Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supplementary Information for

An isoxazole strategy for the synthesis of alkyl 5-amino-4-cyano-1*h*-pyrrole-2-carboxylates – versatile building blocks for assembling pyrrolo-fused heterocycles

Anastasiya V. Agafonova, Liya D. Funt, Mikhail S. Novikov and Alexander F. Khlebnikov*

St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg, 199034 Russia

*E-mail: a.khlebnikov@spbu.ru

Table of Contents

1.	Computational details	S2
2.	NMR spectra of new compounds	S6
3.	X-ray crystal structure of compound 2b	.S42
4.	References	S49

1. Computational details

All calculations were performed by using the Gaussian 16 suite of quantum chemical programs¹ at Resource center "Computer center of Saint Petersburg State University". Geometry optimizations of molecules were performed with the $B3LYP^2$ - $D3^3$ density functional method and 6-311+G(d,p) basis set using SMD⁴ solvent model. Stationary points on the respective potential-energy surfaces were characterized at the same level of theory by evaluating the corresponding Hessian indices. Careful verification of the unique imaginary frequency for the transition state was carried out to check whether the frequency indeed pertains to the desired reaction coordinate.

Table S1. B3LYP-D3/6-311+G(d,p), SMD solvent model for 1,4-dioxane.							
Absolute Energies (au), Cartesian Coordinates of stationary points							
Molecule 4	Molecule 3b						
E = -224.552857, H (0K) = -224.521324, H (298K) = -224.515742							
G(298K) = -224.548630 au.	J J						
Imaginary frequency $= 0.$	E = -591.816558, $H(0K) = -591.647108$.						
C 1.2185480 0.0540320 -0.0001770	H(298K) = -591.634502,						
N 2.2581960 -0.4853280 0.0001020	G(298K) = -591.686573 au.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Imaginary frequency $= 0$.						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C -0.0440690 1.0059010 -0.2802810						
C = 0.0000080 = 0.7233120 = -0.0000130	N -0.7498180 1.9692060 0.1026070						
H 0.0000370 1.8063190 0.0002890	C -2.4244840 0.0269520 -0.4252200						
	C 1.2522750 0.3861590 -0.1420650						
	O -3.3016780 -0.4004380 -1.1441760						
	C 2.2153660 0.9525080 0.7073740						
	C 3.4578230 0.3460490 0.8365840						
	C 3.7448850 -0.8211510 0.1234350						
	C 2.7885560 -1.3850690 -0.7207160						
	C 1.5408380 -0.7840660 -0.8550250						
	O -2.2872360 -0.3008180 0.8706080						
	C -3.2779440 -1.2005460 1.4074750						
	Н 1.9785940 1.8569350 1.2559530						
	H 4.2047310 0.7787560 1.4921010						
	Н 4.7165420 -1.2907850 0.2279940						
	Н 3.0150360 -2.2905260 -1.2715530						
	Н 0.7873420 -1.2120970 -1.5065390						
	Н -3.2559250 -2.1553480 0.8787450						
	Н -4.2751510 -0.7642630 1.3270770						
	Н -3.0083960 -1.3392320 2.4527860						
	C -1.3669400 0.9616870 -0.8971810						
	Н -1.5205830 1.3116290 -1.9125470						
TS ⁴⁻⁵	Molecule 5						

