Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting information

An iodine-mediated new avenue to sulfonylation employing *N*-hydroxy aryl sulfonamide as a sulfonylating agent

Dushyant Singh Raghuvanshi^[a*], Narsingh Verma^[a,b]

^aPhytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Kukrail Road, Lucknow 226015 ^bAcedamy of Scientific and Innovative Research, Ghaziabad-221002, India

dushyant.bhu@gmail.com

Table of Contents

1. General Experiments	S ₃
2. Reagents	S ₃
3. Experimental procedure	S ₃₋₅
4. Spectral data	S ₅₋₁₆
5. References	S ₁₆₋₁₇
6. Copies of ¹ H and ¹³ C spectra	S ₁₈₋₁₀₁

General Experimental:

All the reactions were carried out in 15 mL Ace-pressure tube with constant stirring using a Teflon-coated magnetic stirring bar. The reaction's heating source is a magnetic stirrer equipped with an oil bath and a temperature controller. Flash chromatography was performed using Merck silica gel (230-400 mesh). Thin-layer chromatography (TLC) was performed using Merck GF254 plates (thickness 0.25 mm). Visualization of spots on TLC plate was accomplished with UV. The chromatographic solvents are mentioned as v/v ratios. All the synthesized compounds were fully characterized by ¹H, ¹³C NMR, and further confirmed through ESI-MS and HRMS analyses. High resolution mass spectrometry (HRMS) was recorded on a SCIEX X 500R QTOF (TOF-MS) system with turbo V ion source with twin sprayer ESI probe and twin sprayer APCI probe. NMR spectra were recorded with Bruker 500 MHz spectrometers for ¹H NMR, 125 MHz for ¹³C NMR respectively. Chemical shifts are reported in δ (ppm) relative to TMS (¹H), CDCl₃ and DMSO-D₆ (¹³C) as internal standards. Integrals are in accordance with assignments; coupling constants are given in Hz. Product yields refer to isolated yields after flash chromatography.

Reagents:

All the chemicals, including thiophenol derivatives, iodine, hydroxylamine hydrochloride, potassium carbonate, sulfonyl chloride derivatives, and other chemicals, were procured from Sigma Aldrich, Alfa Aesar and TCI Chemicals and were used as received.

Experimental Procedure

Synthesis of N-hydroxy sulfonamide:

N-oxides was prepared by the reported procedure.¹

General Procedure for the Synthesis of Thiosulfonatesfrom thiophenol

A mixture of thiophenol (1 mmol), N-hydroxy sulphonamide (1.5 mmol), iodine (1 mmol) and K_2CO_3 (1 mmol) in EtOH (3mL), placed in a 15-mL Ace-pressure tube under aerobic condition, was stirred at 60°C in an oil bath for the time 6 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature, and the solvent was removed under reduced pressure. The residue was quenched by the addition of a saturated sodium thiosulfate solution. The resulting mixture was extracted with ethyl acetate (3×20 mL) and the combined organic layer was washed with water, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography.

A mixture of alkynes (1 mmol), N-hydroxy sulphonamide (1.5 mmol), iodine (1.5 mmol) and K_2CO_3 (1 mmol) in EtOH (3mL), placed in a 15-mL Ace-pressure tube under aerobic condition, was stirred at 60°C in an oil bath for the time 6 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was quenched by the addition of a saturated sodium thiosulfate solution. The resulting mixture was extracted with ethyl acetate (3×20 mL) and the combined organic layer was washed with water, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography.

A mixture of Arylacetylenic acids (1 mmol), N-hydroxy sulphonamide (1.5 mmol), iodine (1 mmol) and K_2CO_3 (1 mmol) in EtOH (3mL), placed in a 15-mL Ace-pressure tube under arobic condition, was stirred at 60°C in oil bath for the time 6 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was quenched by the addition of a saturated sodium thiosulfate solution. The resulting mixture was extracted with ethyl acetate (3×20 mL) and the combined organic layer was washed with water, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flash chromatography.

