The Electronic Supplementary Information

Size and structure effects on platinum nanocatalysts: Theoretical insights from methanol dehydrogenation

Svetlana S. Laletina^{*a,b}, Mikhail Mamatkulov^b, Aleksey M. Shor^a, Elena A. Shor^a, Vasily V. Kaichev^b and Ilya V. Yudanov^{*b,c}

^aInstitute of Chemistry and Chemical Technology (ICCT) of the Siberian Branch of the Russian Academy of Sciences (SB RAS), Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, 660036, Russia. E-mail: <u>laletina.ss@icct.krasn.ru</u>

^bBoreskov Institute of Catalysis, Novosibirsk, 630090, Russia. E-mail: <u>yudanov@catalysis.ru</u> ^cInstitute of Solid State Chemistry and Mechanochemistry (ISSCM) SB RAS, Novosibirsk, 630128, Russia

CONTENT

Figure S1. Regular coordination numbers of surface atoms on ideal Pt(111) and model NPs: 12 at bulk, 9 at a surface and (111) nanofacet, 8 at (100) nanofacet, 7 at edges, 6 at corners.

Table S1. Adsorption energies, E_{ads} (in kJ mol⁻¹), of methanol, formyl and carbon monoxide on 5-layer Pt(111) slab calculated with different k-point meshes.

Table S2. CO bond lengths (in Å) in different adsorption complexes at Pt(111), Pt₇₉ and Pt₂₀₁ NPs, the values of correction Δ for the CO adsorption energy, CO adsorption energies with and without correction Δ (in kJ mol⁻¹).

Table S3. Energies (kJ mol⁻¹) of CH₃OH adsorption at different sites of Pt(111), Pt₇₉ and Pt₂₀₁.

Table S4. Energies (kJ mol⁻¹) of CH₃O adsorption at different sites of Pt(111), Pt₇₉ and Pt₂₀₁.

Table S5. Energies (kJ mol⁻¹) of CH₂O adsorption at different sites of Pt(111), Pt_{79} and Pt_{201} .

Figure S2. The formaldehyde structures on Pt(111) and Pt₇₉.

Table S6. Energies (kJ mol⁻¹) of CHO adsorption at different sites of Pt(111), Pt_{79} and Pt_{201} NPs.

Figure S3. The formyl structures on Pt(111) and Pt_{79} .

Table S7. Energy (kJ mol⁻¹) of adsorption of H atom at different sites of Pt(111), Pt₇₉ and Pt₂₀₁.

Figure S4. The H adsorption sites on Pt₇₉.

Figure S5. Intermediates of methanol dehydrogenation calculated at the edge of Pt_{79} NP. Adsorption energies (in kJ mol⁻¹) are given nearby the corresponding structures. H atoms are colored white, C atoms – gray, O atoms – red, Pt atoms – cyan.

Figure S6. Elementary steps of methanol dehydrogenation at corner site of Pt₇₉ NP. H atoms are colored white, C atoms – gray, (edge) O atoms – red, Pt atoms – cyan.

Figure S1. Regular coordination numbers of surface atoms on ideal Pt(111) and model NPs: 12 at bulk, 9 at a surface and (111) nanofacet, 8 at (100) nanofacet, 7 at edges, 6 at corners.

Table S1. Adsorption energies, E_{ads} (in kJ mol⁻¹), of methanol, formyl and carbon monoxide on 5-layer Pt(111) slab calculated with different k-point meshes. On-top binding to the surface Pt atom by the carbon center of the adsorbed species in all cases.

k-point mesh	E _{ads} (CH ₃ OH)	<i>E</i> _{ads} (CHO)	$E_{ads}(CO)$
4×4×1	-34.12	-243.16	-164.61
5×5×1	-33.89	-242.36	-164.90
7×7×1	-33.42	-242.44	-164.64

Table S2. CO bond lengths (in Å) in different adsorption complexes at Pt(111), Pt₇₉ and Pt₂₀₁ NPs, corrections Δ for the CO adsorption energy estimated by formula Δ =460 d_{CO} -518 (in kJ mol⁻¹) [V. Sumaria, L. Nguyen, F.F. Tao, P. Sautet, *ACS Catal.*, 2020, **10**, 9533-9544], CO adsorption energies without and with correction Δ (in kJ mol⁻¹).

Site	d_{CO}	Δ	Eads	E_{ads} + Δ
free CO	1.1416			
Pt ₇₉ - <i>t</i>	1.1577	14.69	-180	-166
Pt ₇₉ - <i>t</i> _e	1.1600	15.735	-200	-184
$Pt_{79}-t_v$	1.1604	15.942	-211	-195
Pt ₇₉ -br (t-t)	1.1827	26.192	-209	-182
Pt_{79} - $br_e(t$ - $t_e)$	1.1840	26.795	-188	-161
$Pt_{79}-br_e^{111/111}(t_v-t_e)$	1.1836	26.625	-219	-193
$Pt_{79}-br_e^{111/100}(t_v-t_e)$	1.1790	24.508	-186	-161
Pt ₇₉ -fcc (three-fold hollow)	1.1945	31.629	-209	-177
Pt ₇₉ -4-hold	1.1966	32.591	-211	-178
$Pt_{201}-t_1$	1.1563	14.022	-148	-134
$Pt_{201}-t_2$	1.1572	14.46	-164	-150
$Pt_{201}-t_v$	1.1603	15.873	-199	-183
$Pt_{201}-br_{e}(t_{v}-t_{e})$	1.1828	26.252	-188	-162
Pt(111)- <i>t</i>	1.1557	13.765	-165	-151
Pt(111)-br	1.1812	25.493	-173	-148
Pt(111)- <i>fcc</i>	1.1936	31.228	-176	-145
Pt(111)-hcp	1.1930	31.118	-174	-143

