Looking at platinum carbonyl nanoclusters as superatoms

Jianyu Wei,^{a,b} Rémi Marchal,^a Didier Astruc,^b Samia Kahlal^{*a} Jean-François Halet,^{*a,c} and Jean-Yves Saillard^{*a}

^a Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR) – UMR 6226, F
35000 Rennes, France. E-mail: <u>samia.kahlal@univ-rennes1.fr</u>, <u>saillard@univ-rennes1.fr</u>
^b ISM, UMR CNRS 5255, University of Bordeaux, 351 Cours de la Libération, F-33405
Talence Cedex, France.
^c CNRS – Saint-Gobain – NIMS, IRL 3629, Laboratory for Innovative Key Materials and

Structures (LINK), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan. E-mail: jean-francois.halet@univ-rennes1.fr

Dedicated to the memory of Professor Larry F. Dahl, a pioneer and an immense contributor to ligated cluster chemistry

Table of Contents

Fig. S1 Metallic kernel structure of the icosahedral 8-electron superatom models. Light-grey,
pink and golden-yellow spheres are outer Pt, central Pt and Au atoms, respectively5
Fig. S2 Plots of the <i>superatomic</i> orbitals of $[Pt_{13}(CO)_{12}]^{8-}$ (I_h) with the surface isovalue of \pm 0.02 (e/bohr ³) ^{1/2}
Fig. S3 Kohn-Sham orbital diagram of $Pt_{13}Au_4(\mu_2$ -CO) ₂ (CO) ₁₆ . The 5d block contains all Pt and Au contributions
Fig. S4 Kohn-Sham orbital diagram of $Pt_{17}(\mu_2$ -CO) ₄ (CO) ₁₆ . The 5d block contains all Pt contributions.
Fig. S5 Metallic kernel structure of $[Pt_{13}(CO)_{12}(\mu-CO)_5]^2$, $[Pt_{14}(CO)_{12}(\mu-CO)_6]^{4-}$ and $[Pt_{15}(CO)_{11}(\mu-CO)_8]^{4-}$. Light-grey and pink spheres are outer Pt and central Pt, respectively9
Fig. S6 Plots of the <i>superatomic</i> orbitals of $[Pt_{13}(CO)_{12}(\mu-CO)_5]^{2-}(D_{5h})$ with the surface isovalue of ± 0.02 (e/bohr ³) ^{1/2} 10
Fig. S7 The occupied 6s(Pt) combinations of $[Pt_{14}(\mu-CO)_6(CO)_{12}]^{4-}$ and $[Pt_{15}(\mu-CO)_8(CO)_{11}]^{4-}$.
Fig. S8 Metallic kernel structure of the clusters that can be viewed as assemblies of individual superatoms. Light-grey, pink and green spheres are outer Pt, central Pt and the Pt that shared between two or three <i>superatoms</i> , respectively
Fig. S9 Plots of the <i>supermolecular</i> orbitals of $[Pt_{19}(CO)_{17}]^{10-}$ (D_{5h}) with the surface isovalue of ± 0.02 (e/bohr ³) ^{1/2}
Fig. S10 Spin density plots of $[Pt_{19}(CO)_{17} \{Cd_5(\mu-Br)_5Br_3(Me_2CO)_2\} \{Cd_5(\mu-Br)_5Br(Me_2CO)_4\}]^{2-}$ (A) and $[Pt_{19}CO_{17}]^{8-}$ (D _{5h}) (B)14
Fig. S11 Kohn-Sham orbital diagram of the fully decorated $[Pt_{19}(CO)_{17} \{Cd_5(\mu-Br)_5Br_3(Me_2CO)_2\} \{Cd_5(\mu-Br)_5Br(Me_2CO)_4\}]^4$ 15
Fig. S12 Kohn-Sham orbital diagram of $[Pt_{26}(\mu_2-CO)_9(CO)_{23}]^2$. The <i>supermolecular</i> orbitals plotted on the right side are reminiscent of the valence orbitals of the hypothetical triangular
isomer of O ₃ 16

