temporal emergence of I_3^- ions. (b) Time dependent increase of I_3^- concentration, measured using the absorbance band at 350 nm. (c) Absorption spectra showing the absence of I_3^- ions during the photocatalytic reaction in 6.34M HBr solution saturated by 0.005M Cs₃Bi₂I₉ NDs.

Discussion S1. Quantum yield calculation

The quantum efficiency of HI splitting was estimated by calculating the apparent quantum efficiency (AQE) according to equation (S1):

$$AQE = \frac{Evolved H_2(mol) \times 6.02 \times 10^{23} \times 2 \times 0.33(eV) \times 1.6 \times 10^{-19}}{P_{sol}(Wcm^{-2}) \times Area(cm^2) \times time(s)} \times (S1)$$

The evolved gas by photocatalytic HI splitting = $11.3 \mu mol h^{-1}$;

Avogadro Number = 6.022×10^{23} ;

 P_{sol} is the power density of the incident monochromatic light = 450 W lamp calibrated to 150 mWcm⁻²; Area = Irradiated area to produce (mol) of hydrogen = 0.2 cm²;

Irradiated time = 1 h = 3600 s; Electronic charge = 1.6×10^{-19} C

Since H^+/H_2 reduction potential is 0.046V versus NHE and I^-/I_3^- oxidation potential is 0.376V versus NHE, the total potential for HI splitting is 0.376 V – 0.046 V = 0.33 V.

Hence, AQE is calculated as 0.66 % ~ 0.7%. With H_3PO_2 and Pt co-catalyst, 22.5µmol h⁻¹ H_2 is equivalent to a quantum efficiency of 1.3%.

Table S2. Comparative list of the photocatalytic HI splitting activity by pristine and composite metal-halide perovskites with respect to $Cs_3Bi_2I_9$ NDs.

Photocatalysts	Light source	Reaction	H ₂ activity	Ref.
	(λ in nm)	medium		
Cs ₃ Bi ₂ I ₉ NDs	150 mW cm ⁻²	Saturated	11.3 μmol h ⁻¹	This
	Xe lamp ($\lambda \ge 420$ nm)	HI		work
Cs ₃ Bi ₂ I ₉ NDs /Pt	150 mW cm ⁻²	Saturated	22.5 μmol h ⁻¹	This
	Xe lamp ($\lambda \ge 420$ nm)	HI		work
MAPbI ₃	300 W Xe lamp	Saturated	30.0 µmol h ⁻¹ g ⁻¹	S1
	$(\lambda > 475 \text{ nm})$	HI		
MAPbI ₃ /Pt	100 W solar simulator	Saturated	57 μmol h ⁻¹ g ⁻¹	S1
	$(\lambda > 475 \text{ nm})$	HI		
MAPbBr _{3-x} I _x /Pt	300 W Xe lamp	Saturated	651.2 μmol h ⁻¹	S2
	$(\lambda \ge 420 \text{ nm})^{-1}$	HI/HBr		
CsPbBr _{3-x} I _x /Pt	300 W Xe lamp	Saturated	224 μmol h ⁻¹	S3
	$(\lambda \ge 420 \text{ nm})^{-1}$	HI/HBr		
MAPbI ₃ /Pt/TiO ₂	300 W Xe lamp	Saturated	29 µmol h-1	S4
	$(\lambda > 420 \text{ nm})$	HI		
MAPbI ₃ /rGO	300 W Xe lamp	Saturated	93.9 μmol h ⁻¹	S5
	$(\lambda \ge 420 \text{ nm})$	HI		
$MAPb(I_{0.9}Br_{0.1})_3$	300 W Xe lamp	Saturated	1471 μmol h ⁻¹ g ⁻¹	S6
	$(\lambda \ge 420 \text{ nm})$	HI/HBr		
Ni ₃ C/MAPbI ₃	300 W Xe lamp	Saturated	2362 µmol h ⁻¹ g ⁻¹	S7
	$(\lambda \ge 420 \text{ nm})$	HI		
MA ₃ Bi ₂ I ₉ /Pt	300 W	Saturated	169 µmol h ⁻¹	S8
	$(\lambda \ge 400 \text{ nm})$	HI		
MAPbI ₃ /	100 mW cm-2	Saturated	23.30 µmol h ⁻¹	S9
(piezoelectric)	$(\lambda \ge 420 \text{ nm})$	HI		
$[(CH_3)_2NH_2]_3[BiI_6]$	465 nm LED	Saturated		S10
(PtI _x)		HI		
MA ₃ Bi ₂ I ₉ /	300 W Xe lamp	Saturated	198.2 µmol h ⁻¹ g ⁻¹	S11
DMA ₃ BiI ₆	$(\lambda \ge 420 \text{ nm})$	HI		
MAPbI ₃ /cobalt	150 W Xe lamp ($\lambda \ge$	Saturated	785.9 μmol h ⁻¹ g ⁻¹	S12
phosphide	420 nm)	HI		
$Cs_3Bi_{0.6}Sb_{1.4}I_9$	100 W solar simulator	Saturated	92.6 µmol h ⁻¹	S13
		HI		

