Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Synthesis of dibenzo cyclohepta[1,2-a]naphthalene derivatives from phenylacetaldehyde and alkynyl benzyl alcohols via sequential electrophilic addition and double Friedel-Crafts reactions

Archana K. Sahu, Ramanjaneyulu Unnava, Bipin K. Behera and Anil K. Saikia

Table of content

1. Experimental section	S2-S14
2. ¹ H and ¹³ C spectra of all new compounds	S15-70
3. The crystal parameters and ORTEP diagram of compounds 3a &3c	S71-S74
4. DFT energy optimized structures of compounds 3a , 3q and 4q	S75-S77
5. HPLC spectra of compounds 3a , 3f , 3q and 4q	S78-S81
6. References	S82

EXPERIMENTAL SECTION

General Information All the reagents were of reagent grade (AR grade) and were used as purchased without further purification. Silica gel (60-120 mesh size) was used for column chromatography. Reactions were monitored by TLC on silica gel GF₂₅₄ (0.25 mm). Melting points were recorded with a Büchi B-540 melting point apparatus. Fourier transform-infra red (FTIR)spectra were recorded on Nicolet Impact-410 instrument either as neat liquid or KBr pellets NMR spectra were recorded in CDCl₃ with tetramethylsilane as the internal standard for ¹H (400 MHz) or ¹³C (100 MHz). Chemical shifts (δ) are reported in ppm and spin-spin coupling constants (*J*) are given in Hz. HRMS spectra were recorded using Q-TOF premier mass spectrometer. The ratio of enantiomers was determined by HPLC analysis using Chiracel OD columns on Waters 1525 Binary HPLC system. The starting material *ortho*-alkynyl alcohols (**1a, 1b, 1d, 1h, 1i**), ¹**1j**, ²**1k**, ³**1l**, ⁴**1m**⁵, and **2c**⁶ were prepared as per the literature procedure and the spectroscopic data are in good agreement with the literature one.

General Experimental procedure for synthesis of o-alkynyl benzyl alcohols (1):

To a stirred solution of substituted 2-iodobenzylalcohol (1.0 mmol, 1.0 equiv.), palladium (II) chloride (2 mol%, 0.02 equiv.), triphenylphosphine (4 mol%, 0.04 equiv.) and copper(I) iodide (8 mol%, 0.08 equiv.) in triethylamine (4 mL) was added 1-ethynyl-benzene derivatives (1.2 mmol, 1.2 equiv.) under nitrogen atmosphere. Then, the reaction was heated at 60 °C for 12h. After completion of the reaction, the solvent was removed under reduced pressure and diluted with saturated NH4Cl solution. The organic layer was extracted with EtOAc (3x20 mL). The organic layer was further washed with brine solution for 2-3 times. The combined organic layers were dried over Na₂SO₄ and concentrated in rotary evaporator. The crude was subjected to column chromatography over silica gel to give the o-alkynyl benzyl alcohols (1).

Experimental procedure for synthesis of (2-((2-methoxyphenyl)ethynyl)phenyl)methanol (1c):

To a stirred solution of (2-iodophenyl)methanol (234 mg, 1.0 mmol), palladium(II) chloride (3.5 mg, 2 mol%), triphenylphosphine (10.4 mg, 4 mol%) and copper(I) iodide (15 mg, 8 mol%) in triethylamine (4 mL) was added 1-ethynyl-2-methoxybenzene (158 mg, 1.2 mmol) under nitrogen atmosphere. Then, the reaction was heated at 60 °C for 12h. After completion of the reaction, the solvent was removed under reduced pressure and diluted with saturated NH₄Cl solution. The organic layer was extracted with EtOAc (3x20 mL). The organic layer was further washed with brine solution for 2-3 times. The combined organic layers were dried over Na₂SO₄ and concentrated in rotary evaporator. The crude was subjected to column chromatography over silica gel to give the (2-((2-methoxyphenyl)ethynyl)phenyl)methanol (**1c**).

Colorless oil; R_f (hexane/EtOAc 5:1) 0.50; yield 209 mg, 88%; ¹H NMR (400 MHz, CDCl₃) δ 3.68 (t, J = 7.2 Hz, 1 H), 3.92 (s, 3 H), 4.83 (d, J = 7.2 Hz, 2 H), 6.90 (d, J = 8.0 Hz, 1 H), 6.96 (t, J = 7.6 Hz, 1 H), 7.25-7.36 (m, 4 H), 7.48 (dd, J = 7.6 and 1.6 Hz, 1 H), 7.54 (dd, J = 8.0 and 2.4 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 55.9, 64.9, 90.8, 91.9, 110.7, 112.3, 120.9, 122.3, 127.8, 128.3, 128.7, 130.2, 132.0, 132.7, 143.5, 160.2; HRMS (ESI) calcd. for C₁₆H₁₅O₂ (M + H)⁺ 239.1067, found 239.1066.