General Procedure for the Synthesis of 3-sulfonyl benzofuranderivative 10

A mixture of **6h** (1 mmol), 2-bromophenol **9** (1.5 mmol), palladium acetate (10 mol%), triphenylphosphine (20 mol%), and Cs_2CO_3 (2 mmol) in DMF (3mL), placed in a 25-mL round bottom flask, was stirred at 120°C under nitrogen atmosphere for the time 6 h. After completion of the reaction (monitored by TLC), the reaction mixture was cooled to room temperature progress, and the mixture was quenchedby the addition of water (20 mL) followed by extraction withEtOAc (3×30 mL). The combined organic layers were washed with brine (3×30 mL) and dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by flashchromatography (silica gel 230–400 mesh,eluted with 20% to 25% ethyl acetate/hexane).

Spectral data of the compounds:

1. S-3-methoxyphenyl 4-methylbenzenesulfonothioate (3a)²

¹H NMR (500 MHz, CDCl₃) δ = 2.40 (s, 3H), 3.71 (s, 3H), 6.86-6.87 (m, 1H), 6.91-6.93 (m, 1H), 6.98-7.00 (m, 1H), 7.20-7.23 (m, 3H), 7.46-7.47 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.63, 55.40, 118.02, 120.88, 127.69, 128.73, 128.81, 129.38, 130.06, 140.34, 144.75, 159.85.

ESI-MS (C₁₄H₁₄O₃S₂): 295 [M+H]⁺.

2. S-3-methoxyphenyl benzenesulfonothioate (3b)³

¹H NMR (500 MHz, CDCl₃) δ = 3.70 (s, 3H), 6.84-7.00 (m, 3H), 7.20-7.23 (m, 1H), 7.41-7.44 (m, 2H), 7.56-7.59 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ = 55.44, 118.14, 120.84, 127.65, 128.76, 128.84, 130.14, 133.68, 136.59, 142.93, 159.87.

ESI-MS (C₁₃H₁₂O₃S₂): 281 [M+H]⁺.

3. S-3-methoxyphenyl 4-nitrobenzenesulfonothioate (3c)

¹H NMR (500 MHz, CDCl₃) δ = 3.79 (s, 3H), 6.90 (d, *J*=7.5 Hz, 1H), 6.98-6.99 (m, 1H), 7.06-7.08 (m, 1H), 7.28 (d, *J*=8.5 Hz, 1H), 7.78 (d, *J*=9.0 Hz, 2H), 8.28 (d, *J*=9.0 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 55.56, 118.29, 121.23, 124.10, 127.66, 128.41, 128.81, 130.48, 147.93, 150.41, 160.20.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₁NO₅S₂ : 326.0112, found: 326.0102.

4. S-3-methoxyphenyl methanesulfonothioate (3d)

¹H NMR (500 MHz, CDCl₃) δ = 3.19(s, 3H), 3.84 (s, 3H), 7.06-7.08 (m, 1H), 7.23-7.28 (m, 2H), 7.36-7.39 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ = 47.49, 55.59, 117.81, 121.10, 128.15, 128.74, 130.56, 160.26.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_8H_{10}O_3S_2$: 219.0171, found: 219.0142.

5. S-3-methoxyphenyl naphthalene-2-sulfonothioate (3e)

¹H NMR (500 MHz, CDCl₃) δ = 3.52 (s, 3H), 6.78-6.79 (m, 1H), 6.88-6.90 (m, 1H), 6.96-6.98 (m, 1H), 7.14-7.17 (m, 1H), 7.56-7.59 (m, 1H), 7.63-7.70 (m, 2H), 7.78-7.80 (m, 1H), 7.88-7.92 (m, 2H), 7.97 (d, *J*=1.5 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ = 55.26, 118.25, 120.78, 122.43, 127.81, 127.94, 128.79, 128.83, 129.34, 129.46, 129.49, 130.11, 131.55, 135.11, 139.45, 159.84.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{17}H_{14}O_3S_2$: 331.0418, found: 331.0417.

6. S-phenyl 4-methylbenzenesulfonothioate (3f)²

¹H NMR (500 MHz, CDCl₃) δ = 2.43 (s, 3H), 7.21-7.22 (m, 2H), 7.33-7.39 (m, 4H), 7.44-7.50 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.69, 127.59, 128.01, 129.41, 129.43, 130.23, 131.36, 136.60, 140.26, 144.78.

