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Convergence Tests

K-Points

We perform the k-point convergence using a
primitive bulk unit cell of Pt with
experimental lattice constant. We use a
Γ-centred, equally spaced k-grid, as well as the
default “tight” (first tier) species settings of
FHI-aims. We find that 48 k-divisions in each
lattice direction converge the total energy to
within 0.5 meV per atom.

Figure S1: Convergence of a Γ-centred, equally
spaced k-grid for a primitive Pt-bulk unit cell

Lattice Constant

We perform the lattice constant convergence
using a primitive bulk unit cell with a
Γ-centred k-grid with 48 k-points in each
direction. The species settings are the default
“tight” (first tier) settings of FHI-aims. Using a
Birch-Murnaghan fit we find a lattice constant
of 2.7755 Å for the conventional unit cell.

Figure S2: Convergence of the lattice constant
of the primitive Pt-bulk unit cell

Basis Functions

We use default “tight” (first tier) basis
functions for the upper four substrate layers.
For the lower substrate layer we use the
minimal basis plus the 4f basis function
(“really light” basis set). We use default “tight”
(first tier) basis functions for the atom species
in the molecule.

Potential Cutoff

We perform the cutoff potential convergence
using a 3 × 3 surface unit cell which contains
one molecule at an adsorption height of 2.5 Å.
The substrate is represented with a
mixed-basis slab with 4 layers using the “tight”
basis set defaults and 6 layers using the “really
light” basis set. The k-grid was chosen to be
12 × 12 × 1. The species settings for the
molecule are the default “tight” settings of
FHI-aims. We find that a potential cutoff of
4.0 Å converges the adsorption energy per
molecule to within 20 meV .

Figure S3: Convergence of the potential cutoff
using the adsorption energy of a molecule in a
3× 3 surface unit cell

Radial Multiplier

We perform the radial multiplier convergence
using the same settings as for the potential
cutoff. For the potential cutoff we use 4.0 Å.
We find that reducing the radial multiplier to
1 for the layers using the “tight” basis set
defaults changes the adsorption energy per
molecule by only 3 meV . This is within our
target accuracy of 20 meV .
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Table S1: Convergence of the radial multiplier

radial multiplier E / eV
2 -57445.1152639
1 -57445.1180491
difference -0.00278519999

Gaussian Broadening

We perform the convergence of the Gaussian
broadening parameter using the same settings
as for the potential cutoff and the radial
multiplier. For the potential cutoff we use
4.0 Å and for the layers using the “tight” basis
set defaults we use a radial multiplier of 1. We
find that changing the Gaussian broadening
from 0.01 eV to 0.1 eV influences the
adsorption energy per molecule by less than
20 meV . For our production calculation we
use a Gaussian broadening of 0.01.

Figure S4: Convergence of the Gaussian
broadening parameter using the adsorption
energy of a molecule in a 3× 3 surface unit cell

Substrate Layers Quality

We perform the convergence of the substrate
layer quality using a 3 × 3 surface unit cell,
which contains one molecule at an adsorption
height of 2.5 Å. The k-grid was chosen to be
12 × 12 × 1. The species settings for the
molecule are the default “tight” settings of
FHI-aims. For the substrate, we start with 10
layers with a “really light” basis set and
incrementally replace layers using the “tight”
basis set defaults (radial multiplier 1), starting
from the top. The adsorption energy converges
with 4 layers using the “tight” basis set.

Figure S5: Convergence of required number of
layers with the “tight” basis set defaults using
the adsorption energy of a molecule in a 3 × 3
surface unit cell

Substrate Layers Number

We perform the convergence of the number of
substrate layers using a 3 × 3 surface unit cell
containing one molecule 2.5 Å above the
substrate. The k-grid was chosen to be
12 × 12 × 1. The species settings for the
molecule are the default “tight” settings of
FHI-aims. We start with 4 layers using the
“tight” basis set defaults and 2 layers using the
“really light” basis set. Then we incrementally
add layers using the “really light” basis set at
the bottom. The adsorption energy converges
for 4 layers using the “tight” basis set defaults
3 layers using the “really light” basis set. Out
of an abundance of caution we finally use a
slab consisting of 4 layers using the “tight”
basis set defaults and 4 layers using the “really
light” basis set.
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Figure S6: Convergence of required number of
layers with the “really light” basis set using the
adsorption energy of a molecule in a 3×3 surface
unit cell