Methyl 4-((2-(hydroxymethyl)phenyl)ethynyl)benzoate (1e):

Colorless solid; R_f (hexane/EtOAc 5:1) 0.40; mp 108-110 oC; yield 220 mg, 83%; ¹H NMR (600 MHz, CDCl₃) δ 2.06 (t, J = 5.4 Hz, 1 H), 3.96 (s, 3 H), 4.95 (d, J = 6.6 Hz, 2 H), 7.33 (dt, J = 7.6 and 1.2 Hz, 1 H), 7.42 (dt, J = 7.6 and 1.2 Hz, 1 H), 7.54 (d, J = 7.6 Hz, 1 H), 7.58 (dd, J = 7.6 and 1.0 Hz, 1 H), 7.61 (d, J = 8.6 Hz, 1 H), 8.06 (d, J = 8.6 Hz, 1 H); ¹³C NMR (150 MHz, CDCl₃)

δ52.5, 64.1, 89.9, 93.5, 121.0, 127.5, 127.8, 129.5, 129.8, 130.0, 131.7, 132.6, 142.9, 166.7; HRMS (ESI) calcd. for C₁₇H₁₅O₃ (M + H)⁺ 267.1016, found 267.1034.

(2-((3-Methoxyphenyl)ethynyl)phenyl)methanol (1f):

Colorless oil; R_f (hexane/EtOAc 5:1) 0.50; yield 207 mg, 87%; ¹H NMR (400 MHz, CDCl₃) δ 2.69 (s, 1 H), 3.78 (s, 3 H), 4.87 (s, 2 H), 6.88 (dd, J = 8.4 and 2.4 Hz, 1 H), 7.03 (s, 1 H), 7.10 (d, J = 7.6 Hz, 1 H), 7.20-7.25 (m, 2 H), 7.31 (t, J = 7.6 Hz, 1 H), 7.45 (d, J = 7.6 Hz, 1 H), 7.50 (d, J = 7.6 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 55.4, 63.8, 86.7, 94.2, 115.2, 116.4, 121.2, 124.0, 124.3, 127.2, 127.5, 128.9, 129.6, 132.2, 142.7, 159.5; HRMS (ESI) calcd. for C₁₆H₁₅O₂ (M + H)⁺ 239.1067, found 239.1067.

(2-(Benzo[d][1,3]dioxol-5-ylethynyl)phenyl)methanol (1g):

Colorless oil; R_f (hexane/EtOAc 5:1) 0.60; yield 216 mg, 86%; ¹H NMR (400 MHz, CDCl₃) δ 2.24 (bs, 1 H), 4.87 (s, 2 H), 5.98 (s, 2 H), 6.78 (d, J = 8.0 Hz, 1 H), 6.96 (s, 1 H), 7.05 (dd, J = 8.0 and 1.5 Hz, 1 H), 7.25 (t, J = 7.4 Hz, 1 H), 7.33 (t, J = 7.4 Hz, 1 H), 7.45 (d, J = 7.6 Hz, 1 H), 7.50 (d, J = 7.6 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 64.2, 85.4, 94.4, 101.6, 108.8, 111.7, 116.3, 121.6, 126.5, 127.4, 127.7, 128.7, 132.2, 142.6, 147.8, 148.4; HRMS (ESI) calcd. for C₁₆H₁₃O₃ (M + H)⁺ 253.0859, found 253.0839.

1-(2-(Naphthalen-1-ylethynyl)phenyl)ethanol (1n):

Brown solid; R_f (hexane/EtOAc 4:1) 0.50; mp 105-107 °C; yield 244 mg, 90%; ¹H NMR (400 MHz, CDCl₃) δ 1.64 (d, J = 6.4 Hz, 3 H), 2.19 (bs, 1 H), 5.53-5.59 (m, 1 H), 5.98 (s, 2 H), 7.30 (dt, J = 7.6 and 1.5 Hz, 1 H), 7.41 (dt, J = 7.6 and 1.5 Hz, 1 H), 7.47 (t, J = 7.6 Hz, 1 H), 7.54 (t, J = 7.6 Hz, 1 H), 7.58-7.65 (m, 3 H), 7.76 (d, J = 7.6 Hz, 1 H), 7.87 (t, J = 7.6 Hz, 2 H), 8.40 (d, J = 7.6 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 24.5, 68.9, 92.0, 92.8, 120.8, 121.0, 125.0, 125.5,

126.3, 126.7, 127.2, 127.4, 128.6, 129.2, 129.3, 130.7, 132.7, 133.4, 133.5, 147.8; HRMS (ESI) calcd. for $C_{20}H_{17}O (M + H)^+ 273.1274$, found 273.1284.