Fig. S13 Metallic kernel structure of the linear assemblies of individual icosahedral
superatoms (hypothetical models). Light-grey, pink and green spheres are outer Pt, central Pt
and the Pt that shared between two or three <i>superatoms</i> , respectively17
Fig. S14 Kohn-Sham orbital diagram of the hypothetical Pt ₂₅ (CO) ₂₂] ¹²⁻ 18
Fig. S15 Kohn-Sham orbital diagram of the hypothetical $[Pt_{23}(CO)_{20}]^{12-}$ 19
Fig. S16 Kohn-Sham orbital diagram of the hypothetical $[Pt_{23}(CO)_{21}]^{10-}$ 20
Fig. S17 Metallic kernel structure of various clusters with non-spherical 3D structure. Light- grey, pink and golden-yellow spheres are outer Pt, inner Pt that belonging to the encapsulated polyhedron and Au atoms, respectively
Fig. S18 Kohn-Sham orbital diagram of the pseudo-spherical $[Pt_{38}(\mu_2-CO)_{12}(CO)_{32}]^{2-}$ 22
Fig. S19 Kohn-Sham MO diagram of $[Pt_{36}(\mu-CO)_{18}(CO)_{26}]^{2-}$. The <i>supermolecular</i> orbitals, plotted on the right side, are consistent with the $1S^2 1P^8 1D^{10}$ configuration23
Fig. S20 Qualitative frontier MO interaction diagram between the $Ptn(CO)n$ and $(\mu$ -CO)m fragments in a neutral [$Ptn(CO)n(\mu$ -CO)m] nanocluster24
Table S1. Relevant computed data for $[Pt_{13}(CO)_{12}]^{8-}$
Table S2. Relevant computed data for $[Pt_{13}(CO)_{12} \{Cd_5(\mu-Br)_5Br_2(dmf)_3\}_2]^{2-}$
Table S3. Relevant computed data for the $Pt_{13}(Au_2L_2)_2(\mu$ -CO) ₂ (CO) ₈ (L) ₄ (L = CO, PH ₃) clusters
Table S4. Relevant computed data for the $Pt_{13}(Pt_2(\mu-CO)(L)_2)_2(\mu-CO)_2(CO)_8(L)_4$ (L = CO, PH ₃) clusters
Table S5. Relevant computed data for the $[Pt_{14}(\mu-CO)_6(CO)_{12}]^{4-}$ and $[Pt_{15}(\mu-CO)_8(CO)_{11}]^{4-}$ clusters
Table S6. Relevant computed data for the $[Pt_{19}(CO)_{17}]^{8-/10-}$ clusters
Table S7. Computed data for $[Pt_{19}(CO)_{17} \{Cd_5(\mu-Br)_5Br_3(Me_2CO)_2\} \{Cd_5(\mu-Br)_5Br(Me_2CO)_4\}]^{x-}$ (x = 2, 4)
Table S8. Relevant computed data for $[Pt_{19}(\mu-CO)_{10}(CO)_{12}]^{4-}$
Table S9. Relevant computed data for $[Pt_{26}(\mu-CO)_9(CO)_{23}]^{2-}$
Table S10. Relevant computed data for $[Pt_{23}(\mu-CO)_{13}(CO)_{14}]^{2-}$

Table S11. Relevant computed data for the hypothetical cluster $[Pt_{25}(CO)_{22}]^{12-}$ 33
Table S12. Relevant computed data for the hypothetical cluster [Pt ₂₃ CO ₂₀] ^{12–} 34
Table S13. Relevant computed data for the hypothetical cluster [Pt ₂₃ CO ₂₁] ¹⁰⁻ 34
Table S14. Relevant computed data for $[Pt_{38}(\mu-CO)_{12}(CO)_{32}]^{2-}$
Table S15. Relevant computed data for $[Pt_{36}(\mu-CO)_{18}(CO)_{26}]^{2-}$
Table S16. Relevant computed data for $[Pt_{19}(\mu_3-CO)_3(\mu-CO)_3(CO)_{18}(\mu_4-AuPH_3)_3]^-$
Table S17. Relevant computed data for $[Pt_{19}(\mu_3-CO)(\mu-CO)_5(CO)_{18}{\mu_4-Au_2(PH_3)_2}_2]$
Table S18. Relevant computed data for $[Pt_{40}(\mu-CO)_{16}(CO)_{24}]^{6-}$
Table S19. Relevant computed data for $[Pt_{24}(\mu-CO)_8(CO)_{22}]^{2-}$
Table S20. Relevant computed data for $[Pt_{33}(\mu-CO)_{10}(CO)_{28}]^{2-}$
References

Fig. S1 Metallic kernel structure of the icosahedral 8-electron *superatom* models. Light-grey, pink and golden-yellow spheres are outer Pt, central Pt and Au atoms, respectively.

Fig. S2 Plots of the *superatomic* orbitals of $[Pt_{13}(CO)_{12}]^{8-}$ (I_h) with the surface isovalue of \pm 0.02 (e/bohr³)^{1/2}.

Fig. S3 Kohn-Sham orbital diagram of $Pt_{13}Au_4(\mu_2-CO)_2(CO)_{16}$. The 5d block contains all Pt and Au contributions. The surface isovalue of the inserted plots of *superatomic* orbitals is \pm 0.01 (e/bohr³)^{1/2}.

Fig. S4 Kohn-Sham orbital diagram of $Pt_{17}(\mu_2$ -CO)₄(CO)₁₆. The 5d block contains all Pt contributions. The surface isovalue of the inserted plots of *superatomic* orbitals is \pm 0.01 (e/bohr³)^{1/2}.

Fig. S5 Metallic kernel structure of $[Pt_{13}(CO)_{12}(\mu-CO)_5]^{2-}$, $[Pt_{14}(CO)_{12}(\mu-CO)_6]^{4-}$ and $[Pt_{15}(CO)_{11}(\mu-CO)_8]^{4-}$. Light-grey and pink spheres are outer Pt and central Pt, respectively.

Fig. S6 Plots of the *superatomic* orbitals of $[Pt_{13}(CO)_{12}(\mu-CO)_5]^{2-}(D_{5h})$ with the surface isovalue of ± 0.02 (e/bohr³)^{1/2}.