Methodological Details

Predicting Adsorption Energies
and Work Function Changes

To determine adsorption energies and work
functions changes (∆Φ) for all geometries
(individual molecules adsorbed on the
substrate) and motifs (adlayers) we use
Gaussian process regression (GPR). Our
algorithm is similar to that described in a
previous publication.1 Put simply, a GPR
algorithm is a sophisticated method to
interpolate adsorption energies, ∆Φs and other
scalar properties. Hence, we have two sets of
data points: The first set has properties EP
we want to predict and the second set contains
calculated properties EC . Hereby a data point
can be a geometry, i.e. an individual molecule
on the surface or a motif, i.e. a molecular
adlayer. As stated above, in this work the
property is either the adsoption energy or the
surface dipole, which is directly associated
with ∆Φ. We assume that these properties are
connected via a multivariate normal
distribution (see equation 1).

(
EP
EC

)
∼ N

((
µP
µC

)
,

(
CPP CPC

CCP CCC + σ21

))
(1)

µC and µP are prior values for the
calculated properties and the properties we
want to predict respectively. CPP , CPC , CCP

and CCC belong to the covariance matrix and
σ accounts for the uncertainty of our
calculated properties. The normal distribution
given in equation 1 can be rewritten into a
conditional distribution for EP . This allows
calculating the expectation value µ̄ for the set
of data points we want to predict. Hereby the
algorithm requires the input of calculated
properties EC for a second set of data points
(see equation 2).

µ̄ = µP +CPC(CCC +σ21)−1(EC−µC) (2)

The key ingredient of GPR is arguably the
covariance matrix C. It, as stated above,
comprises four parts:

• CPP is the covariance matrix between
data points we predict.

• CPC is the covariance matrix between
data points we predict and points we
calculate.

• (CPC)T = CCP .

• CCC is the covariance matrix between
data points we calculate.

Each single element Cαβ in the covariance
matrix can be understood as a measure of
similarity between two data points denoted
with indices α and β. This similarity must be
correlated with the property of the respective
data points. Two data points with a large
similarity must also have similar energies. We
realise this by defining the similarity as the
difference between two radial distance
functions (RDF). A RDF fα is sum of
Gaussians with width τ , where the mean value
of each Gaussians is a distance between two
atoms in the data points (see equation 3).
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fα(x) =
N∑
i=0

1

τ
√

2π
exp

−
((

dα,i
dmin

)n
− x
)2

2τ 2


(3)

Hereby, τ is a hyperparameter and dα,i is the
distance between two atoms as depicted by the
arrows in Figure S7. N is the total number of
possible distances, dmin is the minimum
distance that atoms can assume within the
search space of the GPR algorithm and n is a
decay power inspired by Coulomb interactions
(if n = −2). Each RDF belongs to a data
point and can consist of two parts (see Figure
S7): The first RFD comprises distances
between atoms of the molecule and atoms of
the substrate and takes care of the
molecule-substrate interactions. This part is
required for treating isolated molecules as well
as continuous adlayers. The second RDF
contains distances between atoms of the
molecules. It accounts for the
molecule-molecule interactions and is only
required when looking at continuous layers of
molecules.

a) molecule-substrate b) molecule-molecule

Figure S7: Parts of the RDF: a) RDF for
molecule-substrate interactions, b) RDF for
molecule-molecule interactions, light and solid
colouring only for visibility

To determine the similarity Cαβ of two data
points, α and β, we only need to calculate the
overlap integral between the two RDFs fα and
fβ. The RDFs are normed such that 〈fα,fα〉 =
1.

Cαβ = 〈fα,fα〉 =

∫
fα(x) · f∗

β(x) dx (4)

In principle the GPR algorithm can consider
all degrees of freedom. In practice this would
make predictions inefficient. Therefore, we
only use the most important degrees of
freedom. For single molecules on the surface,
these are the position, orientation (rotation
around the axis perpendicular to the surface)
and bending (the softest vibration mode of the
molecule in vacuum) of the molecule. For
continuous layers we only use position and
orientation of the molecule.