Experimental procedure for synthesis of 9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3a):

To a solution of (2-(phenylethynyl)phenyl)methanol (100 mg, 0.5 mmol) and phenylacetaldehyde (66 mg, 0.55 mmol) in toluene was added BF₃·OEt₂ (0.12 mL, 0.5 mmol) dropwise at 0 °C under nitrogen atmosphere. The reaction was stirred at 0 °C for 15 minutes and then brought to room temperature over a period of 15 minutes and then heating at 100 °C for 1h. After completion of the reaction, the solvent was removed under reduced pressure and diluted with saturated NaHCO₃ solution. Then the organic layer was extracted with EtOAc (3x10 mL). The organic layer was further washed with brine solution for 2-3 times. The combined organic layers were dried over Na₂SO₄ and concentrated in rotary evaporator. The crude was subjected to column chromatography over silica gel eluted with hexane to give the 9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-a]naphthalene.

Colorless solid; R_f (hexane) 0.60; mp 75-77 °C; yield 102 mg, 70%; ¹H NMR (400 MHz, CDCl₃) δ 3.80 (d, J_{ab} = 3.6 Hz, 2 H), 7.33-7.35 (m, 1 H), 7.40-7.43 (m, 4 H), 7.51-7.53 (m, 1 H), 7.61-7.68 (m, 3 H), 7.80-7.82 (m, 1 H), 7.89-7.91 (m, 1 H), 8.05-8.10 (m, 2 H), 8.32 (d, J = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 40.7, 125.2, 126.0, 126.3, 126.5, 126.6, 126.7, 127.7, 127.9, 128.0, 128.1, 128.2, 128.3, 129.6, 132.0, 132.7, 133.4, 134.2, 135.8, 136.2, 138.2, 143.6, 144.4; HRMS (ESI) calcd. for C₂₃H₁₇ (M + H)⁺ 293.1325, found 293.1323.

15-Methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3b):

Colorless solid; R_f (hexane) 0.60; mp 74-76 °C; yield 76 mg, 50%; ¹H NMR (400 MHz, CDCl₃) δ 2.80 (s, 3 H), 3.66 (d, J_{ab} = 2.8 Hz, 2 H), 7.20 (t, J = 7.6 Hz, 1 H), 7.24-7.32 (m, 4 H), 7.38 (d, J = 7.6 Hz, 1 H), 7.44-7.50 (m, 2 H), 7.56 (t, J = 8.0 Hz, 1 H), 7.63 (s, 1 H), 7.67-7.70 (m, 1 H), 8.08 (d, J = 8.4 Hz, 1 H), 8.17 (d, J = 8.4 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 20.0, 40.8, 124.4, 125.2, 125.9, 126.0, 126.4, 126.5, 126.6, 127.9, 128.0, 128.4, 128.9, 129.5, 132.2, 132.6, 132.9, 134.0, 134.3, 134.4, 135.8, 138.2, 143.7, 144.3; HRMS (ESI) calcd. for C₂₄H₁₉ (M + H)⁺ 307.1481, found 307.1488.

7-Methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3c):

Colorless solid; R_f (hexane) 0.70; mp 182-184 °C; yield 92 mg, 60%; ¹H NMR (600 MHz, CDCl₃) δ 2.53 (d, J = 5.4 Hz, 3 H), 3.79 (s, 2 H), 7.20 (d, J = 7.2 Hz, 1 H), 7.36-7.39 (m, 1 H), 7.40-7.44 (m, 2 H), 7.45-7.48 (m, 1 H), 7.58-7.67 (m, 3 H), 7.82-7.85 (m, 1 H), 7.91-7.94 (m, 1 H), 8.04-8.08 (m, 2 H), 8.37 (t, J = 7.8 Hz, 1 H); ¹³CNMR (150 MHz, CDCl₃) δ 21.3, 40.7, 125.9, 126.1, 126.2, 126.4, 126.6, 127.3, 127.7, 127.8, 127.9, 128.1, 128.3, 129.6, 131.3, 132.1, 132.6, 133.4, 135.8, 136.1, 137.9, 138.3, 143.7, 144.3; HRMS (ESI) calcd. for C₂₄H₂₂N (M + NH₄)⁺ 324.1747, found 324.1755.

7,15-Dimethyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3d):

Colorless solid; R_f (hexane) 0.70; mp 87-89 °C; yield 64 mg, 40%; ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3 H), 2.81 (s, 3 H), 3.64 (s, 2 H), 7.03 (d, J = 7.6 Hz, 1 H), 7.21 (s, 1 H), 7.27-7.32 (m, 3 H), 7.38 (d, J = 11.4 Hz, 1 H), 7.47 (t, J = 6.8 Hz, 1 H), 7.56 (t, J = 6.8 Hz, 1 H), 7.63 (s, 1 H), 7.68-7.71 (m, 1 H), 8.08 (d, J = 8.0 Hz, 1 H), 8.20 (d, J = 8.4 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 20.0, 21.4, 40.9, 124.4, 125.8, 125.9, 126.1, 126.5, 126.6, 127.3, 127.9, 128.5, 129.0, 129.6, 131.5, 132.2, 132.6, 132.8, 133.7, 134.4, 135.8, 137.8, 138.4, 143.7, 144.2; HRMS (ESI) calcd. for C₂₅H₂₄N (M + NH₄)⁺ 338.1903, found 338.1885.