							L
E = -	816.354397, H	(0K) = -816.15	51820,	E = -8	16.354522, Н	(0K) = -816.13	51564,
H (29	98K) = -816.134	4562,		H (29	8K) = -816.132	3788,	,
G (29	P(8K) = -816.190	6939 au.		G (29	8K) = -816.19'	7354 au.	
Imag	inary frequency	y = 1.	0 - 4 - 0 0	Imagi	nary frequency	v = 0.	
C	-3.3173110	-0.3626180	-0.5453570	С	3.3232020	0.2478790	-0.5364390
C	-0.6840100	0.0184320	-0.6014470	С	0.7409750	-0.0048290	-0.5870000
N	-0.8409410	0.8521690	-1.6427840	Ν	0.8613770	-0.8807300	-1.6328900
C	0.2631680	2.2679980	0.2353630	С	-0.2832390	-2.2168230	0.2816790
C	0.5152320	-0.8411040	-0.3441640	С	-0.4931250	0.8283300	-0.3418110
	0.1/60020	3.0290/80	1.1842090	0	-0.2075300	-2.9487780	1.2548340
N	-4.2581260	0.18/4630	-0.9291150	Ν	4.2982270	-0.3107280	-0.7969150
	-2.10/4110	-1.3142/50	1.2894410	C	2.1264320	1.4128380	1.1661060
	-2.04/0380	-1.344/330 1 5217120	2.4222470	Ν	2.1043000	1.7633460	2.2672050
	1.0907030	-1.331/130	-1.4143420	C	-1.1363930	1.4142360	-1.4357730
	2.2124290	-2.3334030	-1.2183100	C	-2.2891670	2.1755830	-1.2571000
	2.7810800	-2.4430140	0.0321780	C	-2.8233460	2.3490320	0.0215580
	2.2162670	-1.7401230	0.0260830	C	-2.1938570	1.7583050	1.1165230
	1.0872480	2 073/180	-0.4290660	C	-1.0318290	1.0078170	0.9358200
C	2 5736500	2.0734180	-0.4290000	0	-1.4440690	-2.0198330	-0.3813300
Н	0.6657370	-1 4077150	-2 <u>40474</u> 20		-2.6043760	-2.6327430	0.1897/150
H	2 6518490	-2 8625580	-2.707/720	H	-0.7395110	1.2356580	-2.4291210
H	3 6601040	-2.0023300	0 2045750	H	-2.7802840	2.6228240	-2.1155550
Н	2 6589900	-1 8215000	2 1105740	H	-3.7269720	2.9333900	0.1612130
Н	0.6525030	-0.4141640	1.7582130		-2.60/08/0	1.8/91380	2.1126410
H	2.7711320	2.3986440	1.1340600		-0.5497440	0.5448/90	1./890930
H	2 4417590	3 8191830	0 1142980		-2./816350	-2.2652230	1.2039490
H	3.4043640	2.4584220	-0.5366010		-2.5029660	-5./206690	0.2189220
C	-2.0955760	-0.9965000	-0.1165170		-3.4341810	-2.330/640	-0.4380300
H	-1.9216690	-1.8999350	-0.7051080		2.0839300	0.9300200	-0.20/4810
C	-0.8640140	1.4603830	-0.2906430		1.7001030	1.19/3/20	-0.0/31490
H	-1.8102930	1.7821480	0.1523990		0.803/220	-1.4011110	-U.2034U3U 0 1678500
Te5-7	1.0102,00	1., 021100			1./9809/0	-1.8181320	0.10/8390
15"				Nolec	cule /		