Gas Phase Prior

To improve the predictions of SAMPLE and
the generalised, GPR based, variant
SAMPLE-GPR it is possible to use a gas
phase prior. Hereby we train an initial energy
model (gas phase model) using DFT
calculations of freestanding molecular layers in
vacuum. Since these calculations do not
contain a metal substrate, they are much less
computationally expensive, allowing for
training sets with thousands of motifs.
Therefore, we can learn molecule-molecule
interactions with high accuracy. Provided that
the interaction with the substrate (charge
transfer, etc.) does not significantly alter the
molecule-molecule interactions, the predictions
from the gas phase model can be used as prior
information when training with molecular
layers on the substrate.

Optimising Motifs

To optimise motifs we use simulated annealing.
Hereby the GPR algorithm provides the energy
predictions. The simulated annealing algorithm
works as follows:
First, the algorithm starts with a

commensurate motif.
Second, the algorithm selects a motif in the

neighborhood of the initial motif by randomly
choosing new unit cell parameters and scaling
the positions of the molecules to fit the new

S5



unit cell. Hereby we restrict the possible unit
cell parameters to guarantee that the number
of molecules in the newly generated
higher-order commensurate motif remains
below a given threshold.
Third, the algorithm performs a BFGS

optimisation of the positions and orientations
of all molecules in the unit cell. This allows
finding local minima for higher-order
commensurate motifs similar to the motifs
determined by the SAMPLE approach. A step
is accepted according to the probability pA
given by the Boltzmann statistics (see
equation 5), where Ebest is the best energy
found so far, En is the energy of the current
step, and β is an inverse temperature. The
inverse temperature increases in each iteration.

pA = min {1, exp (−β · (En − Ebest))} (5)

Steps two and three are repeated until the
convergence criterion is reached. We consider
an optimisation as converged if no better
motifs have been found for more than 20
iterations.

Determining the Thermal
Occupation

So far we have discussed finding possible
motifs as well as their adsorption energies.
However, these energies are only valid for 0 K.
If we consider the thermodynamic equilibrium
at a given temperature and pressure the
measure of interest is the Gibbs free energy of
adsorption γα(p, T ), for which we use ab-intio
thermodynamics.2 We neglect the
contributions of the vibration enthalpy, the
configuration entropy and the mechanical work
as is commonly done in literature.2–4 This
yields equation (6).

γα(p, T ) = Eα −
1

Aα
· µ(p, T ) (6)

Here, Eα is the energy per area and Aα is the
area per molecule of motif α. µ(p, T ) is the
chemical potential of the TCP

(tetrachloropyrazine) molecules in gas phase.
The Gibbs free energy of adsorption allows
determining the probability to find a particular
motif in an experiment at a given temperature
and pressure. We determine the probability
pα(T, p) for each motif α to occur by
calculating the Boltzmann distribution.

pα(p, T ) =
1

Z
exp

(
−γα(p, T )

kBT
· Ā
)

(7)

Here γα is the Gibbs free energy of
adsorption of motif α. Ā is a reference area
which we self-consistently determine via
equations (7) and (8). A more thorough
explanation is given by Jeindl et al..5

Ā =
1∑

α pα/Aα
(8)

The probabilities pα(T, p) from the Boltzmann
distribution can be interpreted as the relative
area a particular motif occupies on the surface.
This allows determining the expectation value
of different interface properties such as ∆Φ or
the coherent fraction, at different temperatures
and pressures. Here yα is the property of motif
α.

y(p, T ) =
∑
α

pα(p, T ) · yα (9)

Motifs Considered in Our
Evaluation

In total, we determine approximately 3 million
motifs. For our evaluations we use a subset of
motifs, which is sufficiently large to guarantee
that all our results are converged. This subset
contains approximately 37000 motifs. We select
these motifs in the following way:

• For each class of motif and each coverage
we include the 1000 most energetically
favourable motifs.

• For off-state motifs, we optimise the 20
motifs with the lowest energy per area

S6



with simulated annealing. We include all
accepted steps of the simulated annealing
run.

• For mixed-state motifs, we optimise the
40 most energetically favourable motifs of
every coverage and include the optimised
motifs.

