Electronic Supporting Information

Enhanced catalytic performance of pillared δ -MnO₂ with enlarged layer spaces for lithium- and sodium-oxygen batteries: A theoretical investigation

Jia-Hui Li and Yang-Xin Yu*

Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China

*Corresponding author. E-mail: yangxyu@mail.tsinghua.edu.cn

Phone: +86-10-62782558

Fax: +86-10-62770304

Table S1 and Figure S1 include the information for C-C bond lengths of various molecules. Figure S2 records the density of states of bare-MnO₂. Figure S3 is the information for the delectron states of three pillared structures. Figure S4 is the AIMD simulation configurations of three pillared structures. The configurations of deep reduction product Li_3O_2 and Li_4O_2 adsorbed H-MnO₂ are shown in Figure S5 (a) and (b). The configurations of deep reduction product Li_3O_2 , Li_4O_2 , Na_3O_2 and Na_4O_2 adsorbed Cl-MnO₂ are shown in Figure S5 (c) and (f).

The complete battery reaction including the deep reduction of lithium and sodium is $X + Sub \rightarrow X@Sub \xrightarrow{+O_2} XO_2@Sub \xrightarrow{+x} X_2O_2@Sub \xrightarrow{+x} X_3O_2@Sub \xrightarrow{+x} X_4O_2@Sub (X = Li or Na)$ (S1)

The d-band center (E_d) of substrates can be computed by:

$$E_{\rm d} = \frac{\int \varepsilon \cdot P(\varepsilon) \, d\varepsilon}{\int P(\varepsilon) \, d\varepsilon}$$
(S2)

where ε denotes the energy-level of electrons and $P(\varepsilon)$ is the number of electrons occupied in energy level ε . The upper and lower limits of the integral are selected as electrons below the Fermi level.

Table S1 The various C-C bond lengths of bare molecules and molecules in pillared systems.

C-C bond length (Å)

Fig. S1 The C-C bond lengths of bare anions of (a) 1,4-benzenedisulfonic acid, (b) 2-chloro-1,4-benzenedisulfonic acid, and (c) 2-fluoro-1,4-benzenedisulfonic acid.

Fig. S2 (a) The partial density of states of bare- MnO_2 and (b) d-orbital density of states. Both spin-up and spin-down electrons are plotted and their d-band centers are calculated.

Fig. S3 The d-orbital density of states and corresponding d-band centers of (a) H-MnO₂, (b) Cl-MnO₂, and (c) F-MnO₂ pillared structures. States of both spin-up and spin-down electrons are plotted and their d-band centers are calculated separately.

Fig. S4 The configurations of (a) H-MnO₂, (b) Cl-MnO₂, and (c) F-MnO₂, in the AIMD

simulations at initial stage (0 fs), middle stage (2500 fs), and final stage (5000 fs).

Fig. S5 The configurations of deep reduction product (a) Li_3O_2 and (b) Li_4O_2 adsorbed H-MnO₂. The configurations of deep reduction product (c) Li_3O_2 , (d) Li_4O_2 , (e) Na_3O_2 and (f) Na_4O_2

adsorbed Cl-MnO₂. In each group, the configuration on the left is more stable than the configuration on the right.