Site	E _{ads} (CH ₃ OH)
Pt ₇₉ - <i>t</i>	-45
Pt ₇₉ - <i>t</i> e	-48
$Pt_{79}-t_v$	-56
$Pt_{201}-t_1$	-19
$Pt_{201}-t_v$	-57
Pt(111)- <i>t</i>	-34

Table S3. Energies (kJ mol⁻¹) of CH₃OH adsorption at different sites of Pt(111), Pt₇₉ and Pt₂₀₁ NPs.

Table S4. Energies (kJ mol⁻¹) of CH₃O adsorption at different sites of Pt(111), Pt_{79} and Pt_{201} NPs.

Site	$E_{ads}(CH_3O)$
Pt ₇₉ - <i>t</i>	-193
Pt ₇₉ - <i>t</i> _e	-204
$Pt_{79}-t_v$	-225
$Pt_{79}-br_e^{111/111}$	-221
Pt_{79} - $br_e^{111/100}$	-228
Pt ₇₉ -br	-174
$Pt_{201}-t_1$	-162
Pt_{201} - t_v	-217
Pt(111)- <i>t</i>	-173
Pt(111)-br	-169
Pt(111)-fcc	-165

Site	$E_{ads}(CH_2O)$
$Pt_{79}-t_v(O)-t_e(C)$	-123
$Pt_{79}-t_v(C)-t_e(O)$	-115
$Pt_{79}-t_v(C)-t_v(O)$	-105
$Pt_{79}-t(C)-t_e(O)$	-86
$Pt_{79}-br_{v}(t_{v}t)(O)-t_{e}(C)$	-103
$Pt_{79}-t(O)-t(C)$	-76
$Pt_{79}-t_v(O)-t(C)$	-107
$Pt_{79}-t_v(C)-t(O)$	-81
$Pt_{201}-t_1(O)-t_2(C)$	-48
$Pt_{201}-t_v(O)-t_e(C)$	-108
Pt(111)- <i>t</i> (O)– <i>t</i> (C)	-56
Pt(111)- <i>t</i> (O)	-26

Table S5. Energies (kJ mol⁻¹) of CH₂O adsorption at different sites of Pt(111), Pt₇₉ and Pt₂₀₁ NPs.

Figure S2. The formaldehyde structures on Pt(111) and Pt₇₉.

Site	E _{ads} (CHO)
$Pt_{79}-t_v(O)-t_e(C)$	-285
$Pt_{79}-t_v(C)-t_e(O)$	-289
$Pt_{79}-t_v(C)$	-265
Pt_{79} - $t(C)$	-271
$Pt_{79}-t(O)-br(C)$	-261
$Pt_{79}-t(O)-br_e^{111/100}(t_v-t_v)(C)$	-228
$Pt_{79}-t(O)-br_e^{111/111}(t_v-t_e)(C)$	-262
$Pt_{79}-t(O)-br_{e}(t_{e}-t)(C)$	-235
$Pt_{79}-t_e(O)-t(C)$	-261
$Pt_{201}-t_1(C)$	-251
$Pt_{201}-t_2(C)$	-252
$Pt_{201}-t_v(O)-t_e(C)$	-275
Pt(111)- <i>br</i> (C)- <i>t</i> (O)*	-237
Pt(111)- <i>t</i> (C)	-243

Table S6. Energies (kJ mol⁻¹) of CHO adsorption at different sites of Pt(111), Pt₇₉ and Pt₂₀₁ NPs.

*above fcc-site

Figure S3. The formyl structures on Pt(111) and Pt₇₉.

Site	E _{ads} (H)
Pt ₇₉ - <i>t</i>	-285
Pt ₇₉ - <i>t</i> _e	-266
Pt_{79} - t_v	-271
Pt_{79} - $br_e(t_{br}$ - $t)$	-267
Pt_{79} - $br_{e}^{111/100}(t_{v}-t_{v})$	-275
Pt_{79} - $br_e^{111/111}$ (t _v -t _e)	-285
Pt ₇₉ -fcc ₁ (three-fold hollow)	-267
Pt ₇₉ - <i>fcc</i> ₂	-267
$Pt_{201}-t_1$	-270
Pt_{201} - t_v	-260
Pt(111)- <i>t</i>	-267
Pt(111)-br	-263
Pt(111)-fcc	-267
Pt(111)- <i>hcp</i>	-263

Table S7. Energy (kJ mol⁻¹) of adsorption of H atom at different sites of Pt(111), Pt_{79} and Pt_{201} NPs.

Figure S4. The H adsorption sites on Pt₇₉.

Figure S5. Intermediates of methanol dehydrogenation calculated at the edge of Pt_{79} NP. Adsorption energies (in kJ mol⁻¹) are given nearby the corresponding structures. H atoms are colored white, C atoms – gray, O atoms – red, Pt atoms – cyan.

Figure S6. Elementary steps of methanol dehydrogenation at corner site of Pt₇₉ NP. H atoms are colored white, C atoms – gray, (edge) O atoms – red, Pt atoms – cyan.