To test if our subset is large enough we
determine how many motifs contribute to the
thermal occupation at different temperatures.
This is shown in Figure S8. Panel (a) shows
the weight (given by the Boltzmann
distribution) with which a particular motif
influences the thermal occupation plotted over
the Gibbs free energy of adsorption γ relative
to its minimum γmin. For low temperatures
the most favourable motif has a weight of close
to 1 and the contribution of less favourable
motif decays quickly. For larger temperatures
the individual contributions of even the most
favourable motifs are only in the order of 10−3.
Hence, a large number of motifs contributes to
the thermal occupation. Panel (b) shows the
cumulative probability distribution. For small
temperatures only motifs within a window of
γ − γmin ≈ 0.01 eV contribute to the thermal
occupation. For larger temperatures this
window increase to γ − γmin ≈ 0.15 eV . Panel
(c) shows a histogram of the number of motifs
at different values of γ − γmin. The dashed line
indicates the number of motifs making up
99 % of the contribution of the thermal
occupation at 300 K. This shows that
approximately 23000 motifs contribute to the
thermal occupation at room temperature.
Further, 14000 configurations do not
contribute significantly to the thermal
occupation demonstrating that the set of
37000 motifs is sufficiently large.

Results

Local Adsorption Geometries

On-State

To find the local adsorption geometries (or
geometries for short) for the on-state we

perform two steps. First, we do a rough
pre-search using approximations and cheaper
computational settings (see below). Second,
we use the geometry candidates found in the
first step as starting points for DFT geometry
optimisations where we use converged settings.
To determine the approximate PES of the

single molecule on the surface, we use our
GPR algorithm with five degrees of freedom.
These are the three spatial coordinates of the
centre of mass of the molecule, the rotation
around the axis perpendicular to the substrate,
as well as the softest vibration mode of the
molecule in vacuum. These degrees of freedom
allow us to determine a good approximation of
the PES. We use a two layer substrate and
otherwise the same convergence settings
described above. With these setting we
calculate 80 training points where the molecule
assumes different positions, orientations and
bending on the substrate. This allows us to
interpolate the PES and to determine all
minima (i.e. geometry candidates), which are
displayed in Figure S9.
The approximate PES is strongly corrugated

which reflects on the optimal adsorption height
at different lateral positions of the molecule on
the surface (see Figure S10). In Figure S10 the
molecule is oriented as shown in the figure
while the bending is optimised at every
position. We find substantial differences in the
optimal adsorption height at different lateral
positions.
As stated above, we use the geometry

candidates from the first step as starting
points of DFT geometry optimisations. Hereby
we relax the molecule as well as the first two
substrate layers. This is necessary, since the
substrate relaxation contributes a large gain in
bonding energy. The computational settings
correspond to the converged values presented
above and the convergence criterion for the
remaining force is 0.01 eV/Å. The eleven
starting points converge to six different
geometries depicted in Figure S11. We use the
four most energetically favourable of these as
the on-state geometries to determine motifs.
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Figure S8: Visualisation of the (a) contribution of each structure to the thermal occupation
(Boltzmann distribution), (b) the cumulative distribution and (c) the number of motifs contributing
to the thermal occupation at different temperatures

Figure S9: Minima and barriers for the
approximate on-state PES

Off-State

Compared to the on-state, the off-state PES is
much less complex. This is due the fact that in
the off-state the molecules mainly bond to the
surface via van der Waals interactions, which
are comparatively uniform. Hence, GPR alone
is sufficient to perform the search for off-state
geometries. To determine the PES, we use four
degrees of freedom. These are the three spatial
coordinates of the centre of mass of the
molecule, the rotation around the axis
perpendicular to the substrate. In the off-state

Figure S10: Optimal adsorption height at
different lateral positions of the on-state
geometry

the molecule does not bend so a fifth degree of
freedom is not necessary. Use the convergence
settings described above, we calculate 50
training points where the molecule assumes a
different position and orientation on the
substrate. These training data allows
interpolating the PES, which we then probe
for all minima (i.e. geometry candidates),
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Figure S11: Geometry-optimised on-state
geometries

which are displayed in Figure S12. We use all
of these as the off-state geometries to
determine motifs. Additional DFT geometry
optimisations are not necessary, since (i) the
energy gain is within the uncertainty of our
prediction methods and (ii) we later optimise
the positions and orientations of molecules in
off-state motifs.