		÷.					
E = -	-816.325773, H	(0K) = -816.12	26360,	E = -	816.403291, H	(0K) = -816.19	97436,
H (2	98K) = -816.109	9078,		H (29	98K) = -816.180	0053,	
G (2)	98K) = -816.17	1840 au.		G (29	(98K) = -816.24	3522au.	
Imag	ginary frequency	y = 1.	0 8206660	Imag	inary frequency	y = 0.	0.0022240
C	2.0919030	-1.3033030	-0.4397860		2.0424230	-0 2570360	-0.0032240
N	0.2793260	-0.4042730 -1.2154430	-1 6514660	C	-0.9675610	-2 0266220	0.2782220
C	-1.5269040	-1.8246340	0.1042330	C	-0.2000500	0.8168220	-0.1557980
C	0.0189140	0.8486820	-0.0539110	0	-1.1618030	-2.5216610	1.3706990
0	-1.8971930	-2.4972760	1.0480260	N	2.9799440	2.5641590	0.0067500
Ν	3.1112580	-1.8562610	1.7690940	С	3.1859260	-0.8826240	0.2287640
С	2.9515830	0.3853280	-0.8504540	Ν	3.9505100	-1.7496530	0.4080880
Ν	3.5850320	1.2341550	-1.3193260	С	-0.9466930	1.3490690	-1.2069870
С	-0.8329700	1.5213480	-0.9341320	С	-1.9030740	2.3340950	-0.9652680
С	-1.3915430	2.7468440	-0.5786100	С	-2.1311070	2.7883740	0.3329530
С	-1.1059980	3.3166430	0.6627850	С	-1.3894430	2.2563820	1.3886310
С	-0.2522940	2.6532270	1.5447230	С	-0.4262460	1.2812140	1.1440720
C	0.3083850	1.4286240	1.1873190	0	-1.9550040	-1.6760760	-0.5615230
0	-2.3619890	-1.0427280	-0.6047340	C	-3.2913140	-1.8020120	-0.0482250
C	-3.7045810	-0.9431840	-0.1102310	H	-0.7816380	0.9744890	-2.2093300
H	-1.0504370	1.0564850	-1.8874420	H	-2.4720520	2.7456120	-1.7926310
H	-2.0488690	3.2605990	-1.2/28920	H	-2.8/6/050	3.553/4/0	0.5213000
	-1.5402350	4.2/18850	0.9389/60		-1.3363020	2.0053510	2.4021340
	-0.0203300	5.0901010 0.0175290	2.3104320		0.1003920	0.8/36030	1.900/020
	0.9723140 2 7141400	0.91/3380	0.0067120	п u	-3.4183330	-1.101/320 2 8/12010	0.0413020
	-3./141490	-0.3439330	_0 1170800	п	-3.3190330	-2.0412010	-0.8462220
H	<u>-4</u> 2144160	-1.7173740	-0.11/9090		2 2326000	0 1100200	0.0-02230
$\begin{bmatrix} \mathbf{n} \\ \mathbf{C} \end{bmatrix}$	2 1493240	-0.2371000	-0 3340840		0 3945810	-1 7042250	-0 2267780
H	1.7510530	-1.4276820	-1.3433520	H	1.1476550	-2.3797860	0.1655590
C	-0.1124510	-1.7847460	-0.3727750	N	0.5753110	-1.1202390	-1.5632600
H	0.4346110	-2.6301660	0.0516240	H	1.4668200	-1.4329860	-1.9414850
TS ⁷⁻⁸	8			Mole	cule 8		

E = -	816.361013, H	(0K) = -816.15	57456,
H (29	98K) = -816.140	0182,	
G (29	98K) = -816.202	2093 au.	
Imag	inary frequency	v = 1.	
С	-0.5279370	2.5664600	-0.2379660
С	-0.0407450	0.2568780	0.4072020
С	1.7244780	-1.5183720	-0.0440860
С	-1 4423090	-0.1241990	0 1479720

C	-0.0407450	0.2568/80	0.40/2020	C
С	1.7244780	-1.5183720	-0.0440860	C
С	-1.4423090	-0.1241990	0.1479720	C
0	1.7932410	-2.7138300	-0.2417610	0 N
Ν	-1.2430240	3.4099780	-0.5824900	N
С	1.7147880	2.0078870	0.3509590	$\frac{C}{V}$
Ν	2.7558930	2.5002830	0.4583000	N
С	-2.0082350	0.0335560	-1.1277700	C
С	-3.3071770	-0.3944770	-1.3838440	C
С	-4.0715490	-0.9696140	-0.3690330	C
С	-3.5218190	-1.1238870	0.9038850	C
С	-2.2162080	-0.7178430	1.1602120	C
0	2.4908680	-0.6257330	-0.7131460	0 C
С	3.4814510	-1.1630790	-1.6008730	C
Η	-1.4200450	0.4780070	-1.9219260	H
Η	-3.7233090	-0.2740860	-2.3781820	H
Η	-5.0866300	-1.2953740	-0.5684020	H
Η	-4.1107840	-1.5638140	1.7013910	H
Η	-1.7970910	-0.8330270	2.1528680	H
Η	3.0167700	-1.7522300	-2.3953850	H
Η	4.1876650	-1.7924180	-1.0539380	H
Η	3.9965890	-0.3005350	-2.0220600	H
С	0.3747450	1.5411550	0.1712070	C
С	0.8701440	-0.8460920	1.0396120	
Η	0.1693390	-1.6329990	1.3344920	
Ν	1.6134240	-0.4379300	2.1826830	
Η	2.4328080	0.0864210	1.8760880	н