ESI-MS (C₁₃H₁₂O₂S₂): 265 [M+H]⁺.

7. S-phenyl methanesulfonothioate(3g)⁴

¹H NMR (500 MHz, CDCl₃) δ = 3.18 (s, 3H), 7.46-7.56 (m, 3H), 7.70-7.73 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ = 47.44, 127.98, 129.92, 131.66, 136.24. ESI-MS (C₇H₈O₂S₂): 188 [M+H]⁺.

8. S-phenyl naphthalene-2-sulfonothioate (3h)⁵

¹H NMR (500 MHz, CDCl₃) δ = 7.26-7.29 (m, 2H), 7.32-7.34 (m, 2H), 7.43.7.46 (m, 1H), 7.56-7.59 (m, 1H), 7.64-7.68 (m, 2H), 7.76-7.86 (m, 1H), 7.89-7.91 (m, 2H), 7.95 (d, *J*=1.5 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ =122.36, 127.80, 127.98, 128.03, 129.05, 129.32, 129.37, 129.39, 129.46, 129.48, 129.56, 131.49, 131.56, 135.12, 136.65, 139.56. ESI-MS ($C_{16}H_{12}O_{2}S_{2}$): 301 [M+H]⁺.

9. S-4-hydroxyphenyl 4-methylbenzenesulfonothioate (3i)⁸

¹H NMR (500 MHz, CDCl₃) δ = 2.41 (s, 3H), 3.50 (s, 1H), 6.76 (d, *J*=8.5 Hz, 2H), 7.19-7.23 (m, 4H), 7.45 (d, *J*=8.5 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.65, 116.67, 118.20, 127.63, 129.47, 138.59, 140.10, 144.78, 159.24.

ESI-MS (C₁₃H₁₂O₃S₂): 281 [M+H]⁺.

10. S-4-hydroxyphenyl benzenesulfonothioate(3j)^{3,4}

¹H NMR (500 MHz, CDCl₃) δ = 3.50 (s, 1H), 6.75-6.78 (m, 2H), 7.18-7.20 (m, 2H), 7.42-7.45 (m, 2H), 7.56-7.59(m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ =116.69, 118.06, 127.60, 128.87, 133.65, 138.60, 142.82, 159.27.

ESI-MS (C₁₂H₁₀O₃S₂): 265 [M-H]⁺.

11. S-4-hydroxyphenyl 3-(trifluoromethyl)benzenesulfonothioate (3k)

HO

¹H NMR (500 MHz, CDCl₃) δ = 7.29-7.34 (m, 3H), 7.38-7.47 (m, 3H), 7.53-7.57 (m, 2H).

13C NMR (125 MHz, CDCl₃) δ = 127.54, 127.84, 127.97, 128.86, 129.23, 129.29, 129.48, 129.76, 131.47, 133.73, 136.57, 142.95.

HRMS (ESI): m/z [M]⁺ calcd for C₁₃H₉F₃O₃S₂ : 333.9945, found: 333.9938.

12. S-4-hydroxyphenyl 3-nitrobenzenesulfonothioate(3l)

¹H NMR (500 MHz, CDCl₃) δ = 3.50 (s, 1H), 6.75-7.77 (m, 2H), 7.32-7.39 (m, 3H), 7.63-7.66 (m, 1H), 8.23-8.30 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 116.51, 126.03, 126.10, 126.36, 127.47, 131.77, 134.14, 137.52, 145.37, 156.29.

HRMS (ESI): m/z [M+Na]⁺calcd for C₁₂H₉NO₅S₂ : 333.9820, found: 333.9815.

13. S-4-hydroxyphenyl 4-nitrobenzenesulfonothioate (3m)

¹H NMR (500 MHz, CDCl₃+DSMO) δ = 6.66-6.74 (m, 2H), 7.01-7.07 (m, 2H), 7.60-7.65 (m, 2H), 8.13-8.18 (m, 2H), 9.60 (s, 1H).