Figure S12: Minima and barriers for the off-
state PES

Figure S13 shows the optimal adsorption
height at different lateral positions of the
molecule on the surface. Hereby the molecules
is oriented as show in the Figure. We find only

small differences in the optimal adsorption
height at different lateral positions.

Figure S13: Optimal adsorption height at
different lateral positions of the off-state
geometry

Structure Search

We perform structure search in three steps.
First, we determine the energies of all
commensurate motifs with SAMPLE. Second,
we rerank the best 1000 motifs of each
coverage with SAMPLE-GPR. Third, we
optimise the off- and mixed-state motifs. For
the off-state motifs we optimise all adsorbates
as well as the coverage. In case of the
mixed-state motifs, we optimise the position
and orientation of the off-state geometries.

On-State

SAMPLE convergence There exist a
number of hyperparameters in SAMPLE. For
most of these one can find physically or
numerically motivated settings. However, two
parameters, namely the feature correlation
length and the decay length, need to be
optimised. We optimise these hyperparameters
by minimising the prediction error on a test
set of gas phase calculations. The training set
contains 200 D-optimally selected gas phase
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calculations and the test set comprises 3000
calculations (which includes the training data).

Figure S14: Optimisation of the decay length

Figure S15: Optimisation of the feature
correlation length

Figures S14 and S15 show that a feature
correlation length of 1 and a decay length of
1 Å yield the minimum test set error. Table S2
shows the settings for all hyperparameters.

Table S2: On-state hyperparameters used in the
SAMPLE approach

distance cutoff 16 Å
distance threshold Cl-Cl 2.7 Å
distance threshold Cl-N 2.5 Å
distance threshold N-N 2.4 Å
feature threshold 0.01
feature correlation length 1
decay length 1 Å
decay power −2
one-body std 100 meV
two-body std 100 meV
DFT noise 5 meV
feature dimension Cl-Cl 16
feature dimension Cl-N 8
feature dimension N-N 4

Figure S16 shows the learning curve using gas
phase calculations. The error is determined on
a set of 3000 calculations that also include the
training set.

Figure S16: Learning curve for free-standing
molecular layers

SAMPLE Predictions To train the energy
model for motifs on the substrate we
d-optimally select 100 on-substrate
calculations. Figure S17 shows the predicted
energies for all commensurate on-state motifs
with up to three molecules per unit cell. We
find a RMSE of 0.03 eV nm−2.
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Figure S17: SAMPLE energy ranking and leave
one out cross validation of calculated energies

SAMPLE-GPR To train SAMPLE-GPR
we reuse the 100 on-substrate calculations
from the SAMPLE training set. Figure S18
shows the learning curve. The
hyperparameters are optimised by maximising
the log marginal likelihood. We find a RMSE
of 0.039 eV/molecule.

Figure S18: GPR learning curve with leave one
out cross validation error

Off-State

SAMPLE Convergence We optimise two
hyperparameters, namely the feature
correlation length and the decay length by
minimising the prediction error on a test set of
gas phase calculations. The training set
contains 200 D-optimally selected gas phase
calculations and the test set comprises 3000
calculations of commensurate motifs (which
includes the training data).

Figure S19: Optimisation of the decay length

Figure S20: Optimisation of the feature
correlation length

Figures S19 and S20 show that a feature
correlation lenght of 1 and a decay length of
1 Å yield the minimum test set error. Table S3
shows the settings for all hyperparameters.
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Table S3: Off-state hyperparameters used in the
SAMPLE approach

distance cutoff 16 Å
distance threshold Cl-Cl 2.7 Å
distance threshold Cl-N 2.5 Å
distance threshold N-N 2.4 Å
feature threshold 0.01
feature correlation length 1
decal length 1 Å
decay power −2
one-body std 100 meV
two-body std 100 meV
DFT noise 5 meV
feature dimension Cl-Cl 16
feature dimension Cl-N 8
feature dimension N-N 4

Figure S21 shows the learning curve using gas
phase calculations. The error is determined on
a set of 3000 calculations that also includes the
training set.