2. NMR spectra of new compounds

¹H NMR spectra (DMSO- d_6 , 400 MHz) of compound **2c**

¹³C NMR spectra (DMSO- d_6 , 100 MHz) of compound **2e**

¹H NMR spectra (DMSO- d_6 , 400 MHz) of compound **2g**

¹H NMR spectra (DMSO- d_6 , 400 MHz) of compound **2m**

¹³C NMR spectra (DMSO- d_6 , 100 MHz) of compound **2n**

90 80 70 60 50 40

10

0

20

30

-10 -2

110 100 f1 (мд)

150

140 130 120

220 210

200

190 180 170 160

¹H NMR spectra (DMSO- d_6 , 400 MHz) of compound **2t**

¹H NMR spectra (DMSO- d_6 , 400 MHz) of compound **10a**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **10a**

NOESY spectra (DMSO-d₆, 400 MHz) of compound 10a

¹H NMR spectra (DMSO- d_6 , 400 MHz) of compound **10b**

S30

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **10c**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **10d**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **10e**

¹H NMR spectra (DMSO- d_6 , 400 MHz) of compound **10f**

¹³C NMR spectra (DMSO-*d*₆, 100 MHz) of compound **10f**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **10g**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **10h**

 1 H NMR spectra (CDCl₃, 400 MHz) of compound **12**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **14a**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **14b**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **14c**

 13 C NMR spectra (DMSO- d_6 , 100 MHz) of compound **14d**

3. X-ray crystal structure of compound 2b

Crystal structure of **2b** was determined by single crystal X-ray diffraction analysis. Suitable crystals were selected and fixed on micro-amounts and the diffraction data were collected on a SuperNova diffractometer. The crystals **2b** were measured at a temperature of 100(1) R, using monochromated CuK α radiation. The unit cell parameters and refinement characteristics of the crystal structure of **2b** is given below. Using Olex2⁵, the structure was solved with the ShelXT⁶ structure solution program using Intrinsic Phasing and refined with the ShelXL⁷ refinement package using Least Squares minimization.

Methyl 5-amino-4-cyano-3-phenyl-1*H*-pyrrole-2-carboxylate 2b (CCDC 2053975)

Molecular structure of compound 2b, displacement parameters are drawn at 50% probability level.

Table S2. Crystal data and structure refinement for 7060-11161_lia501.						
Identification code	7060-11161_lia501					
Empirical formula	$C_{13}H_{11}N_3O_2$					
Formula weight	241.25					
Temperature/K	99.99(13)					
Crystal system	triclinic					
Space group	P-1					
a/Å	7.2529(3)					
b/Å	12.9297(5)					
c/Å	13.0243(5)					
$\alpha/^{\circ}$	85.469(3)					
$\beta/^{\circ}$	82.621(3)					
$\gamma^{/\circ}$	73.765(3)					
Volume/Å ³	1161.78(8)					
Z	4					
$\rho_{calc}g/cm^3$	1.379					
μ/mm^{-1}	0.793					
F(000)	504.0					
Crystal size/mm ³	$0.14 \times 0.09 \times 0.08$					
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)					
2Θ range for data collection/°	6.85 to 124.98					
Index ranges	$-8 \le h \le 8, -14 \le k \le 14, -14 \le l \le 14$					
Reflections collected	16032					
Independent reflections	$3695 [R_{int} = 0.0359, R_{sigma} = 0.0241]$					
Data/restraints/parameters	3695/0/327					
Goodness-of-fit on F ²	1.019					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0341, wR_2 = 0.0881$					
Final R indexes [all data]	$R_1 = 0.0385, wR_2 = 0.0920$					
Largest diff. peak/hole / e Å ⁻³	0.21/-0.24					