Fig. S7 The occupied 6s(Pt) combinations of $[Pt_{14}(\mu-CO)_6(CO)_{12}]^{4-}$ and $[Pt_{15}(\mu-CO)_8(CO)_{11}]^{4-}$. The surface isovalue of the inserted plots of orbitals is ± 0.01 (e/bohr³)^{1/2}.

Fig. S8 Metallic kernel structure of the clusters that can be viewed as assemblies of individual superatoms. Light-grey, pink and green spheres are outer Pt, central Pt and the Pt shared between two or three *superatoms*, respectively.

Fig. S9 Plots of the *supermolecular* orbitals of $[Pt_{19}(CO)_{17}]^{10-}(D_{5h})$ with the surface isovalue of ± 0.02 (e/bohr³)^{1/2}.

Fig. S10 Spin density plots of $[Pt_{19}(CO)_{17}\{Cd_5(\mu-Br)_5Br_3(Me_2CO)_2\}\{Cd_5(\mu-Br)_5Br(Me_2CO)_4\}]^{2-}$ (A) and $[Pt_{19}CO_{17}]^{8-}$ (D_{5h}) (B).

Fig. S11 Kohn-Sham frontier molecular orbital diagram of the fully decorated $[Pt_{19}(CO)_{17}\{Cd_5(\mu-Br)_5Br_3(Me_2CO)_2\}\{Cd_5(\mu-Br)_5Br(Me_2CO)_4\}]^4$. The surface isovalue of the inserted plots of orbitals is ± 0.02 (e/bohr³)^{1/2}.

Fig. S12 Kohn-Sham orbital diagram of $[Pt_{26}(\mu_2-CO)_9(CO)_{23}]^2$. The *supermolecular* orbitals plotted on the right side are reminiscent of the valence orbitals of the hypothetical triangular isomer of O₃. The surface isovalue of the inserted plots of *supermolecular* orbitals is \pm 0.01 (e/bohr³)^{1/2}.

Fig. S13 Metallic kernel structure of the linear assemblies of individual icosahedral superatoms (hypothetical models). Light-grey, pink and green spheres are outer Pt, central Pt and the Pt shared between two or three *superatoms*, respectively.

Fig. S14 Kohn-Sham orbital diagram of the hypothetical $Pt_{25}(CO)_{22}]^{12-}$, the core of which is made of three interpenetrating centered icosahedra. The *supermolecular* orbitals plotted on the right side are reminiscent of the valence orbitals of CO₂. The surface isovalue of the inserted plots of *supermolecular* orbitals is ± 0.01 (e/bohr³)^{1/2}.

Fig. S15 Kohn-Sham orbital diagram of the hypothetical $[Pt_{23}(CO)_{20}]^{12-}$, the core of which is made of three interpenetrated icosahedra. The *supermolecular* orbitals are plotted on the right side. The surface isovalue of the inserted plots of *supermolecular* orbitals is ± 0.01 (e/bohr³)^{1/2}.

Fig. S16 Kohn-Sham orbital diagram of the hypothetical $[Pt_{23}(CO)_{21}]^{10-}$, the core of which is made of two face-sharing centered icosahedra. The *supermolecular* orbitals, plotted on the right side, are reminiscent of the valence orbitals of F₂. The surface isovalue of the inserted plots of *supermolecular* orbitals is ± 0.01 (e/bohr³)^{1/2}.

Computed model	Metallic kernel structure
[Pt ₃₈ (µ-CO) ₁₂ (CO) ₃₂]²−	
[Pt ₃₆ (µ-CO) ₁₈ (CO) ₂₆]²-	
[Pt ₁₉ (µ₃-CO)₃(µ-CO)₃ (CO) ₁₈ (µ₄-AuPH₃)₃] [_]	
[Pt ₁₉ (μ ₃ -CO)(μ-CO) ₅ (CO) ₁₈ {μ ₄ -Au ₂ (PH ₃) ₂ } ₂]	
[Pt ₂₄ (µ-CO) ₈ (CO) ₂₂] ^{2−}	
[Pt ₃₃ (µ-CO) ₁₀ (CO) ₂₈]²−	
[Pt ₄₀ (µ-CO) ₁₆ (CO) ₂₄] ^{6–}	

Fig. S17 Metallic kernel structure of various clusters with non-spherical 3D structure. Lightgrey, pink and golden-yellow spheres are outer Pt, inner Pt that belong to the encapsulated polyhedron and Au atoms, respectively.

Fig. S18 Kohn-Sham orbital diagram of the pseudo-spherical $[Pt_{38}(\mu_2-CO)_{12}(CO)_{32}]^{2-}$ (Pt₆@Pt₃₂). The *supermolecular* orbitals, plotted on the right side, are consistent with the 1S² 1P⁸ 1D¹⁰ configuration. The surface isovalue of the inserted plots of *superatomic* orbitals is \pm 0.01 (e/bohr³)^{1/2}.