¹³C NMR (125 MHz, CDCl₃+DSMO) δ = 115.24, 117.13, 123.99, 128.77, 138.29, 147.89, 150.23, 161.40.

HRMS (ESI): m/z [M+Na]⁺calcd for C₁₂H₉NO₅S₂ : 333.9820, found: 333.9815.

14. S-4-hydroxyphenyl 4-tert-butylbenzenesulfonothioate (3n)

¹H NMR (500 MHz, CDCl₃) δ = 1.32 (s, 9H), 6.76-6.78 (m, 2H), 7.18 (d, *J*=8.5 Hz, 2H), 7.43 (d, *J*=8.5 Hz, 2H), 7.50 (d, *J*=8.5 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 31.05, 35.33, 116.74, 117.94, 125.91, 127.47, 138.62, 139.81, 157.93, 159.39.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{16}H_{18}O_3S_2$: 323.0731, found: 323.0760.

15. S-4-hydroxyphenyl methanesulfonothioate (30)

¹H NMR (500 MHz, CDCl₃+CD₃OD) δ = 3.18 (s, 3H), 6.91-6.93 (m, 2H), 7.52-7.55 (m, 2H).

¹³C NMR (125 MHz, CDCl₃+CD₃OD) δ = 46.16, 116.29, 116.68, 133.04, 137.92, 160.54 HRMS (ESI): m/z [M+H]⁺calcd for C₇H₈O₃S₂ : 204.9915, found: 204.9937 and m/z [M+Na]⁺calcd for C₇H₈O₃S₂ : 226.9817, found: 226.9806.

16. S-4-chlorophenyl 4-methylbenzenesulfonothioate (3p)²

¹H NMR (500 MHz, CDCl₃) δ = 2.49 (s, 3H), 7.22 (d, *J*=8.0 Hz, 2H), 7.28-7.32 (m, 4H), 7.46-7.47 (dd, J_{J} =2.0 Hz, J_{2} =7.0 Hz,2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.67, 126.58, 127.62, 129.53, 129.70, 137.71, 138.19, 140.25, 145.0.

ESI-MS (C₁₃H₁₁ClO₂S₂): 320 [M+Na]⁺.

17. S-4-chlorophenyl benzenesulfonothioate (3q)⁴

¹H NMR (500 MHz, CDCl₃) δ = 7.27-7.32 (m, 4H), 7.43-7.46 (t, *J*= 7.5 Hz, 2H), 7.58-7.61 (m, 3H)

¹³C NMR (125 MHz, CDCl₃) δ = 126.38, 127.58, 128.95, 129.75, 133.84, 137.71, 138.32, 142.93

ESI-MS (C₁₂H₉ClO₂S₂): 285 [M+H]⁺.

18. S-4-chlorophenyl methanesulfonothioate (3r)⁴

¹H NMR (500 MHz, CDCl₃) δ = 3.19 (s, 3H), 7.45-7.47 (m, 2H), 7.62-7.65 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ = 47.62, 126.38, 130.22, 137.37, 138.58.

ESI-MS (C₇H₇ClO₂S₂): 244 [M+Na]⁺.

19. S-4-chlorophenyl naphthalene-2-sulfonothioate (3s)

¹H NMR (500 MHz, CDCl₃) δ = 7.60-7.70 (m, 4H), 7.83-7.84 (m, 2H), 7.90-7.94 (m, 3H), 8.00 (d, *J*=1.5 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 122.29, 126.51, 127.92, 127.99, 129.32, 129.50, 129.57, 129.61, 129.74, 131.58, 135.19, 137.79, 138.33, 139.53.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₁ClO₂S₂ : 334.9889, found: 334.9959.

20. S-p-tolyl 4-methylbenzenesulfonothioate (3t, 4a)^{2,3}

¹H NMR (500 MHz, CDCl₃) δ = 2.37 (s, 3H), 2.41 (s, 3H), 7.12 (d, *J*=8.0, 2H), 7.20-7.24(m, 4H), 7.44-7.46 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.50, 21.68, 124.57, 127.60, 129.38, 130.22, 136.50, 140.43, 142.08, 144.62.