(A ×10) 10	or /060-11161_118501	$\cdot U_{eq}$ is defined as 1/3 o	1 of the trace of the orthog	gonalised U _{IJ} tenso
Atom	x	у	z	U(eq)
01	-578.4(15)	5477.4(8)	6445.1(8)	19.5(2)
O2	366.7(15)	4768.5(8)	7992.2(7)	19.0(2)
O2'	8197.3(16)	2047.6(8)	4738.8(8)	22.4(3)
O1'	6577.1(16)	3608.1(8)	5464.4(8)	22.6(3)
N1	1622.4(17)	3602.8(9)	5495.6(9)	15.6(3)
N1'	5558.1(18)	4527.5(10)	3546.1(9)	17.0(3)
N2	3068.6(18)	2304.5(10)	4252.9(9)	19.1(3)
N3	5018(2)	14.2(10)	6265.1(10)	22.9(3)
N2'	4085.2(19)	5732.7(10)	2246.4(10)	20.8(3)
N3'	6279(2)	3721.5(11)	30.6(10)	25.5(3)
C3	2393(2)	2722.2(11)	7005.2(11)	14.8(3)
C1	2689(2)	2608.3(11)	5238.0(11)	14.2(3)
C2	3205(2)	2026.2(11)	6162.2(11)	14.9(3)
C1'	5189(2)	4765.8(12)	2558.4(11)	16.6(3)
C8'	8114(2)	1911.8(11)	2407.9(10)	15.8(3)
C5	4201(2)	916.6(12)	6228.3(11)	16.1(3)
C6'	7130(2)	3065.5(12)	4698.9(11)	16.6(3)
C8	2628(2)	2381.9(11)	8103.2(11)	15.3(3)
C2'	6089(2)	3835.4(12)	2003.0(11)	16.1(3)
C13	4466(2)	1872.1(11)	8384.5(11)	17.0(3)
C9'	9988(2)	1430.3(12)	2649.3(11)	17.4(3)
С9	1045(2)	2510.1(11)	8860.2(11)	17.2(3)
C10'	10977(2)	411.4(12)	2316.0(11)	19.5(3)
C13'	7258(2)	1350.7(12)	1826.3(11)	18.4(3)
C6	309(2)	4724.8(11)	6980.1(11)	15.1(3)
C4'	6687(2)	3468.8(11)	3665.2(11)	16.5(3)
C4	1411(2)	3696.6(12)	6567.9(11)	16.0(3)
C5'	6187(2)	3769.8(11)	914.8(12)	17.8(3)
C3'	7041(2)	3014.1(11)	2710.0(11)	15.5(3)
C12	4730(2)	1498.2(12)	9397.0(12)	20.5(3)
C10	1311(2)	2121.5(12)	9869.9(11)	19.5(3)
C12'	8242(2)	327.9(12)	1502.7(12)	21.1(3)
C11	3149(2)	1616.7(12)	10140.5(11)	20.6(3)
C11'	10106(2)	-140.3(12)	1744.3(12)	21.6(3)
C7'	8711(2)	1595.7(13)	5746.0(11)	23.2(3)
C7	-802(2)	5742.1(12)	8473.4(12)	21.8(3)

Table S3. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for 7060-11161_lia501. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

