Defects in an orthorhombic MoAIB MAB phase thin film grown at moderate synthesis temperature

Rajib Sahu*a,b, Dimitri Bogdanovskib, Jan-Ole Achenbach ${ }^{\text {b }}$, Jochen M Schneider ${ }^{\text {a,b }}$ and Christina Scheu*a,c
${ }^{a}$ Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf, Germany
${ }^{\text {b }}$ Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen, Germany
'Materials Analytics, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen, Germany
*Corresponding authors: r.sahu@mpie.de, c.scheu@mpie.de

Fig. S1: X-ray diffraction data of the MoAIB film grown by DC magnetron sputtering. Reference pattern and reference card number are taken from Crystallography Open Database [1].

Fig. S2: High resolution HAADF STEM micrographs in (a)-(c) represent single-unit wide (white arrow) to several-nanometer-wide twin domains (double headed arrows) within different grains.

Fig. S3: Local phase map showing relative interplanar differences along $\epsilon_{y y}$.

Fig. S4: HAADF STEM micrographs showing faceted grain boundaries from two different areas (a) and (b).

Fig. S5: Inverse fast Fourier transformation (IFFT) of area (a) is performed using FFT image in (b). (c) Lattice fringes over the 3D amorphous region show a discontinuity.

Fig. S6: (a) Presence of single-layer Al at the vicinity of the 3D cluster is denoted by $A l_{1}$ and $A I_{\|}$and the vacant columns are marked by V_{Al}. Corresponding line profile are drawn in (c)-(f). Al atoms in single layer are indicated by violet arrows in the HAADF STEM micrographs (b).

Fig. S7: Simultaneously acquired (a) HAADF, (b) ADF and (c) ABF STEM images of the grain boundary are shown here.

References

1. M. Ade and H. Hillebrecht, Ternary Borides $\mathrm{Cr}_{2} \mathrm{AlB}_{2}, \mathrm{Cr}_{3} \mathrm{AlB}_{4}$, and $\mathrm{Cr}_{4} \mathrm{AlB}_{6}$: The First Members of the Series $\left(\mathrm{CrB}_{2}\right)_{\mathrm{n}} \mathrm{CrAl}$ with $\mathrm{n}=1,2,3$ and a Unifying Concept for Ternary Borides as MABPhases, Inorg. Chem., 2015, 54(13), 6122-6135.