ESI-MS (C₁₄H₁₄O₂S₂): 301 [M+Na]⁺.

21. S-p-tolylbenzenesulfonothioate (3u)⁴

¹H NMR (500 MHz, CDCl₃) δ = 2.37 (s, 3H), 7.12 (d, *J*=8.0, 2H), 721-7.23 (m, 2H), 7.40-7.43 (m, 2H), 7.55-7.58 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.46, 124.43, 127.57, 128.79, 129.37, 130.25, 133.53, 136.49, 142.18, 143.16.

ESI-MS (C₁₃H₁₂O₂S₂): 265 [M+H]⁺.

22. S-p-tolyl 3-(trifluoromethyl)benzenesulfonothioate (3v)

1H NMR (500 MHz, CD₃OD) δ = 2.38 (s, 3H), 7.15 (d, *J*=8.0, 2H), 7.20-7.23 (m, 2H), 7.59-7.63 (m, 2H), 7.81-8.83 (m, 2H).

¹³C NMR (125 MHz, CD₃OD) δ = 21.40, 119.71, 121.88, 123.83, 124.05, 124.85, 124.88, 124.91, 124.94, 127.61, 129.37, 129.77, 129.99, 130.02, 130.05, 130.20, 130.49, 130.95, 131.21, 131.48, 131.75, 136.45, 142.82, 143.75.

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{14}H_{11}F_3O_2S_2$: 333.0186, found: 333.0225

23. S-benzyl 4-methylbenzenesulfonothioate (3w)^{6,7}

¹H NMR (500 MHz, CDCl₃) δ = 2.43 (s, 3H), 4.25 (s, 2H), 7.13-7.28 (m, 7H), 7.72 (d, *J*=8.0, Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.63, 40.29, 127.02, 127.96, 128.78, 129.12, 129.74, 133.74, 136.51, 142.08, 144.57, 144.65.

ESI-MS (C₁₄H₁₄O₂S₂): 301 [M+Na]⁺.

24. S-benzyl benzenesulfonothioate $(3x)^{4,7}$

¹H NMR (500 MHz, CDCl₃) δ = 4.27 (s, 2H), 7.16-7.23 (m, 4H), 7.33-7.49 (m, 3H), 7.55-7.60 (m, 1H), 7.82-7.84 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 40.40, 126.90, 128.04, 128.80, 129.09, 129.16, 133.51, 136.60, 144.94.

ESI-MS (C₁₃H₁₂O₂S₂): 265 [M+H]⁺.

25. S-benzyl 4-nitrobenzenesulfonothioate (3y)⁷

¹H NMR (500 MHz, CDCl₃) δ = 4.34 (s, 2H), 7.15-7.21 (m, 5H), 7.84-7.86 (m, 2H), 8.18-8.21 (m, 2H)

¹³C NMR (125 MHz, CDCl₃) δ = 40.98, 124.23, 127.99, 128.26, 128.83, 129.10, 133.19, 150.10, 150.17

ESI-MS ($C_{13}H_{11}NO_4S_2$): 332 [M+Na]⁺.

26. (E)-S-2-(benzylideneamino)phenyl 4-methylbenzenesulfonothioate (3z)

No reaction (**nr**)

27. (E)-1-(2-iodo-2-phenylvinylsulfonyl)-4-methylbenzene (6a)⁹

¹H NMR (500 MHz, CDCl₃) δ = 2.39 (s, 3H), 7.17-7.23 (m, 4H), 7.26-7.31 (m, 3H), 7.35 (s, 1H), 7.44-7.46 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.62, 114.15, 127.72, 127.89, 127.92, 129.67, 129.78, 137.38, 139.69, 141.30, 144.57.

ESI-MS (C₉H₉IO₂S): 384 [M+H]⁺.

28. (E)-(1-iodo-2-(phenylsulfonyl)vinyl)benzene (6b)⁹

¹H NMR (500 MHz, CDCl₃) δ = 7.20-7.22 (m, 2H), 7.25-7.32 (m, 3H), 7.36-7.40 (m, 3H), 7.52-7.56 (m, 3H).