uispiacei	nent lactor exp	Unche takes the	101 m2 <i>n</i> [n a		12 ••••]•	
Atom	U ₁₁	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	22.7(6)	13.5(5)	18.1(5)	0.1(4)	-3.6(4)	2.2(4)
02	24.1(6)	12.9(5)	16.3(5)	-3.1(4)	-3.9(4)	2.4(4)
O2'	29.5(6)	17.9(5)	14.3(5)	1.1(4)	-4.0(4)	2.6(5)
O1'	28.1(6)	20.9(5)	15.2(5)	-3.4(4)	-3.8(4)	0.3(5)
N1	17.8(6)	11.7(6)	14.5(6)	1.2(5)	-4.0(5)	1.1(5)
N1'	20.8(7)	15.3(6)	12.8(6)	-3.0(5)	-2.3(5)	-0.9(5)
N2	23.9(7)	14.5(6)	14.8(6)	-1.3(5)	-3.1(5)	2.2(5)
N3	29.2(7)	16.7(7)	17.8(7)	-2.1(5)	-3.8(5)	2.5(6)
N2'	26.8(7)	16.2(6)	14.1(6)	-2.5(5)	-3.9(5)	4.2(5)
N3'	33.7(8)	21.5(7)	15.7(7)	-0.7(5)	-4.8(6)	2.5(6)
C3	13.0(7)	13.6(7)	16.6(7)	-1.2(6)	-2.2(6)	-1.3(6)
C1	12.5(7)	12.7(7)	16.3(7)	-1.3(6)	-1.4(6)	-1.3(6)
C2	13.3(7)	13.0(7)	16.9(7)	-1.4(6)	-2.2(6)	-0.5(6)
C1'	16.5(7)	17.9(7)	15.2(7)	0.1(6)	-2.0(6)	-4.1(6)
C8'	18.9(7)	16.1(7)	10.4(7)	1.4(5)	0.2(6)	-2.8(6)
C5	16.8(7)	18.3(8)	11.9(7)	-1.7(6)	-3.3(6)	-1.7(6)
C6'	14.6(7)	17.3(7)	17.1(7)	-1.3(6)	-1.6(6)	-3.0(6)
C8	19.3(8)	9.0(7)	16.7(7)	-2.0(5)	-2.8(6)	-1.6(6)
C2'	15.6(7)	17.3(7)	14.2(7)	-0.9(6)	-2.4(6)	-2.3(6)
C13	17.8(7)	15.2(7)	16.4(7)	-2.2(6)	-1.1(6)	-1.8(6)
C9'	20.3(8)	18.6(7)	13.0(7)	0.4(6)	-2.9(6)	-4.6(6)
C9	17.3(8)	12.7(7)	20.5(7)	-3.1(6)	-3.0(6)	-1.0(6)
C10'	17.1(8)	19.4(8)	17.9(7)	3.1(6)	-2.5(6)	0.8(6)
C13'	17.6(8)	19.3(7)	16.9(7)	1.5(6)	-3.4(6)	-2.6(6)
C6	14.4(7)	14.2(7)	15.5(7)	0.3(6)	-1.8(6)	-2.2(6)
C4'	16.8(7)	14.6(7)	16.8(7)	-0.1(6)	-2.8(6)	-1.9(6)
C4	17.0(7)	14.8(7)	14.5(7)	-1.7(6)	-2.0(6)	-1.0(6)
C5'	16.0(7)	12.5(7)	21.5(9)	-0.4(6)	-2.3(6)	1.9(6)
C3'	13.6(7)	16.6(7)	15.8(7)	-0.1(6)	-1.7(6)	-3.6(6)
C12	19.7(8)	19.9(8)	21.1(8)	-0.1(6)	-6.5(6)	-2.2(6)
C10	24.1(8)	16.6(7)	16.8(7)	-4.6(6)	2.9(6)	-5.2(6)
C12'	26.2(8)	17.7(8)	19.8(8)	-2.2(6)	-3.8(6)	-5.8(7)
C11	29.1(9)	18.9(8)	14.2(7)	0.6(6)	-4.8(6)	-6.4(7)
C11'	26.4(9)	13.5(7)	20.9(8)	-0.7(6)	-0.1(6)	0.0(7)
C7'	24.1(8)	25.3(8)	16.3(7)	6.1(6)	-5.0(6)	-1.4(7)
C7	24.5(8)	17.3(8)	20.3(8)	-7.0(6)	-0.1(6)	0.4(6)

Table S4. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 7060-11161_lia501. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table	S5. Bo	ond Lengths	for 70	60-111	61_lia501.
Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C6	1.2266(17)	C1'	C2'	1.405(2)
O2	C6	1.3304(17)	C8'	C9'	1.393(2)
O2	C7	1.4448(17)	C8'	C13'	1.395(2)
O2'	C6'	1.3281(18)	C8'	C3'	1.477(2)
O2'	C7'	1.4435(17)	C6'	C4'	1.447(2)
O1'	C6'	1.2238(18)	C8	C13	1.394(2)
N1	C1	1.3451(18)	C8	C9	1.395(2)
N1	C4	1.3965(19)	C2'	C5'	1.418(2)
N1'	C1'	1.3422(19)	C2'	C3'	1.432(2)
N1'	C4'	1.3931(19)	C13	C12	1.386(2)
N2	C1	1.3434(19)	C9'	C10'	1.386(2)
N3	C5	1.1519(19)	C9	C10	1.388(2)
N2'	C1'	1.3462(19)	C10'	C11'	1.386(2)
N3'	C5'	1.151(2)	C13'	C12'	1.385(2)
C3	C2	1.434(2)	C6	C4	1.450(2)
C3	C8	1.480(2)	C4'	C3'	1.381(2)
C3	C4	1.381(2)	C12	C11	1.384(2)
C1	C2	1.404(2)	C10	C11	1.388(2)
C2	C5	1.416(2)	C12'	C11'	1.383(2)