Fig. S19 Kohn-Sham MO diagram of $[Pt_{36}(\mu-CO)_{18}(CO)_{26}]^{2-}$. The *supermolecular* orbitals, plotted on the right side, are consistent with the $1S^2$ $1P^8$ $1D^{10}$ configuration. The surface isovalue of the inserted plots of *superatomic* orbitals is \pm 0.01 (e/bohr³)^{1/2}.

Fig. S20 Simplified MO interaction diagram between the Ptn(CO)n and (μ -CO)m fragments in a neutral [Ptn(CO)n(μ -CO)m] nanocluster with n terminal and m bridging carbonyls (no qualitative change if μ_3 -COs in the place of μ -COs). Both the π^* (CO) levels and the antibonding 6s(Pt) combinations (all vacant orbitals) are not shown, as well as the n occupied low-lying bonding MOs associated with the n Pt-CO_{terminal} bonds. In the case of a dianionic [Pt_n(CO)_n(μ -CO)_m]²⁻ species, for example, then the number of 6s bonding (occupied) combinations would be m₁ + 1 and *nfe* = 2m₁ + 2. The bridging COs are necessary to get a closed-shell configuration with the 6s bonding combinations filled but their total number m and the m₁/m₂ ratio are difficult to predict owing to their dependence on complex topological parameters.

		$[Pt_{13}(CO)_{12}]^{8-}$
HOMO-LUMO gap		1.41 eV
	Pt _c -Pt _p	av. 2.781 [0.1518]
Distances (A) [Wiberg indices]	Pt _p -Pt _p	av. 2.923 [0.0688]
	Pt _p -C	av. 1.829 [1.1925]
NAO Charges (av.)	Pt _c	-0.96
	Pt _p	-0.12
	CO	-0.48

Table S1. Relevant computed data for $[Pt_{13}(CO)_{12}]^{8-}$.

 $[Pt_{13}(CO)_{12} \{Cd_5(\mu-Br)_5Br_2(dmf)_3\}_2]^{2-}$ Calc. Exp.¹ 1.19 eV HOMO-LUMO gap -2.727-2.757 2.696-2.718 Pt_cent.-Pt_vert. av. 2.742 [0.1052] av. 2.707 2.765-2.988 2.765-2.912 Pt_{vert.}-Pt_{vert.} av. 2.882 [0.0650] av. 2.850 2.868-2.891 Cd_{Br} -Pt_{5 ring} av. 2.826 av. 2.877 [0.0741] 3.308-3.321 Cd_{Br}-Pt_{apical} av. 3.262 av. 3.315 [0.0229] 2.821-2.865 Cd_{dmf} -Pt_{5 ring} av. 2.807 av. 2.843 [0.0954] 3.006-3.051 $\mathrm{Cd}_{\mathrm{dmf}}\text{-}\mathrm{Pt}_{\mathrm{apical}}$ av. 3.031 av. 3.022 [0.0536] 2.704-2.822 Cd-Br av. 2.711 av. 2.756 [0.2111] 2.649-2.663 Cd-Br_{terminal} av. 2.567 av. 2.656 [0.2975] 2.388-2.408 Cd-O av. 2.231 av. 2.396 [0.0742] 1.858-1.897 Pt-C (Carbonyl) av. 1.84 av. 1.873 [0.8318] 1.156-1.168 C-O (Carbonyl) av. 1.14 av. 1.162 [2.0157] Pt₁ -0.54 _ Pt_{12} -0.29 NAO charges CO -0.15 -(av.) L +1.91-

Table S2. Relevant computed data for $[Pt_{13}(CO)_{12} \{Cd_5(\mu-Br)_5Br_2(dmf)_3\}_2]^{2-}$ The atomic distances are given in Å, Wiberg indices are given in brackets. Experimental bond distances are reported for comparison.

		Pt ₁₃ (Au ₂ (X) ₂) ₂ (µ-CO) ₂ (CO) ₈ (X) ₄		
		$\mathbf{L} = \mathbf{CO}$	$L = PH_3$	Exp. ²
HOMO-LUMO gap		0.96 eV	0.93 eV	
	Pt _c -Pt _p	av. 2.729 [0.1461]	av. 2.726 [0.1458]	av. 2.707
	Pt _p -Pt _p	av. 2.869 [0.0766]	av. 2.866 [0.0681]	av. 2.846
	Pt _p -Au _b	av. 2.775 [0.1281]	av. 2.779 [0.1316]	av. 2.783
Distances (Å)	Au _b -Au _b	av. 3.202 [0.0184]	av. 3.151 [0.0237]	av. 3.131
[Wiberg indices]	Pt _p -CO _t	av. 1.873 [0.8488]	av. 1.864 [0.8887]	av. 1.877
	Pt _p -CO _b	av. 2.048 [0.5759]	av. 2.025 [0.6167]	av. 2.007
	Pt _p -L	av. 1.893 [0.7598]	av. 2.242 [0.4516]	av. 2.260
	Au _b -L	av. 1.928 [0.7622]	av. 2.261 [0.5201]	av. 2.247
NAO Charges (av.)	Pt _c	-0.75	-0.65	
	Pt _p	-0.06	-0.10	
	Au _b	+0.48	+0.31	

Table S3. Relevant computed data for the $Pt_{13}(Au_2L_2)_2(\mu$ -CO)_2(CO)_8(L)_4 (L = CO, PH_3)clusters. Experimental bond distances are reported for comparison.

