## Supporting Information

## Lead-start isothermal polymerase amplification controlled by DNAzymatic switches

Hyebin Yoo<sup>a</sup>, Ju Young Lee<sup>b</sup>, Ki Soo Park<sup>c,\*</sup>, and Seung Soo Oh<sup>a,\*</sup>

<sup>a</sup> Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea

<sup>b</sup>Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, South Korea

<sup>c</sup> Department of Biological Engineering, Konkuk University, Seoul, 05029, South Korea

\* Corresponding authors. E-mail address: <u>akdong486@konkuk.ac.kr</u> (K. S. Park) E-mail address: <u>seungsoo@postech.ac.kr</u> (S. S. Oh)

## Supplementary Figures and Tables

 Table S1. Oligonucleotides in this study

| Name                      | DNA Sequence $(5' \rightarrow 3')$              |  |
|---------------------------|-------------------------------------------------|--|
| OFF → ON system           |                                                 |  |
| OFF→ON switch             | GAGTCCAATrAGGAAGAGTCCAATGTACAGTATTGGA           |  |
| (optimal locking)         | CTCTGAAGTAGCGCCGCCGTATTGGACTCTTCC               |  |
| OFF→OFF switch            | GCGGCGTCACTATrAGGAAGATCCAATGTACAGTATTG          |  |
| (too strong locking)      | GATCTGAAGTAGCGCCGCCGTATAGTGACGCCGC              |  |
| ON→ON switch              | AAGACAATrAGGAAGACAATGTACAGTATTGTCTGAA           |  |
| (too weak locking)        | GTAGCGCCGCCGTATTGTCTTC                          |  |
| ON → OFF system           |                                                 |  |
| ON→OFF switch             | CTGTACATTGT <b>rA</b> GGAAGAGCTTTGCTCTGAAGTAGCG |  |
| (optimal unlocking)       | CCGCCGTACAATGTACAGTATTGTACG                     |  |
| OFF→OFF switch            | CTGTACATTACTrAGGAAGAGCTTTGCTCTGAAGTAGC          |  |
| (too weak unlocking)      | GCCGCCGTAGTAATGTACAGTATTACTACG                  |  |
| ON→ON switch              | CGTAATACTGTACATTrAGGAAGAGCTTTGCTCTGAAG          |  |
| (too strong unlocking)    | TAGCGCCGCCGTAATGTACAGTATTACG                    |  |
| DNA templates and primers |                                                 |  |
| Template                  | CAGAAATCTCAGGGACTCTAAAGCTCAACTTGCATAA           |  |
|                           | ACTTCTGAGGA                                     |  |
| FAM-Primer                | FAM-TCCTCAGAAGTTTATGCA                          |  |
| COVID-19 Template         | CACATTGGCACCCGCAATCCTGCTAACAATGCTGCAA           |  |
|                           | TCGTGCTACAACT                                   |  |

| COVID-19 Primer                               | AGTTGTAGCACGATTGCAGC                   |
|-----------------------------------------------|----------------------------------------|
| HPV-16 Template                               | CACTATTTTGGAGGACTGGAATTTTGGTTTACAACCTC |
|                                               | CTCCAGGAGGCA                           |
| HPV-16 Primer                                 | TGCCTCCTGGAGGAGGTTGT                   |
| The RNA nucleotides were colored in red (rA). |                                        |



**Fig. S1.** Effects of individual binding and catalytic modules on the activity of DNA polymerase. Regardless of Pb<sup>2+</sup> addition, TQ30 aptamer completely inhibited the DNA polymerase activity. After Pb<sup>2+</sup> addition, GR5 DNAzyme did not change the activity of DNA polymerase significantly.



**Fig. S2.** Time-dependent cleavage of GR5 DNAzyme by varying concentrations of Pb<sup>2+</sup>. Original GR5 DNAzyme module with 71-nt length was treated with diverse concentrations of Pb<sup>2+</sup> (0, 10, 20, 40  $\mu$ M) and incubated for 2 h, 6 h, and 27 h. When RNA cleavage occured, the GR5 DNAzyme module became split to be 58-nt and 13-nt which can be clearly distinguished through the PAGE. The GR5 DNAzyme module showed a fast cleavage rate, as 71.6 % of cleavage was carried out within only 2 h upon the addition of 10  $\mu$ M Pb<sup>2+</sup>.



**Fig. S3.** Effect of  $Pb^{2+}$  ions on Taq DNA polymerase activity. To test if  $Pb^{2+}$  by itself can hamper the intrinsic enzymatic activity of Taq DNA polymerase, we added diverse concentrations of  $Pb^{2+}$  to polymerase and quantified the amount of extended primers.