Figure S21: Learning curve for free-standing
molecular layers

SAMPLE Predictions To train the energy
model for motifs on the substrate we
d-optimally select 50 on-substrate calculations.
Additionally, we use a gas phase prior which
employs a training set of 3000 gas phase
calculations. Figure S22 shows the predicted
energies for all commensurate off-state motifs
with up to three molecules per unit cell. The
RMSE is 0.02 eV nm−2.

Figure S22: SAMPLE energy ranking and leave
one out cross validation of calculated energies

SAMPLE-GPR To train SAMPLE-GPR
we reuse the 50 on-substrate calculations from
the SAMPLE training set. For the gas phase
prior we use a new training set comprising
2263 commensurate and higher-order
commensurate motifs. Figure S23 shows the
learning curve. The learning curve shows no
improvement of LOOCV error when adding
new data points. This likely results from the
fact that most information of the
molecule-molecule interactions is already being
contained in the gas phase prior. The small
RMSE of 0.037 eV/molecule fits to this
assertion. We note in passing that the
hyperparameters are optimised by maximising
the log marginal likelihood.
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Figure S23: GPR learning curve with leave one
out cross validation error

Mixed-State

SAMPLE Convergence We optimise the
feature correlation length and the decay length
by minimising the prediction error on a test
set of gas phase calculations. The training set
contains 200 D-optimally selected gas phase
calculations and the test set comprises 3000.

Figure S24: Optimisation of the decay length

Figure S25: Optimisation of the feature
correlation length

Figures S24 and S25 show that a feature
correlation length of 1 yield the minimum test
set error. Regarding the decay length, we find
that smaller values would further reduce the
test set error, albeit by only a small amount.
To be consistent with the on- and off-state we
use a decay length of 1 Å. Table S4 shows the
settings for all hyperparameters.

Table S4: Mixed-state hyperparameters in
SAMPLE

distance cutoff 16 Å
distance threshold Cl-Cl 2.7 Å
distance threshold Cl-N 2.5 Å
distance threshold N-N 2.4 Å
feature threshold 0.01
feature correlation length 1
decal length 1 Å
decay power −2
one-body std 100 meV
two-body std 100 meV
DFT noise 5 meV
feature dimension Cl-Cl 16
feature dimension Cl-N 8
feature dimension N-N 4

Figure S26 shows the learning curve using
gas phase calculations. The error is
determined on a set of 3621 calculations that
also include the training set. We determine a
RMSE of 0.04 eV nm−2.
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Figure S26: Learning curve for free-standing
molecular layers

SAMPLE Predictions To train the energy
model for motifs on the substrate we
d-optimally select 75 on-substrate calculations.
Additionally, we use a gas phase prior which
employs a training set of 3621 gas phase
calculations. Figure S27 shows the predicted
energies for all commensurate mixed-state
motifs with up to three molecules per unit cell.

Figure S27: SAMPLE energy ranking and leave
one out cross validation of calculated energies

SAMPLE-GPR We train SAMPLE-GPR
by reusing the 75 on-substrate calculations
from the SAMPLE training set. For the gas
phase prior we use a new training set
comprising 3621 motifs where in some
instances the off-state molecules were slightly
shifted. Figure S28 shows the learning curve.
The RMSE amounts to 0.033 eV/molecule is

comparable to SAMPLE. The
hyperparameters are optimised by maximising
the log marginal likelihood.

Figure S28: GPR learning curve with leave one
out cross validation error

Work-Function Change

Figure S29 shows the adsorption energies
plotted against the ∆Φ for the subset
containing 37000 motifs. We find that on-state
motifs exhibit the largest variety of ∆Φs.
Within our range of coverage the largest ∆Φ is
−1020 meV and the smallest is −330 meV .
This is due to dissimilar absorption geometries,
which have significantly different surface
dipoles. For the same reason, mixed-state
motifs show the second largest variety of ∆Φs.
Here the largest ∆Φ is −932 meV and the
smallest is −307 meV , within our range in
coverage. Conversely, off-state motifs contain
only geometrically very similar adsorption
geometries, which leads to a small variety of
∆Φs. We find the largest ∆Φ to be −688 meV
and the smallest is −444 meV . In this case the
variety is mainly driven by the coverage.
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Figure S29: Adsorption energies plotted against
the ∆Φ

Coherent Fraction

Figure S30 shows the adsorption energies
plotted against the coherent fraction for the
subset containing 37000 motifs.