5-Methoxy-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3e):

Colorless solid; R_f (hexane/EtOAc 98:2) 0.50; mp 187-189 °C; yield 77 mg, 48%; ¹H NMR (400 MHz, CDCl₃) δ 3.52 (s, 3 H), 3.53-3.63 (m, 2 H), 6.79 (d, J = 8.0 Hz, 1 H), 7.02 (d, J = 7.2 Hz, 1 H), 7.22-7.32 (m, 4 H), 7.40 (t, J = 8.0 Hz, 1 H), 7.47 (t, J = 6.8 Hz, 1 H), 7.70 (t, J = 8.4 Hz, 2 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.90 (t, J = 8.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 40.8, 55.4, 109.1, 119.0, 122.8, 125.6, 125.7, 126.5, 126.7, 127.8, 128.0, 128.2, 128.4, 129.2, 129.3, 131.7, 132.2, 132.6, 136.9, 138.6, 143.8, 146.7, 157.7; HRMS (ESI) calcd. for C₂₄H₁₉O (M + H)⁺ 323.1430, found 323.1419.

7-Methoxy-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3f):

Colorless solid; R_f (hexane) 0.40; mp 168-170 °C; yield 81 mg, 50%; ¹H NMR (400 MHz, CDCl₃) δ 3.73-3.75 (m, 2 H), 3.91 (s, 3 H), 6.87-6.89 (m, 1 H), 7.05 (s, 1 H), 7.37-7.42 (m, 3 H), 7.53- 7.61 (m, 3 H), 7.76-7.79 (m, 1 H), 7.85-7.87 (m, 1 H), 7.98-8.02 (m, 2 H), 8.26-8.29 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 41.0, 55.4, 110.8, 111.8, 125.9, 126.2, 126.5, 126.7, 126.8, 127.5, 127.8, 127.9, 128.1, 128.3, 129.6, 132.1, 133.4, 133.7, 135.6, 136.0, 138.4, 143.3, 145.7, 159.7; HRMS (ESI) calcd. for C₂₄H₁₉O (M + H)⁺ 323.1430, found 323.1438.

6-Methoxy-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3h):

Colorless solid; R_f (hexane/EtOAc 98:2) 0.50; mp 124-126 °C; yield 77 mg, 48%; ¹H NMR (400 MHz, CDCl₃) δ 3.61 (s, 2 H), 3.70 (s, 3 H), 6.85 (dd, J = 8.4 and 2.4 Hz, 1 H), 7.08 (d, J = 2.0 Hz, 1 H), 7.25-7.29 (m, 4 H), 7.44-7.52 (m, 2 H), 7.65-7.68 (m, 1 H), 7.75 (d, J = 8.4 Hz, 1 H), 7.92 (d, J = 8.4 Hz, 2 H), 8.23 (d, J = 8.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 39.8, 55.5, 114.1, 118.0, 126.0, 126.3, 126.4, 126.6, 127.4, 127.6, 128.0, 128.2, 128.3, 129.6, 131.9, 133.4, 135.1, 135.7, 136.3, 137.3, 138.2, 144.0, 157.1; HRMS (ESI) calcd. for C₂₄H₁₉O (M + H)⁺ 323.1430, found 323.1437.

8-Methoxy-9H-dibenzo[3,4:6,7]cyclohepta[1,2-a]naphthalene (4h):

Colorless solid; R_f (hexane/EtOAc 98:2) 0.55; mp 158-160 °C; yield 46 mg, 29%; ¹H NMR (400 MHz, CDCl₃) δ 3.14 (d, J_{ab} = 12.5 Hz, 1 H), 3.91 (s, 3 H), 4.39 (d, J_{ab} = 12.5 Hz, 1 H), 6.90-6.93 (m, 1 H), 7.14-7.19 (m, 2 H), 7.28-7.34 (m, 2 H), 7.42-7.45 (m, 1 H), 7.47-7.56 (m, 2 H), 7.71-7.73 (m, 1 H), 7.80 (d, J = 8.4 Hz, 1 H), 7.96 (d, J = 8.4 Hz, 2 H), 8.21 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 31.1, 56.1, 109.7, 125.1, 125.2, 125.9, 126.2, 126.5, 126.8, 127.8, 127.9, 128.0, 128.1, 128.2, 129.4, 132.0, 133.0, 133.3, 135.8, 135.9, 136.3, 138.6, 143.8, 155.5; HRMS (ESI) calcd. for C₂₄H₁₉O (M + H)⁺ 323.1430, found 323.1428.