		$Pt_{13}(Pt_2(\mu-CO)(L)_2)_2(CO)_{10}(L)_4$		
		L = CO	$L = PH_3$	Exp. ³
HOMO-LUMO gap		0.30 eV	0.35 eV	
	Pt _c -Pt _p	av. 2.728 [0.1452]	av. 2.724 [0.1439]	av. 2.698
	Pt _p -Pt _p	av. 2.869 [0.0804]	av. 2.862 [0.0816]	av. 2.837
	Pt _p -Pt _b	av. 2.768 [0.1316]	av. 2.776 [0.1337]	av. 2.780
	Pt _b -Pt _b	av. 2.936 [0.0964]	av. 2.891 [0.1096]	av. 2.860
[Wiberg indices]	Pt _p -CO _t	av. 1.871 [0.8336]	av. 1.861 [0.8747]	1.64 - 1.83
[]	Pt _p -CO _b	av. 2.057 [0.5653]	av. 2.030 [0.6086]	1.94 - 2.13
	Pt _p -L	av. 1.896 [0.7534]	av. 2.245 [0.4509]	2.20 - 2.26
	Pt _b -CO _b	av. 2.035 [0.6224]	av. 2.007 [0.6727]	1.94 - 2.13
	Pt _b -L	av. 1.872 [0.9068]	av. 2.219 [0.5774]	2.20 - 2.26
	Pt _c	-0.76	-0.66	
NAO Charges	Pt _p	-0.02	-0.06	
()	Pt _b	+0.28	+0.12	

Table S4. Relevant computed data for the $Pt_{13}(Pt_2(\mu-CO)(L)_2)_2(\mu-CO)_2(CO)_8(L)_4$ (L = CO, PH₃) clusters. Experimental bond distances are reported for comparison.

Table S5. Relevant computed data for the $[Pt_{14}(\mu-CO)_6(CO)_{12}]^{4-}$ and $[Pt_{15}(\mu-CO)_8(CO)_{11}]^{4-}$ clusters. Experimental bond distances are reported for comparison.^{4,5}

		$[Pt_{14}(\mu-CO)_6(CO)_{12}]^{4-}$	$[Pt_{15}(\mu-CO)_8(CO)_{11}]^{4-}$
HOMO-LUMO gap		1.00 eV	1.09 eV
	Pt _c -Pt _p	av. 2.777 exp. 2.730	av. 2.775 exp. 2.731
Distances (Å)	Pt _p -Pt _p	av. 2.867 exp. 2.821	av. 2.874 exp. 2.827
	Pt _p -Pt _b	-	av. 2.753 exp. 2.681
	Pt _p -C _t	av. 1.862 exp. 1.844	av. 1.860 exp. 1.858
	Pt _p -C _b	av. 2.033 exp. 2.004	av. 2.037 exp. 2.011

		[Pt ₁₉ (CO) ₁₇] ¹⁰⁻	[Pt ₁₉ (CO) ₁₇] ^{8–}	Exp. ¹
HOMO-LUMO or SOMO-LUMO gap		0.37 eV	Spin-α: 0.47 eV Spin-β: 0.09 eV	
Distances (Å) [Wiberg indices] Pt	Pt _c -Pt _c ,	av. 2.611 [0.0984]	av. 2.571	av. 2.557
	Pt _c -Pt _p	av. 2.813 [0.1298]	av. 2.782	av. 2.730
	Pt _p -Pt _p	av. 2.960 [0.0604]	av. 2.922	av.2.866
	Pt _p -C	av. 1.829 [1.1851]	av. 1.832	av. 1.800
NAO Charges (av.)	Pt _c	-0.80		
	Pt _p	-0.07		
	СО	-0.43		

Table S6. Relevant computed data for the $[Pt_{19}(CO)_{17}]^{8-/10-}$ clusters. Experimental bond distances are reported for comparison.

Table S7. Computed data for $[Pt_{19}(CO)_{17} \{Cd_5(\mu-Br)_5Br_3(Me_2CO)_2\} \{Cd_5(\mu Br)_5Br(Me_2CO)_4\}]^{x-}$ (x = 2, 4). The atomic distances are given in Å. Wiberg indices are given in brackets. Experimental bond distances are given for comparison.