Figure S30: Adsorption energies plotted against
the coherent fraction for C-atoms

Off-state motifs have the largest coherent
fraction with all structure exhibiting a value of
close to 1.00. This is due to the molecules
remaining flat and adsorbing at similar
heights. On-state motifs exhibit coherent
fractions ranging from approximately 0.75 to
1.00. Although all molecule in this case adsorb

at similar heights, they can have different
adsorption geometries, leading to lower
coherent fractions. Mixed-state motifs exhibit
the lowest coherent fraction with values
ranging from approximately 0.00 to 0.55. The
reason for this is that the mixed-state contains
molecules adsorbed at different heights.

Phase Diagrams

Figures S31, S32 and S33 show the phase
diagrams of the expectation values for the
coherent fractions of C-, Cl- and N-atoms
respectively. We find the largest differences in
coherent fraction for C-atoms. The smallest
differences occur for Cl-atoms. This is due to
the fact that the Cl-atoms are bent upwards in
on-state geometries and therefore lie at
approximately the same height as the
Cl-atoms in the flat off-state geometries.

Figure S31: Thermodynamically populated
phase diagram showing the expectation value
of the coherent fraction for C atoms
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Figure S32: Thermodynamically populated
phase diagram showing the expectation value
of the coherent fraction for Cl atoms

Figure S33: Thermodynamically populated
phase diagram showing the expectation value
of the coherent fraction for N atoms

Probability of Finding On-, Off- and
Mixed-State Motifs

The thermal occupation yields a probability
with which each individual structure occurs at
a given temperature and pressure. Summing
over all probabilities for a particular class of
structure, say on-state structures, allows
generating a plot that depicts the probability
of finding any on-state structure. Figure S34
shows the probability (according to the
thermal occupation) of finding on-state,
off-state and mixed-state motifs plotted
against the temperature at a constant pressure
of 10−6 Pa.

Figure S34: Diagram showing the probability
of finding on-state, off-state and mixed-state
motifs at different temperatures

As stated above the machine learning models
we use have a prediction uncertainty for the
adsorption energy. This uncertainty impacts
how confident we can be about our results.
Therefore, we will now gauge how much this
uncertainty impacts our predictions. Our final
prediction stems from the GPR-algorithm
where the uncertainties are 0.039 eV/molecule
for on-state, 0.037 eV/molecule for off-state
and 0.033 eV/molecule for mixed-state
structures. Hence, we use
σ = 0.039 eV/molecule as the overall
uncertainty of our predictions. To estimate the
impact for this uncertainty we add normally
distributed perturbations ∆E to the
adsorption energies Eα.
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E ′α = Eα + ∆E, ∆E ∼ N
(
0, σ2

)
(10)

Then we use equation (7) to determine the
thermal occupation (i.e. the probabilities for
each structure to occur). We repeat this
process 105 times and then determine the
statistical mean value of the thermal
occupation. This then allows determining the
mean probability of finding on-, off- and
mixed-state motifs. Figure S35 shows the
mean probability of finding a particular type of
structure.

Figure S35: Diagram showing the probability,
according to the statistical mean of the thermal
occupation, of finding on-, off- and mixed-state
motifs at different temperatures

We compare these mean probabilities to the
most likely probabilities for finding a type of
structure without accounting for the
uncertainty (Figure S34). At 4 K there is a
probability of approximately 30 % to find a
mixed-state structure and a probability of
approximately 70 % to find an off-state
structure. Without the uncertainty the
probability of an off-state structure is about
100 %. At 77 K there is a probability of
approximately 40 % to find a mixed-state
structure and a probability of approximately
55 % to find an off-state structure. Without
the uncertainty the probability for finding a
mixed-state structure is about 60 %. At room
temperature the mean probability and the
most likely probability are very similar. This is

due to the fact that a large number of
structure contributes to the thermal
occupation at room temperature.