7-Methoxy-15-methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3i):

Colorless oil; R_f (hexane/EtOAc 98:2) 0.5; yield 81 mg, 48%; ¹H NMR (400 MHz, CDCl₃) δ 2.79 (s, 3 H), 3.60-3.71 (m, 2 H), 3.83 (s, 3 H), 6.77 (dd, J = 8.8 and 2.8 Hz, 1 H), 6.93 (d, J = 2.8 Hz, 1 H), 7.25-7.32 (m, 3 H), 7.39 (d, J = 8.4 Hz, 1 H), 7.45-7.49 (m, 1 H), 7.53-7.57 (m, 1 H), 7.62 (s, 1 H), 7.67-7.69 (m, 1 H), 8.08 (d, J = 8.0 Hz, 1 H), 8.18 (t, d = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 19.9, 41.1, 55.5, 110.9, 111.8, 124.4, 125.8, 126.6, 126.7, 127.1, 127.9, 128.4, 128.9, 129.6, 132.3, 132.6, 133.5, 133.9, 134.1, 135.6, 138.4, 143.3, 145.6, 159.5; HRMS (ESI) calcd. for C₂₅H₂₁O (M + H)⁺ 337.1587, found 337.1606.

5-Methoxy-15-methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3j):

Colorless solid; *R_f* (hexane/EtOAc 99:1) 0.60; mp 196-198 °C; yield 50 mg, 30%; ¹H NMR (400 MHz, CDCl₃) δ 2.83 (s, 3 H), 3.55 (s, 3 H), 3.58-3.66 (m, 3 H), 6.82 (d, *J* = 8.2 Hz, 1 H), 7.05 (d, *J* = 7.6 Hz, 1 H), 7.27-7.34 (m, 3 H), 7.45 (t, *J* = 7.6 Hz, 1 H), 7.55 (t, *J* = 7.6 Hz, 1 H), 7.64 (s, 1 H), 7.75 (d, *J* = 7.6 Hz, 2 H), 8.09 (d, *J* = 8.2 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 40.8, 55.4,109.0, 119.0, 123.0, 124.1, 125.3, 125.6, 126.5, 126.7, 127.8, 128.9, 129.0, 129.1, 129.2,

130.9, 131.5, 131.7, 134.1, 136.5, 138.5, 143.8, 146.6, 157.7; HRMS (ESI) calcd. for C₂₅H₂₁O (M + H)⁺ 337.1587, found 337.1607.

5-Methyl-11*H*-benzo[4',5']naphtho[2'',1'':6',7']cyclohepta[1',2':4,5]benzo[1,2-*d*][1,3]dioxole (3k):

Colorless solid; R_f (hexane, eluted twice) 0.2; mp 102-104 °C; yield 44 mg, 25%; ¹H NMR (400 MHz, CDCl₃) δ 2.80 (s, 3 H), 3.56 (s, 2 H), 5.87 (d, J = 1.2 Hz, 1 H), 6.00 (d, J = 1.2 Hz, 1 H), 6.88 (s, 1 H), 6.95 (s, 1 H), 7.29-7.32 (m, 3 H), 7.50 (t, J = 6.8 Hz, 1 H), 7.56 (t, J = 6.8 Hz, 1 H), 7.62 (s, 1 H), 7.69-7.71 (m, 1 H), 8.08 (d, J = 8.0 Hz, 1 H), 8.21 (t, J = 8.0 Hz, 1 H); ¹³CNMR (100 MHz, CDCl₃) δ 20.0, 40.5, 101.3, 106.9, 112.8, 124.4, 125.9, 126.0, 126.2, 126.7, 127.6, 128.0, 128.3, 128.9, 129.5, 132.2, 132.6, 133.7, 134.1, 135.7, 138.2, 138.3, 143.9, 145.4, 147.6; HRMS (ESI) calcd. for C₂₅H₂₂NO₂ (M + NH₄)⁺ 368.1645, found 368.1657.

16-Methyl-10H-benzo[5',6']naphtho[1'',2'':3',4']cyclohepta[1',2':3,4]benzo[1,2-

d][1,3]dioxole (4k):