Figure S14. Recyclability test of the NDs for three 5h runs in 0.63M aqueous HI.

Figure S15. Additional TEM images of $Cs_3Bi_2I_9$ NDs after 10h photocatalysis in 0.005 M ND saturated (a-c) 6.34 M and (d-f) 0.63 M aqueous HI solutions.

Figure S16. Absorption spectra of Cs₃Bi₂I₉ NDs before and after 10h photocatalysis.

Figure S17. XPS spectra of $Cs_3Bi_2I_9$ NDs (a, b) before and (c, d) after photocatalysis. The C *Is* binding energy of 284.8 eV was used as reference.

Figure S18. (a) Digital images of the H-cell containing ND saturated aqueous HI solution (i) before, and after electrochemical reduction for (ii) 1h, (iii) 2h, and (iv) 3h. A proton exchange membrane (Nafion) between left and the right slots of the H-cell, allows the solution color to change exclusively in the right slot from dark brown to light yellowish orange due to the continuous electrochemical reduction of I_3^- to I^- over time.

Discussion S2: TOF calculation

The number of hydrogen turnover is calculated from the current density according to:

turnover

=

Number of hydrogen

$$\left(j\frac{mA}{cm^2}\right)\left(\frac{1 C/s}{1000 mA}\right)\left(\frac{1 mol e}{96485.3 C}\right)\left(\frac{1 mol H_2}{2 mol e}\right) \times (6.023 \times 10^{23})$$

For 6.34M HI Saturated Cs3Bi2I9 NDs

Specific capacitance (C_s) = 0.04 mF/cm² Double layer capacitance (C_{dl}) = 2.4 mF

$$ECSA = \frac{Cdl}{Cs} = \frac{2.4}{0.04} = 60 \text{ cm}^2$$

At 533 mV overpotential, Cs₃Bi₂I₉ NDs reach a current density of -100 mAcm⁻².

Number of hydrogen turnover for Cs₃Bi₂I₉ NDs at 533 mV overpotential:

$$\left(100\frac{mA}{cm^2}\right)\left(\frac{1\ C/s}{1000\ mA}\right)\left(\frac{1\ mol\ e}{96485.3\ C}\right)\left(\frac{1\ mol\ H_2}{2\ mol\ e}\right)\times\ (6.023\times\ 10^{23})=3.1212\times10^{17}\left(\frac{1/s}{cm^2}\right)$$

Based on ECSA along with the unit cell volume (1295.66 Å³) of $Cs_3Bi_2I_9$ NDs, active sites per real surface area:

Active Surface sites =
$$\left(\frac{2 \text{ atom/unit cell}}{1293.96 \text{ Å}^3/\text{unit cell}}\right)^{2/3} = 0.0133 \times 10^{16} \text{atoms } \text{cm}^{-2}_{\text{real}}$$

 $3.122 \text{ x } 10^{17} \left(\frac{1/s}{\text{cm}^2}\right) \times 0.3 \text{ cm}^2$

TOF
$$(\eta_{533}) = \overline{Active Surface sites \times ECSA} = 11.736 \text{ s}^{-1}$$

Therefore, TOF of Cs₃Bi₂I₉ NDs for HER is 11.7 s⁻¹ at an overpotential of 533 mV.