¹³C NMR (125 MHz, CDCl₃) δ = 114.77, 127.69, 127.83, 128.00, 129.04, 129.86, 133.51, 139.60, 140.25, 141.13.

ESI-MS (C₉H₉IO₂S): 368 [M-H]⁺.

29. (E)-(1-iodo-2-(methylsulfonyl)vinyl)benzene (6c)^{10a}

¹H NMR (500 MHz, CDCl₃) δ = 2.65 (s, 3H), 7.30 (s, 1H), 7.37-7.40 (m, 3H), 7.44-7.47 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 43.08, 114.88, 127.87, 128.36, 130.42, 139.47, 140.36 ESI-MS (C₉H₉IO₂S): 330 [M+Na]⁺.

30. (E)-2-(2-iodo-2-phenylvinylsulfonyl)naphthalene(6d)9

¹H NMR (500 MHz, CDCl₃) δ =7.17-7.25 (m, 5H), 7.46 (s, 1H), 7.55-7.66 (m, 3H), 7.77-7.78 (m, 1H), 7.85 (d, *J*=8.5 Hz, 2H), 7.99 (d, *J*=1.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ = 114.91, 122.41, 127.60, 127.66, 127.90, 129.36, 129.40, 129.41, 129.92, 130.02, 131.95, 135.10, 136.82, 139.48, 141.27. ESI-MS (C₁₈H₁₃IO₂S): 420 [M+H]⁺.

31. (E)-1-(2-iodo-2-(4-methoxyphenyl)vinylsulfonyl)-4-methylbenzene (6e)⁹

¹H NMR (500 MHz, CDCl₃) δ = 2.39 (s, 3H), 3.82 (s, 3H), 6.78-6.80 (m, 2H), 7.19-7.28 (m, 5H), 7.48-7.50 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.61, 55.40, 113.26, 114.87, 127.83, 129.64, 129.97, 131.89, 137.57, 140.34, 144.49, 160.87

ESI-MS (C₁₆H₁₅IO₃S): 412 [M-H]⁺.

32. (E)-1-(1-iodo-2-(phenylsulfonyl)vinyl)-4-methoxybenzene (6f)¹¹

¹H NMR (500 MHz, CDCl₃) δ = 3.82 (s, 3H), 6.85-6.88 (m, 2H), 7.45-7.48 (m, 2H), 7.56-7.60 (m, 2H), 7.65-7.68 (m, 2H), 8.06-8.07 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 55.47, 84.65, 94.70, 109.54, 114.46, 127.28, 129.31, 133.95, 134.72, 142.18, 162.22.

ESI-MS (C₁₅H₁₃IO₃S): 420 [M+Na]⁺.

33. (E)-1-(1-iodo-2-(methylsulfonyl)vinyl)-4-methoxybenzene (6g)

¹H NMR (500 MHz, CDCl₃) δ = 3.27 (s, 3H), 3.84 (s, 3H), 6.86-6.92 (m, 3H), 7.50-7.53 (m, 2H)

¹³C NMR (125 MHz, CDCl₃) δ = 46.91, 55.51, 109.10, 113.67, 114.59, 130.19, 134.84, 139.36

HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{10}H_{11}IO_3S$: 338.9507, found: 338.9552

34. (E)-1-ethoxy-4-(1-iodo-2-tosylvinyl)benzene (6h)^{10a}

¹H NMR (500 MHz, CDCl₃) δ = 1.41-1.44 (t, *J*=7.0 Hz, 3H), 2.39 (s, 3H), 4.03-4.07 (q, *J*=7.0 Hz, 2H), 6.76-6.78 (m, 2H), 7.19-7.24 (m, 4H), 7.28 (s, 1H), 7.48 (d, *J*=8.0 Hz, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 14.72, 21.62, 63.64, 113.71, 115.06, 127.84, 129.62, 130.00, 131.66, 137.59, 140.24, 144.44, 160.26.

ESI-MS ($C_{17}H_{17}IO_3S$): 340 [M+Na]⁺.