		[Pt ₁₉ (CO) ₁₇ {Cd ₅ (µ-	$[Pt_{19}(CO)_{17}{Cd_5(\mu-$	
		$Br)_5Br_3(Me_2CO)_2$ {	$Br)_{5}Br_{3}(Me_{2}CO)_{2}$ {	T 1
		Cd ₅ (μ-	Cd ₅ (μ-	Exp. ¹
		$Br)_5Br(Me_2CO)_4\}]^{2-}$	$Br)_{5}Br(Me_{2}CO)_{4}\}]^{4-}$	
НОМС	D-LUMO or	α -electron: 0.72 eV	0.70 -14	
SOMO-LU	UMO gap (eV)	β-electron: 0.08 eV	0.70 eV	-
Р	Pt _c -Pt _c '	2.594	2.590 [0.1161]	2.557
г)4 D4	2.683-2.859	2.688-2.852	2.663-2.793
ľ	r _c -Pl _p	av. 2.761	av. 2.770 [0.1184]	av. 2.730
)4 D4	2.755-3.043	2.778-3.112	2.775-2.976
F	ι _p -Ρι _p	av. 2.894	av. 2.903 [0.0630]	av. 2.866
	1.04	2.789-2.911	2.774-2.911	2 700
Ca	1-Pt _{5 ring}	av. 2.856	av. 2.841 [0.1113]	av. 2.790
Ca	1 D4	2.939-3.410	2.911-3.394	av. 2.010
	1-Pl _{apical}	av. 3.093	av. 3.074 [0.0526]	av. 3.019
CID		2.692-2.855	2.693-3.026	or: 2.741
Cd-Br _{br}		av. 2.765	av. 2.812 [0.1775]	av. 2.741
		2.621-2.629	2.650-2.662	2 (27
Ca-	-Br _{terminal}	av. 2.625	av. 2.657 [0.2989]	av. 2.637
	CLO	2.458-2.488	2.517-2.555	av. 2.250
	Cu-O	av. 2.475	av. 2.540 [0.0670]	av. 2.550
	(Carbonyl)	1.848-1.900	1.841-1.897	av. 1.800
11-0 ((Carbolly1)	av. 1.865	av. 1.861 [0.8762]	av. 1.600
CO	(Carl arrel)	1.153-1.169	1.155-1.174	ov. 1.170
C-O (Carbonyl)		av. 1.160	av. 1.164 [2.0414]	av. 1.170
	Pt _{cent}	-	-0.55	
	Pt _{apical}	-	-0.46	
	Pt _{outer}	-	-0.21	
NAO	СО	-	-0.08	
charges Cd ₅ (μ- Br) ₅ Br ₃ (Me ₂ C				
		-	+0.62	

O) ₂			
Cd ₅ (µ			
Br) ₅ Br(Me ₂ CO	-	+1.91	
)4}			

Table S8. Relevant computed data for $[Pt_{19}(\mu-CO)_{10}(CO)_{12}]^4$. Experimental bond distances are given for comparison.

		$[Pt_{19}(\mu-CO)_{10}(CO)_{12}]^{4-}$	Exp. ⁶
HOMO-LUMO gap		0.80 eV	
	Pt _c -Pt _c ,	av. 2.710 [0.1309]	av. 2.641
	Pt _c -Pt _p	av. 2.813 [0.1183]	av. 2.794
Distances (A) [Wiberg indices]	Pt _p -Pt _p	av. 2.821 [0.0928]	av. 2.797
	Pt _p -C _t	av. 1.857 [0.9237]	-
	Pt _p -C _b	av. 2.025 [0.5576]	-
	Pt _c	-0.66	
NAO Charges	Pt _p	+0.13	
	CO	-0.22	

Table S9. Relevant computed data for $[Pt_{26}(\mu-CO)_9(CO)_{23}]^{2-}$. Experimental bond distances are given for comparison.

$[Pt_{26}(\mu-CO)_9(CO)_{23}]^{2-} Exp.^4$	Exp. ⁴
--	-------------------

HOMO-LUM	O gap	0.57 eV	
	Pt ₃ -Pt ₃	av. 2.813 [0.0630]	av. 2.803
Distances (Å)	Pt ₃ -Pt _p	av. 2.823 [0.1072]	av. 2.801
[Wiberg indices]	Pt _p -Pt _p	av. 2.827 [0.0809]	av. 2.804
	Pt _p -C _t	av. 1.875 [0.8001]	av. 1.840
	Pt _p -C _b	av. 2.029 [0.5536]	av. 1.960
	Centered Pt ₃	-0.63	
	μ_6 -Pt _p	-0.07	
NAO Charges (av.)	Pt _p	+0.20	
	Pt _{capping}	+0.22	
	СО	-0.11	

		$[Pt_{23}(\mu-CO)_{13}(CO)_{14}]^{2-}$	Exp. ⁴
HOMO-LUM	O gap	0.42 eV	
Distances (Å)	Pt ₃ -Pt ₃	av. 2.679	av. 2.655
	Pt ₃ -Pt _p	av. 2.878	av. 2.808
	Pt _p -Pt _p	av. 2.966	av. 2.936
	Pt _p -C _t	av. 1.874	av. 1.821
	Pt _p -C _b	av. 2.037	av. 2.001

Table S10. Relevant computed data for $[Pt_{23}(\mu-CO)_{13}(CO)_{14}]^{2-}$. Experimental bond distances are given for comparison.

Table S11. Relevant computed data for the hypothetical cluster $[Pt_{25}(CO)_{22}]^{12-}$.