Figure S19. ECSA determination of $Cs_3Bi_2I_9$ ND electrocatalyst. (a) CV cycles at different scan rates. (b) Current density as function of scan rate at fixed overpotential.

Figure S20. LSV polarization curves showing the electrochemical HER activity of Cs₃Bi₂I₉ NDs, MAPbI₃ and FAPbI₃ [MA: CH₃NH₃, FA: HC(NH₂)₂].

Figure S21. (a) LSV polarization plots in different electrolyte and catalyst combinations. (b) Comparison of electrochemical HI splitting activity of $Cs_3Bi_2I_9$ NDs with CsI and BiI₃.

Figure S22. Comparison of the electrocatalytic HER activity between the NDs and bulk $Cs_3Bi_2I_9$ in 6.34M HI. (a) LSV polarization plots, (b) Nyquist plots measured at 700 mV overpotential (*iR* uncorrected), and (c) Tafel plots with the corresponding Tafel slopes.

Figure S23. (a) Tafel plots and their corresponding Tafel slopes. (b) Nyquist plots measured at 700 mV overpotential (*iR* uncorrected) for HER. Inset shows the equivalent circuit (R_s : solution resistance; CPE: constant phase element; R_{CT} : charge transfer resistance). (c) Faradaic efficiency measured at 1V overpotential (*iR* uncorrected) showing the theoretically calculated and experimentally measured H₂ gas with time. Inset shows digital image of the measurement setup. The samples: (1) 12.69 M HI, (2) 6.34 M HI, (3) 3.17 M HI, (4) 1.26 M HI, and (5) 0.63 M HI.

Supporting References

S1 S. Park, W. Chang, C. Lee, S. Park, H. Ahn, K. Nam, Nat. Energy, 2017, 2, 16185.

S2 Y. Wu, P. Wang, Z. Guan, J. Liu, Z. Wang, Z. Zheng, S. Jin, Y. Dai, M. Whangbo, B. Huang, *ACS Catal.*, 2018, **8**, 10349-10357.

S3 Z. Guan, Y. Wu, P. Wang, Q. Zhang, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, M. Whangbo, B. Huang, *Appl. Catal. B: Environ.*, 2019, **245**, 522-527.

S4 X. Wang, H. Wang, H. Zhang, W. Yu, X. Wang, Y. Zhao, X. Zong, C. Li, *ACS Energy Lett.*, 2018, **3**, 1159-1164.

S5 Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou, Y. Dai, M. Whangbo, B. Huang, *Adv. Mater.*, 2018, **30**, 1704342.

S6 Z. Zhao, J. Wu, Y. Zheng, N. Li, X. Li, Z. Ye, S. Lu, X. Tao, C. Chen, *Appl. Catal. B: Environ.*, 2019, **253**, 41-48.

S7 Z. Zhao, J. Wu, Y. Zheng, N. Li, X. Li, X. Tao, ACS Catal., 2019, 9, 8144-8152.

S8 Y. Guo, G. Liu, Z. Li, Y. Lou, J. Chen, Y. Zhao, ACS Sustain. Chem. Eng., 2019, 7, 15080-15085.

S9 M. Wang, Y. Zuo, J. Wang, Y. Wang, X. Shen, B. Qiu, L. Cai, F. Zhou, S. Lau, Y. Chai, *Adv. Energy Mater.*, 2019, **9**, 1901801.

S10 H. Zhao, Y. Li, B. Zhang, T. Xu, C. Wang, Nano Energy, 2018, 50, 665-674.

S11 Y. Tang, C. Mak, R. Liu, Z. Wang, L. Ji, H. Song, C. Tan, F. Barrière, H. Hsu, *Adv. Funct. Mater.*, 2020, **30**, 2006919.

S12 C. Cai, Y. Teng, J. Wu, J. Li, H. Chen, J. Chen, D. Kuang, *Adv. Funct. Mater.*, 2020, **30**, 2001478.

S13 G. Chen, P. Wang, Y. Wu, Q. Zhang, Q. Wu, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, B. Huang, *Adv. Mater.*, 2020, **32**, 2001344.