Colorless solid; R_f (hexane, eluted twice) 0.3; mp 188-190 °C; yield 26 mg, 15%; ¹H NMR (400 MHz, CDCl₃) δ 2.85 (s, 3 H), 3.43 (d, $_{Jab}$ = 12.8 Hz, 1 H), 4.02 (dd, J_{ab} = 12.8 and 1.6 Hz, 1 H), 6.07 (d, J = 3.6 Hz, 2H), 6.75 (dd, J = 8.0 and 2.8 Hz, 1 H), 7.02 (dd, J = 8.0 and 2.0 Hz, 1 H), 7.35 (t, J = 7.2 Hz, 1 H), 7.42 (d, J = 6.8 Hz, 1 H), 7.55 (t, J = 6.8 Hz, 1 H), 7.61 (t, J = 8.0 Hz, 1 H), 7.65 (s, 1 H), 7.74 (d, J = 7.2 Hz, 1 H), 8.13 (d, J = 8.4 Hz, 1 H), 8.28 (d, J = 8.4 Hz, 1 H),; ¹³C NMR (100 MHz, CDCl₃) δ 19.9, 32.5, 101.3, 105.5, 124.3, 125.9, 126.0, 126.1, 126.2, 126.8, 126.9, 127.8, 128.5, 129.1, 129.3, 129.8, 132.5, 132.7, 133.7, 133.9, 135.7, 139.0, 142.6, 143.9, 146.7; HRMS (ESI) calcd. for C₂₅H₂₂NO₂ (M + NH₄)⁺ 368.1645, found 368.1659.

7-Chloro-15-methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3l):

Colorless solid; R_f (hexane) 0.60; mp 130-132 °C; yield 24 mg, 15%; ¹H NMR (400 MHz, CDCl₃) δ 3.67 (d, J_{ab} = 2.8 Hz, 2 H), 7.23 (dd, J = 8.4 and 2.0 Hz, 1 H), 7.33-7.37 (m, 3 H), 7.43-7.58 (m, 4 H), 7.70-7.73 (m, 1 H), 7.79 (d, J = 8.4 Hz, 1 H), 7.96-7.99 (m, 2 H), 8.12 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 40.5, 125.5, 126.2, 126.5, 126.6, 126.7, 127.0, 127.4, 128.1, 128.3, 128.4, 129.7, 131.9, 132.7, 133.4, 133.8, 133.9, 134.6, 136.3, 138.1, 143.0, 145.8; HRMS (ESI) calcd. for C₂₃H₁₉ClN (M + NH₄)⁺ 344.1201, found 344.1209.

11-Methoxy-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3m):

Colorless gum; R_f (hexane) 0.50; yield 140 mg, 85%; ¹H NMR (400 MHz, CDCl₃) δ 3.68 (d, J_{ab} = 2.8 Hz, 2 H), 3.86 (s, 3 H), 6.87 (dd, J = 8.4 and 2.6 Hz, 1 H), 6.91 (d, J = 2.6 Hz, 1 H), 7.27 (t, J = 8.4 Hz, 1 H), 7.34 (t, J = 7.2 Hz, 1 H), 7.43 (d, J = 7.2 Hz, 1 H), 7.48-7.55 (m, 4 H), 7.63 (d, J = 8.4 Hz, 1 H), 7.77 (d, J = 8.4 Hz, 1 H), 7.94 (d, J = 8.4 Hz, 2 H), 8.16 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 41.1, 55.6, 112.0, 112.1, 125.3, 125.8, 126.3, 126.7, 127.7, 127.9, 128.1, 128.2, 128.3, 130.7, 131.1, 132.2, 133.2, 134.5, 135.2, 136.0, 144.0, 145.0, 159.7; HRMS (ESI) calcd. for C₂₄H₁₉O (M + H)⁺ 323.1430, found 323.1432.

11-Methoxy-15-methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3n):

Colorless gum; R_f (hexane) 0.50; yield 130 mg, 78%; ¹H NMR (400 MHz, CDCl₃) δ 2.80 (s, 3 H), 3.63 (d, $J_{ab} = 2.8$ Hz, 2 H), 3.82 (s, 3 H), 6.83 (dd, J = 8.4 and 2.6 Hz, 1 H), 6.87 (d, J = 2.6 Hz, 1 H), 7.21 (t, J = 8.4 Hz, 1 H), 7.28 (t, J = 7.4 Hz, 1 H), 7.38 (d, J = 7.4 Hz, 1 H), 7.44-7.49 (m, 2 H), 7.54 (t, J = 7.4 Hz, 1 H), 7.60 (s, 1 H), 7.61 (d, J = 8.4 Hz, 1 H), 8.07 (d, J = 8.4 Hz, 2 H), 8.15 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 20.0, 41.2, 55.5, 111.9, 112.1, 124.3, 125.3, 125.7, 125.9, 126.6, 127.9, 128.3, 128.9, 130.6, 131.1, 132.3, 132.4, 132.9, 133.7, 133.9, 134.7, 135.6, 143.9, 145.0, 159.7; HRMS (ESI) calcd. for C₂₅H₂₁O (M + H)⁺ 337.1587, found 337.1589. **15-Phenyl-9H-dibenzo[3,4:6,7]cyclohepta[1,2-***a***]naphthalene (30):** Colorless gum; R_f (hexane) 0.50; yield 74 mg, 40%; ¹H NMR (400 MHz, CDCl₃) δ 3.76 (s, 2 H), 7.25-7.33 (m, 4 H), 7.35-7.38 (m, 2 H), 7.44-7.51 (m, 4 H), 7.54-7.62 (m, 4 H), 7.72-7.74 (m, 1 H), 7.77 (s, 1 H), 8.01-8.04 (m, 1 H), 8.23-8.26 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 40.9, 125.3, 126.1, 126.2, 126.4, 126.5, 126.7, 127.6, 128.1, 128.2, 128.3, 128.6, 129.2, 129.7, 130.4, 131.7, 132.5, 132.8, 134.3, 135.4, 135.7, 138.1, 140.0, 141.0, 143.8, 144.5; HRMS (ESI) calcd. for C₂₉H₂₁ (M + H)⁺ 369.1638, found 369.1645.