NOE of compound 6h:^{10b}

To confirm the compound **6** configurations, the olefin hydrogen of the product **6h** was double irradiated and found to have no enhancement with any hydrogen of the product. It found that product **6** is E-configuration rather than Z-configuration.

35. (E)-1-ethoxy-4-(1-iodo-2-(phenylsulfonyl)vinyl)benzene (6i)

¹H NMR (500 MHz, CDCl₃) δ = 1.40-1.43 (t, *J*=7.0 Hz, 3H), 4.02-4.06 (q, *J*=7.0 Hz, 2H), 6.76 (d, *J*=9.0 Hz, 2H), 7.19-7.22 (m, 2H), 7.31 (s, 1H), 7.37-7.41(m, 2H), 7.52-7.55 (m, 1H), 7.59-7.61 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 14.73, 63.66, 113.77, 114.90, 115.65, 127.78, 128.98, 129.99, 131.58, 133.42, 140.47, 160.29.

HRMS (ESI): m/z [M+H]⁺ calcd for C₁₆H₁₅IO₃S : 414.9820, found: 414.9857.

36. (E)-1-ethoxy-4-(1-iodo-2-(4-nitrophenylsulfonyl)vinyl)benzene (6j)

¹H NMR (500 MHz, CDCl₃) δ = 1.42-1.45 (q, *J*=7.0 Hz, 3H), 4.02-4.06 (q, *J*=7.0 Hz, 2H), 6.73-6.76 (m, 2H), 7.14-7.17 (m, 2H), 7.35 (s, 1H), 7.71-7.73(m, 2H), 8.17-8.19 (m, 2H)

¹³C NMR (125 MHz, CDCl₃) δ = 14.66, 63.82, 113.88, 117.89, 124.26, 126.67, 129.17, 130.02, 131.20, 139.19, 146.08, 160.68.

HRMS (ESI): m/z [M+Na]⁺calcd for C₁₆H₁₄INO₅S : 481.9671, found: 481.9648.

37. 1-methyl-4-(phenylethynylsulfonyl)benzene (8a)¹¹

¹H NMR (500 MHz, CDCl₃) δ = 2.46 (s, 3H), 7.34-7.39 (m, 4H), 7.44-7.48 (m, 1H), 7.50-7.52 (m, 2H), 7.95-7.96 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 21.72, 85.66, 92.97, 118.07, 127.50, 128.66, 129.99, 131.44, 132.72, 139.04, 145.34.

ESI-MS (C₁₅H₁₂O₂S): 255 [M-H]⁺.

38. (phenylethynylsulfonyl)benzene (8b)¹¹

¹H NMR (500 MHz, CDCl₃) δ = 7.35-7.38 (m, 2H), 7.45-7.49 (m, 1H), 7.52-7.53 (m, 2H), 7.58-7.61 (m, 2H), 7.67-7.70 (m, 1H), 8.07-8.09 (s, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 85.38, 93.50, 117.94, 127.42, 128.69, 129.37, 131.56, 132.77, 134.13, 141.90.

ESI-MS (C₁₄H₁₀O₂S): 243 [M+H]⁺, 265 [M+Na]⁺.

39. 2-(phenylethynylsulfonyl)naphthalene (8c)¹¹

¹H NMR (500 MHz, CDCl₃) δ = 7.34-7.37 (m, 2H), 7.44-7.53 (m, 3H), 7.64-7.71 (m, 2H), 7.94-8.04 (m, 4H), 8.65 (d, J=0.5 Hz, 1H).

¹³C NMR (125 MHz, CDCl₃) δ = 85.44, 93.76, 117.90, 122.16, 127.88, 128.07, 128.70, 129.29, 129.64, 129.71, 129.85, 131.58, 132.10, 132.79, 135.56, 138.54.

ESI-MS (C₁₈H₂₁O₂S): 293 [M+H]⁺.

40. 1-ethyl-4-(phenylethynylsulfonyl)benzene (8d)

¹H NMR (500 MHz, CDCl₃) δ = 1.26-1.29 (t, *J*=8.0 Hz, 3H), 2.73-2.78 (q, *J*=8.0 Hz, 2H), 7.35-7.46 (m, 5H), 7.51-7.53 (m, 2H), 7.97-7.99 (m, 2H).