Compared to the activity of polymerase without  $Pb^{2+}$ , the addition of 10  $\mu$ M  $Pb^{2+}$  gave no change in the ability of the polymerase to extend the primers. However, the addition of 20  $\mu$ M and 40  $\mu$ M of  $Pb^{2+}$  slightly reduced the total amount of the extended primers, which means that there is somehow weak suppression of polymerase activity. For this reason, we decided to use 10  $\mu$ M (final concentration) of  $Pb^{2+}$  to trigger the reaction of our molecular switches.



Fig. S4. Operation of the OFF→ON switch upon Pb<sup>2+</sup> addition. We tested the performance of our OFF→ON switch by quantitatively comparing the amount of extended FAM-primers before and after the addition of Pb<sup>2+</sup>. Establishing positive control (PC) as the percentage of the extended FAM-primer in the absence of our OFF→ON switch, we calculated the relative band intensity at each condition to derive the amplicon production change (%). In presence of our OFF→ON switch, the signal change greatly increased from 2.45 % (OFF) to 48.74 % (ON) upon 10 µM Pb<sup>2+</sup> addition, which means the proper operation of our switch to recover the DNA polymerase activity.



**Fig. S5.** Operation of the ON $\rightarrow$ OFF switch upon Pb<sup>2+</sup> addition. In the same way as Figure S3, we calculated the amplicon production change (%) before and after adding 10 µM of Pb<sup>2+</sup>. In presence of our ON $\rightarrow$ OFF switch, the signal change decreased from 54.84 % (ON) to 16.45 % (OFF) upon 10 µM Pb<sup>2+</sup> addition, confirming the proper function of our switch.



Fig. S6. Pb<sup>2+</sup> specificity and concentration dependence for the ON→OFF switch. A) High Pb<sup>2+</sup> specificity in operating the ON→OFF switch. Among diverse metal ions (Ni<sup>2+</sup>, Cu<sup>2+</sup>, Zn<sup>2+</sup>, Pb<sup>2+</sup>, Mn<sup>2+</sup>, and Mg<sup>2+</sup>), only Pb<sup>2+</sup> could induce the deactivation of DNA polymerase. B) By varying Pb<sup>2+</sup> concentrations, the ON→OFF switch could control the degree of isothermal amplification by DNA polymerases.



**Fig. S7.** Positive (blue) and negative (red) control experiments for quantification of HPV type 16 DNA in 5 % human serum. For the positive control experiment, only DNA polymerase was applied without the OFF $\rightarrow$ ON switch. There was a strong linear relationship between the

HPV16 DNA concentration and the fluorescence intensity change, but the slope of the positive control (217.5/nM) was steeper than that of the OFF $\rightarrow$ ON switch (92.1/nM), indicating the lowered activity of DNA polymerase in the presence of the DNAzymatic switch. For the negative control experiment, the TQ30 aptamer was applied instead of the OFF $\rightarrow$ ON switch, and there was almost no increment of fluorescence intensity over varied DNA double strand concentrations.



**Fig. S8.** The OFF $\rightarrow$ ON switch works well without Pb<sup>2+</sup>-induced pre-cleavage. In allowing Pb<sup>2+</sup> to immediately initiate the isothermal amplification reaction, 300 nM OFF $\rightarrow$ ON switch was mixed with Taq DNA polymerase, Taq buffer, dNTPs, template, and primer all at once, and 40  $\mu$ M Pb<sup>2+</sup> was added at last. As a result, a similar level of amplicon production change was observed by Pb<sup>2+</sup> addition compared to that by pre-incubation (see Fig. 2A, middle). However, the background level was slightly higher, and a relatively large amount of Pb<sup>2+</sup> was needed.

## References

[1] C. Dang, S.D. Jayasena, Oligonucleotide inhibitors of TaqDNA polymerase facilitate detection of low copy number targets by PCR, J. Mol. Biol. 264 (1996) 268-278.

 [2] R. Saran, J. Liu, A comparison of two classic Pb<sup>2+</sup>-dependent RNA-cleaving DNAzymes, Inorg. Chem. Front. 3 (2016) 494-501.

[3] K.S. Park, C.Y. Lee, H.G. Park, Target DNA induced switches of DNA polymerase activity, Chem. Commun. 51 (2015) 9942-9945.

[4] K.S. Park, C.Y. Lee, H.G. Park, Metal ion triggers for reversible switching of DNA polymerase, Chem. Commun. 52 (2016) 4868-4871.