7-Methyl-15-phenyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3p):

Colorless gum; R_f (hexane) 0.50; yield 92 mg, 48%; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3 H), 3.73 (d, $J_{ab} = 6.7$ Hz, 2 H), 7.10 (d, J = 8.0 Hz, 1 H), 7.28-7.34 (m, 3 H), 7.36-7.39 (m, 1 H), 7.47-7.51 (m, 4 H), 7.57 (t, J = 7.2 Hz, 2 H), 7.64 (d, J = 7.2 Hz, 2 H), 7.78 (s, 1 H), 8.01-8.04 (m, 1 H), 8.27-8.30 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 21.4, 40.9, 126.0, 126.1, 126.2, 126.4, 126.6, 126.7, 127.4, 127.6, 128.1, 128.3, 128.6, 129.2, 129.7, 130.4, 131.4, 131.7, 132.6, 132.7, 135.5, 135.6, 138.1, 138.2, 139.8, 141.0, 143.8, 144.3; HRMS (ESI) calcd. for C₃₀H₂₃ (M + H)⁺ 383.1794, found 383.1792.

11*H*-Benzo[5,6]cyclohepta[2,1-*a*:3,4-*a'*]dinaphthalene (3q):

Colorless solid; R_f (hexane) 0.80; mp 190-192 °C; yield 60 mg, 35%; ¹H NMR (400 MHz, CDCl₃) δ 3.73 (d, $J_{ab} = 13.4$ Hz, 1 H), 4.45 (d, $J_{ab} = 13.4$ Hz, 1 H), 6.90 (d, J = 8.6 Hz, 1 H), 7.08 (dd, J = 7.2 and 1.0 Hz, 1 H), 7.14-7.17 (m, 2 H), 7.22-7.28 (m, 2 H), 7.35-7.47 (m, 4 H), 7.53 (d, J = 8.4 Hz, 1 H), 7.61 (d, J = 7.2 Hz, 1 H), 7.74 (d, J = 8.4 Hz, 1 H), 7.83 (dd, J = 8.4 and 1.0 Hz, 1 H), 7.91 (d, J = 8.4 Hz, 1 H), 7.97 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 42.0, 124.7, 125.7, 125.8, 126.1, 126.6, 127.0, 127.3, 127.4, 127.6, 127.7, 127.8, 127.9, 128.1, 128.6, 129.3, 132.9, 133.1, 133.6, 133.7, 134.8, 135.0, 135.4, 136.1, 136.9, 137.3, 138.3, 139.2, 139.5, 140.5, 141.4, 142.1; HRMS (ESI) calcd. for C₂₇H₁₉ (M + H)⁺ 343.1481, found 343.1463.

5-(Naphthalen-1-yl)-11*H*-benzo[*b*]fluorene (4q):

Colorless solid; R_f (hexane) 0.80; mp 90-92 °C; yield 76 mg, 45%; ¹H NMR (400 MHz, CDCl₃) δ 3.74 (d, $J_{ab} = 12.6$ Hz, 1 H), 3.79 (d, $J_{ab} = 12.6$ Hz, 1 H), 7.10-7.12 (m, 1 H), 7.17 (d, J = 8.4 Hz, 1 H), 7.22 (dd, J = 7.2 and 1.5 Hz, 1 H), 7.25 (d, J = 7.2 Hz, 1 H), 7.27-7.30 (m, 1 H), 7.32 (d, J = 7.2 Hz, 1 H), 7.40 (d, J = 8.4 Hz, 1 H), 7.44-7.51 (m, 2 H), 7.56 (d, J = 8.4 Hz, 1 H), 7.72 (dd, J = 7.2 and 1.5 Hz, 1 H), 7.79-7.88 (m, 3 H), 7.96 (d, J = 8.4 Hz, 1 H), 8.00 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 41.2, 124.8, 125.6, 125.8, 125.9, 126.0, 126.4, 126.8, 127.9, 128.0, 128.1, 128.2, 128.3, 128.4, 128.8, 129.0, 129.1, 130.0, 130.5, 132.4, 132.5, 133.2, 134.0, 137.8, 138.5, 142.8, 144.1; HRMS (ESI) calcd. for C₂₇H₁₉ (M + H)⁺ 343.1481, found 343.1481.