Table S6. Bond Angles for 7060-11161_lia501.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C6	02	C7	116.48(11)	C1'	C2'	C5'	125.19(13)
C6'	O2'	C7'	116.53(11)	C1'	C2'	C3'	108.03(13)
C1	N1	C4	110.62(12)	C5'	C2'	C3'	126.50(13)
C1'	N1'	C4'	110.85(12)	C12	C13	C8	120.97(14)
C2	C3	C8	123.42(12)	C10'	C9'	C8'	120.36(14)
C4	C3	C2	106.21(12)	C10	C9	C8	120.10(14)
C4	C3	C8	130.37(13)	C11'	C10'	C9'	120.25(14)
N1	C1	C2	107.16(12)	C12'	C13'	C8'	120.74(14)
N2	C1	N1	122.32(13)	01	C6	O2	123.63(13)
N2	C1	C2	130.50(13)	01	C6	C4	123.15(13)
C1	C2	C3	108.06(12)	O2	C6	C4	113.22(12)
C1	C2	C5	124.51(13)	N1'	C4'	C6'	117.77(13)
C5	C2	C3	127.19(13)	C3'	C4'	N1'	107.88(12)
N1'	C1'	N2'	122.44(13)	C3'	C4'	C6'	134.22(13)
N1'	C1'	C2'	107.05(12)	N1	C4	C6	117.89(12)
N2'	C1'	C2'	130.48(14)	C3	C4	N1	107.95(12)
C9'	C8'	C13'	118.81(13)	C3	C4	C6	134.15(13)
C9'	C8'	C3'	122.02(13)	N3'	C5'	C2'	179.36(17)
C13'	C8'	C3'	119.11(13)	C2'	C3'	C8'	123.54(13)
N3	C5	C2	178.90(15)	C4'	C3'	C8'	130.25(13)
O2'	C6'	C4'	113.55(12)	C4'	C3'	C2'	106.20(12)
O1'	C6'	O2'	123.08(13)	C11	C12	C13	119.83(14)
O1'	C6'	C4'	123.38(13)	C9	C10	C11	120.53(14)
C13	C8	C3	119.37(13)	C11'	C12'	C13'	119.89(14)
C13	C8	C9	118.82(13)	C12	C11	C10	119.75(14)
C9	C8	C3	121.74(13)	C12'	C11'	C10'	119.94(14)

Atom	x	у	Z	U(eq)
H1	1137.8	4110.54	5060.16	19
H1'	5152.76	4968.8	4038.96	20
H2A	2624.9	2752.26	3760.82	23
H2B	3755.52	1662.28	4114.28	23
H2'A	3587.71	6224.78	2686.39	25
H2'B	3877.83	5858.26	1606.98	25
H13	5530.95	1781.38	7885.65	20
H9'	10578.32	1794.39	3036.41	21
H9	-189.99	2856.52	8687.87	21
H10'	12231.45	96.75	2476.51	23
H13'	6012.12	1666.71	1653.85	22
H12	5967.07	1168.6	9576.33	25
H10	248.61	2199.91	10369.26	23
H12'	7651.09	-43.41	1123.54	25
H11	3318.24	1359.06	10818.81	25
H11'	10772.36	-824.65	1523.29	26
H7'A	9665.82	913.7	5669.04	35
H7'B	7583.44	1494.14	6167.85	35
H7'C	9226.73	2078.67	6070.82	35
H7A	-395.7	6349.15	8154.48	33
H7B	-651.44	5687.32	9199.06	33
H7C	-2134.19	5836.81	8386.52	33

Table S7. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 7060-11161_lia501.

4. References

(1) Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

(2) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648–5652. (b) Becke, A. D. Phys. Rev. A **1988**, 38, 3098–3100. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, 37, 785–789.

(3) (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 1054104. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456–1465.

(4) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 11, 6378-6396.

(5) Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H., J. Appl. Cryst., 2009, 42, 339-341.

(6) Sheldrick, G.M. Acta Cryst., 2015, A71, 3-8.

(7) Sheldrick, G.M. Acta Cryst., 2015, C71, 3-8.