Comparison of Phase Diagrams

Besides using thermal occupation there are
several other ways to generate phase diagrams
from our data. These other methods are based,
in part, on different assumptions and will
therefore yield varying results. However,
comparing these results allows gauging the
robustness of our predictions.
The simplest option to construct a phase

diagram is using the motifs with the lowest
Gibbs free energy of adsorption at every
temperature and pressure. This is shown in
Figure S36. This method of analysis yields the
largest range in ∆Φ and coherent fraction.
When switching between the mixed-state and
the on-state interface we find a shift in ∆Φ of
almost 300 meV . Furthermore, the coherent
fraction at 77 K and 300 K is approximately
0.4. While the trend is similar to what we
observe for a thermal occupation (see Figure
3a and 3b in the main manuscript), the shifts
are larger. Hence, the thermal occupation can
be seen as a conservative estimate.
The second way to generate a phase diagram

is using the statistical mean value of the
thermal occupation with uncertainty, which we
show in Figure S37. This phase diagram
should be seen as a statistical tool of analysis
rather than a representation of a real system.
In a real system only one motif (if there are no
degenerates) is thermally occupied a 0 K. The
statistical mean of the thermal occupation,
however, allows that a number of motifs
contribute to the thermal occupation at 0 K.
Most notably, here we no longer find a
coherent fraction of 1.00 at 0 K. This is due to
the statistical mean of the thermal occupation
leading to mix of off- and mixed-state motifs
even at low temperatures. On the other hand,
the mixed-state and the on-state interface
exhibit a very similar ∆Φ and coherent
fraction when compared to pristine thermal
occupation (Figure 3a and 3b in the main
manuscript).

S17



Figure S36: Phase diagram with (a) the ∆Φ and (b) the coherent fraction of C atoms of the
most energetically favourable structures, hatched areas indicate the thermodynamic range where
adsorption is not energetically favourable

Figure S37: Phase diagram populated with a thermal occupation that accounts for the uncertainty.
(a) expectation value of the ∆Φ, (b) expectation value of the coherent fraction of C atoms. Hatched
areas indicate the thermodynamic range where adsorption is not energetically favourable
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Figure S38: Phase diagram populated with (a) the mean ∆Φ and (b) the mean coherent fraction of
C atoms of structures that are within the uncertainty. Hatched areas indicate the thermodynamic
range where adsorption is not energetically favourable

A third option to generate a phase diagram
is using the mean value of all structures that
are within the uncertainty of the adsorption
energy prediction (≈ 0.04eV ). Similar to the
previous phase diagram, this one should be
seen as a statistical tool of analysis. This
phase diagram yields a phase diagram that is
very similar to that using the statistical mean
value of the thermal occupation. Here we also
do not find a coherent fraction of 1.00 at 0 K.
Other than that, the picture is qualitatively
similar to the phase diagram based on the
pristine thermal occupation (figure 3a and 3b
in the main manuscript).

Charge Density Rearrangement and
Dipole-Induced Potential Shifts

To determine the charge rearrangement
resulting from the adsorption of TCP on the
Pt(111) substrate we use the approach by
Heimel et al..6,7
Figure S39 shows the rearrangement of

charge density and the resulting potential

shifts for the off-state geometries. Off-state
geometries are very similar and exhibit only
small rearrangements in charge density. This is
expected, since off-state molecules interact
mainly via vdW-interactions with the
substrate. In a 4 × 4 surface unit cell the
potential shift is approximately −0.4 eV (data
shown for the most stable geometry).

Figure S39: Plane integrated charge density
differences and the resulting potential shifts for
the off-state geometry
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Conversely, on-state geometries can be
separated into two significantly different
groups: Three on-state geometries bind to the
surface via N-atoms (N-bonded) while the
fourth binds via C-atoms. Figures S40 and S41
depict rearrangements of charge density and
resulting potential shifts for N-bonded and
C-bonded geometries respectively. Due to
hybridisation of the molecular states with the
substrate, the local density in both cases shows
notable fluctuations. The three N-bonded
geometries exhibit a potential shift of
approximately −0.6 eV in a 4 × 4 surface unit
cell (data shown for the most stable N-bonded
geometry). The C-bonded geometry has a
much smaller potential shift of approximately
−0.2 eV .

Figure S40: Plane integrated charge density
differences and the resulting potential shifts for
the N-bonded on-state geometry

Figure S41: Plane integrated charge density
differences and the resulting potential shifts for
the C-bonded on-state geometry

These results coincide well with the work
function changes we predict for close-packed

adsorbate layers, which are in the range of
−0.7 eV to −0.4 eV .
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