¹³C NMR (125 MHz, CDCl₃) δ = 15.12, 29.02, 85.56, 92.98, 118.03, 127.63, 128.68, 128.89, 131.48, 132.76, 139.02, 151.49.

HRMS (ESI): $m/z [M+H]^+$ calcd for $CC_{16}H_{14}O_2S$: 271.0748, found: 271.0776.

41. 2-(4-ethoxyphenyl)-3-tosylbenzofuran (10)¹²

¹H NMR (500 MHz, CDCl₃) δ = 1.45-1.47 (t, *J*=7.0 Hz, 3H), 2.32 (s, 3H), 4.10-4.14 (q, *J*=7.0 Hz, 2H), 6.98-7.00 (m, 2H), 7.15 (d, *J*=8.0 Hz, 2H), 7.35-7.37 (m, 2H), 7.47-7.49 (m, 1H), 7.68 (d, *J*=8.5 Hz, 2H), 7.91-7.94 (m, 2H), 7.13-8.15 (m, 1H).

¹³C NMR (125 MHz, CDCl₃) δ = 14.78, 21.55, 63.69, 111.27, 114.19, 117.27, 120.36, 121.53, 124.46, 125.59, 125.85, 126.65, 129.60, 131.79, 139.71, 144.04, 152.98, 159.07. ESI-MS (C₂₃H₂₀O₄S): 393 [M+H]⁺.

References

- (a) S. Gupta, P. Sureshbabu, A. K. Singh, S. Sabiah and J. Kandasamy, *Tetrahedron Letters*, 2017, 58, 909–913; (b) L. Degennaro, A. Tota, S. De Angelis, M. Andresini, C. Cardellicchio, M. A. Capozzi, G. Romanazzi, R. Luisi, *Eur. J. Org. Chem.*, 2017, 6486-6490
- 2. G.-Y. Zhang, S.-S.Lv, A.Shoberuand J.-P. Zou, J. Org. Chem. 2017, 82, 9801–9807.
- 3. Q. Chen, Y. Huang, X. Wang, J. Wua and G. Yu, *Org. Biomol. Chem.*, 2018, 16, 1713–1719.
- P. Mampuys, Y. Zhu, S. Sergeyev, E.Ruijter, R. V. A. Orru, S. V.Doorslaer and B. U. W. Maes, *Org. Lett.* 2016, 18, 2808–2811.

- 5. Z. Peng, X. Zheng, Y. Zhang, D. An and W. Dong, *Green Chem.*, 2018, 20, 1760–1764.
- Y. Zhang, P. Ji, W. Hu, Y. WESI, H. Huang and W. Wang, *Chem. Eur. J.* 2019, 25, 8225 – 8228.
- 7. R. J. Reddy, M. Waheeda and G. R. Krishna, Org. Biomol. Chem., 2020, 18, 3243–3248.
- 8. K. Kanemoto, Y. Sugimura, S. Shimizu, S. Yoshida and T. Hosoya, *Chem. Commun.*, 2017, **53**, 10640-10643.
- D. Luo, L. Min, W. Zheng, L. Shan, X. Wang, Y. Hu, Chin. Chem. Lett., 2020, 31, 1877–1880.
- (a) Y. Sun, A. Abdukader, D. Lu, H. Zhang and C. Liu, *Green Chem.*, 2017, 19, 1255–1258;
 (b) C. Tong, B. Gan, Y. Yan, Y.-Y. Xie, *Synth. Commun.*, 2017, 47, 1927-1933.
- 11. (a) W. Wei, J. Wen, D. Yang, H. Jing, J. You and H. Wang, *RSC Adv.*, 2015, 5, 4416–4419; (b) L. Wanga, W. Wei, D. Yang, H. Cui, H. Yue and H. Wang, *Tetrahedron Lett.*, 2017, 58, 4799–4802.
- 12. R. J. Reddy, J. J. Kumar, A. H. Kumari and G. R. Krishna, *Adv. Synth. Catal.* 2020, **362**, 1317-1322.

S₈₄