		$[Pt_{25}(CO)_{22}]^{12-}$	
HOMO-LUM	HOMO-LUMO gap		
	Pt _c -Pt _c ,	av. 2.710 [0.0766]	
	Pt _c -Pt _p	av. 2.782 [0.1336]	
Distances (Å)	Pt _c [,] -Pt _p	av. 2.831 [0.1178]	
indices]	Pt _p -Pt _p	av. 2.988 [0.0596]	
	Pt _p -C _t	av. 1.829 [1.1733]	
	Pt _p -C _b	-	
	Pt _c	-0.71	
NAO Charges (av.)	Pt _{c'}	-0.79	
	Ptp	-0.04	
	СО	=0.40	

		[Pt ₂₃ (CO) ₂₀] ^{12–}
HOMO-LUM	IO gap	0.57 eV
	Pt ₃ -Pt ₃	2.752
Distances (Å)	Pt ₃ -Pt _p	av. 2.822
	Pt _p -Pt _p	av. 3.001
	Pt _p -C	av. 1.831

Table S12. Relevant computed data for the hypothetical cluster $[Pt_{23}CO_{20}]^{12-}$.

Table S13. Relevant computed data for the hypothetical cluster $[Pt_{23}CO_{21}]^{10}$.

		[Pt ₂₃ (CO) ₂₁] ^{10–}
HOMO-LUM	IO gap	0.51 eV
	Pt _c -Pt _p	av. 2.781
Distances (Å)	Pt _p -Pt _p	av. 2.951
	Pt _p -C _t	av. 1.843

Table S14. Relevant computed data for $[Pt_{38}(\mu-CO)_{12}(CO)_{32}]^{2-}$. Experimental bond distances are given for comparison.

		$[Pt_{38}(\mu-CO)_{12}(CO)_{32}]^{2-}$	Exp. ⁷
HOMO-LUMO gap		0.45 eV	
	Pt ₆	av. 2.822 [0.0566]	av. 2.811
\mathbf{D} istensor $(\hat{\mathbf{\lambda}})$	Pt ₆ -Pt _p	av. 2.838 [0.1141]	av. 2.822
[Wiberg indices]	Pt _p -Pt _p	av. 2.857 [0.0761]	av. 2.845
	Pt _p -C _t	av. 1.880 [0.7805]	av. 1.857
	Pt _p -C _b	av. 2.021 [0.5574]	av. 1.973
	Centered Pt ₆	-0.55	
NAO Charges (av.)	Pt _p	+0.17	
	СО	-0.05	

		$[Pt_{36}(\mu-CO)_{18}(CO)_{26}]^{2-}$	Exp. ⁴
HOMO-LUMO	O gap	0.24 eV	
	Pt ₆	av. 2.769	av. 2.770
Distances (Å)	Pt ₆ -Pt _p	av. 2.830	av. 2.784
	Pt _p -Pt _p	av. 2.898	av. 2.855
	Pt _p -C _t	av. 1.880	av. 1.833
	Pt _p -C _b	av. 2.050	av. 2.011

Table S15. Relevant computed data for $[Pt_{36}(\mu-CO)_{18}(CO)_{26}]^{2-}$. Experimental bond distances are given for comparison.

		$[Pt_{19}(\mu_{3}-CO)_{3}(\mu-CO)_{3}(CO)_{18}(\mu_{4}-AuPH_{3})_{3}]^{-}$	Exp. ⁸
HOMO-LUMO gap		1.06 eV	
	Pt ₃ -Pt ₃	av. 2.835	av. 2.816
	Pt ₃ -Pt ₇	av. 2.844	av. 2.782
Distances (Å)	Pt ₇ -Pt ₇	av. 2.828	av. 2.796
	Pt ₇ -Pt ₆	av. 2.820	av. 2.796
	Pt ₆ -Pt ₆	av. 2.846	av. 2.833
	Pt ₆ -Pt ₃ ,	av. 2.835	av. 2.804
	Pt ₃ ,-Pt ₃ ,	av. 2.856	av. 2.859
	Pt-(µ ₄ -Au)	av. 2.832	av. 2.859
	Pt-C _t	av. 1.882	av. 1.905
	Pt-C _b	av. 2.030	av. 2.072
	Pt-(μ ₃ -C)	av. 2.158	av. 2.187

Table S16. Relevant computed data for $[Pt_{19}(\mu_3-CO)_3(\mu-CO)_3(CO)_{18}(\mu_4-AuPH_3)_3]^-$. Experimental bond distances are given for comparison.

Table S17. Relevant computed data for $[Pt_{19}(\mu_3-CO)(\mu-CO)_5(CO)_{18}{\mu_4-Au_2(PH_3)_2}_2].$ Experimental bond distances are given for comparison.

		$[Pt_{19}(\mu_{3}-CO)(\mu-CO)_{5}(CO)_{18}\{\mu_{4}-Au_{2}(PH_{3})_{2}\}_{2}]$	Exp. ⁸
HOMO-LUM	O gap	0.94 eV	
	Pt ₃ -Pt ₃	av. 2.823	av. 2.808
	Pt ₃ -Pt ₇	av. 2.851	av. 2.799
Distances (Å)	Pt ₇ -Pt ₇	av. 2.842	av. 2.795
	Pt ₇ -Pt ₆	av. 2.802	av. 2.786
	Pt ₆ -Pt ₆	av. 2.859	av. 2.823
	Pt ₆ -Pt ₃ ,	av. 2.840	av. 2.799
	Pt ₃ ,-Pt ₃ ,	av. 2.835	av. 2.823
	Pt-(µ ₄ -Au)	av. 2.828	av. 2.838
	Pt-C _t	av. 1.886	av. 1.885
	Pt-C _b	av. 2.037	av. 1.983
	Pt-(μ ₃ -C)	av. 2.150	av. 2.146

		$[Pt_{40}(\mu\text{-CO})_{16}(CO)_{24}]^{6-}$	Exp. ⁹
HOMO-LUMO gap		0.25 eV	
Distances (Å)	Pt ₈	av. 2.762	av. 2.745
	Pt ₈ -Pt _p	av. 2.773	av. 2.737
	Pt _p -Pt _p	av. 2.874	av. 2.883
	Pt _p -C _t	av. 1.860	av. 1.851
	Pt _p -C _b	av. 2.023	av. 1.978

Table S18. Relevant computed data for $[Pt_{40}(\mu-CO)_{16}(CO)_{24}]^{6-}$. Experimental bond distances are given for comparison.

Table S19. Relevant computed data for $[Pt_{24}(\mu-CO)_8(CO)_{22}]^{2-}$. Experimental bond distances are given for comparison.

		$[Pt_{24}(\mu\text{-CO})_8(CO)_{22}]^{2-}$	Exp. ⁴
HOMO-LUM	O gap	0.66 eV	
	Pt ₁₀ -Pt ₁₀	av. 2.826	av. 2.803
	Pt ₁₀ -Pt ₉	av. 2.850	av. 2.826
Distances (Å)	Pt9-Pt9	av. 2.819	av. 2.797
	Pt ₉ -Pt ₅	av. 2.843	av. 2.819
	Pt ₅ -Pt ₅	av. 2.824	av. 2.796
	Pt-C _t	av. 1.878	av. 1.860
	Pt-C _b	av. 2.033	av. 1.996

		$[Pt_{33}(\mu-CO)_{10}(CO)_{28}]^{2-}$	Exp. ⁴
HOMO-LUMO gap		0.49 eV	
Distances (Å)	Pt ₈ -Pt ₈	av. 2.858	av. 2.828
	Pt ₈ -Pt ₁₂	av. 2.838	av. 2.815
	Pt ₁₂ -Pt ₁₂	av. 2.824	av. 2.827
	Pt ₁₂ -Pt ₉	av. 2.850	av. 2.818
	Pt ₉ -Pt ₉	av. 2.823	av. 2.796
	Pt ₉ -Pt ₄	av. 2.856	av. 2.829
	Pt ₄ -Pt ₄	av. 2.882	av. 2.837
	Pt-C _t	av. 1.876	av. 1.857
	Pt-C _b	av. 2.028	av. 1.996

Table S20. Relevant computed data for $[Pt_{33}(\mu-CO)_{10}(CO)_{28}]^{2-}$. Experimental bond distances are given for comparison.

References

- C. Femoni, M. C. Iapalucci, G. Longoni, S. Zacchini and S. Zarra, J. Am. Chem. Soc., 2011, 133, 2406–2409.
- 2. N. de Silva and L.F. Dahl, Inorg. Chem., 2005, 44, 9604–9606.
- L. V. Nair, S. Hossain, S. Wakayama, S. Takagi, M. Yoshioka, J. Maekawa, A. Harasawa, B. Kumar, Y. Niihori, W. Kurashige and Y. Negishi, *J. Phys. Chem. C*, 2017, **121**, 11002–11009.
- 4. E. Cattabriga, I. Ciabatti, C. Femoni, M. C. Iapalucci, G. Longoni and S. Zacchini, *Inorg. Chim. Acta*, 2018, **470**, 238–249.
- 5. F. Gao, C. Li, B. T. Heaton, S. Zacchini, S. Zarra, G. Longoni and M. Garland, *Dalton Trans.*, 2011, **40**, 5002–5008.
- D. M. Washecheck, E. J. Wucherer, L. F. Dahl, A. Ceriotti, G. Longoni, M. Manassero, M. Sansoni and P. Chini, *J. Am. Chem. Soc.*, 1979, **101**, 6110–6112.
- A. Ceriotti, N. Masciocchi, P. Macchi and G. Longoni, *Angew. Chem. Int. Ed.*, 1999, 38, 3724–3727.
- A. Ceriotti, P. Macchi, A. Sironi, S. El Afefey, M. Daghetta, S. Fedi, F. Fabrizi de Biani and R. Della Pergola, *Inorg. Chem.*, 2013, 52, 1960–1964.

9. E. Cattabriga, I. Ciabatti, C. Femoni, T. Funaioli, M. C. Iapalucci and S. Zacchini, *Inorg. Chem.*, 2016, **55**, 6068–6079.