9-Methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (diastereomeric mixture; 3r:4r:: 4:1):

Colorless gum; R_f (hexane) 0.80; yield 60 mg, 40%; ¹H NMR (400 MHz, CDCl₃) δ 1.07 (d, J = 7.2 Hz, 3 H, minor), 1.86 (d, J = 7.2 Hz, 3 H, major), 3.79 (q, J = 7.2 Hz, 1 H, major), 4.18 (q, J = 7.2 Hz, 1 H, minor), 7.22-7.34 (m, 2 H), 7.36-7.44 (m, 3 H), 7.48-7.58 (m, 4 H), 7.72 (d, J = 7.8 Hz, 1 H), 7.82 (d, J = 8.4 Hz, 1 H), 7.95-8.00 (m, 2 H), 8.21 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 13.9, 37.4, 121.6, 121.8, 124.8, 126.0, 126.1, 126.4, 127.8, 127.9, 128.0, 128.1, 128.4, 129.5, 131.7, 131.8, 132.4, 133.4, 134.3, 135.8, 136.2, 138.4, 146.7, 147.5; HRMS (ESI) calcd. for C₂₄H₁₉ (M + H)⁺ 307.1481, found 307.1462.

9-Ethyl-15-methyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (diastereomeric mixture; 3s:4s:: 2:1):

Yellow gum; R_f (hexane) 0.60; yield 162 mg, 85%; ¹H NMR (400 MHz, CDCl₃) δ 0.61 (t, J = 7.2 Hz, 3 H, minor), 1.01 (t, J = 7.2 Hz, 3 H, major), 1.34-1.41 (m, 2 H, minor), 2.36-2.41 (m, 2 H, major), 2.77 (s, 3 H, minor), 2.80 (s, 3 H, major), 3.44 (t, J = 8.0 Hz, 1 H, major), 3.81 (t, J = 8.0

Hz, 1 H, minor), 7.12-7.37 (m, 11 H), 7.43-7.56 (m, 5 H), 7.60-7.71 (m, 3 H), 8.04-8.15 (m, 2 H), 8.22 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 12.6, 13.6, 19.9, 20.0, 20.9, 22.6, 45.2, 57.9, 121.9, 122.1, 124.3, 124.4, 124.6, 125.3, 125.8, 125.85, 125.9, 126.0, 126.8, 127.8, 127.85, 127.89, 127.9, 128.4, 128.5, 128.7, 128.8, 128.9, 129.0, 129.6, 130.6, 131.9, 132.3, 132.6, 132.65, 132.7, 133.7, 133.8, 133.9, 134.0, 134.3, 134.5, 134.9, 135.4, 135.8, 137.5, 138.7, 145.7, 146.5, 146.7, 147.2 ; Anal. Calcd for C₂₆H₂₂: C, 93.37; H, 6.63. Found: C, 93.32; H, 6.70.

15-Methyl-9-phenyl-9*H*-dibenzo[3,4:6,7]cyclohepta[1,2-*a*]naphthalene (3t):

Yellow gum; R_f (hexane) 0.60; yield 118 mg, 55%; ¹H NMR (400 MHz, CDCl₃) δ 2.51 (s, 3 H), 5.35 (s, 1 H), 6.48 (d, J = 7.8 Hz, 1 H), 7.01 (t, J = 7.6 Hz, 1 H), 7.15 (d, J = 7.4 Hz, 1 H), 7.18(d, J = 7.6 Hz, 2 H), 7.21-7.26 (m, 1 H), 7.32 (d, J = 7.2 Hz, 1 H), 7.40 (d, J = 8.4 Hz, 1 H), 7.44-7.51 (m, 2 H), 7.56 (d, J = 8.4 Hz, 1 H), 7.27-7.32 (m, 3 H), 7.41-7.47 (m, 2 H), 7.50-7.58 (m, 2 H), 7.62-7.68 (m, 4 H), 8.09 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 15.8, 54.1, 123.8, 123.9, 125.3, 125.5, 126.7, 127.1, 127.2, 127.7, 128.0, 128.3, 129.0, 129.3, 130.2, 130.6, 130.7, 132.1, 132.6, 133.6, 137.3, 139.5, 140.4, 143.0, 143.2, 149.4; HRMS (ESI) calcd. for C₃₀H₂₃ (M + H)⁺ 383.1794, found 383.1801.

17-Methyl-11*H*-benzo[5,6]cyclohepta[2,1-*a*:3,4-*a'*]dinaphthalene (3u) and 10-Methyl-5-(naphthalen-1-yl)-11*H*-benzo[*b*]fluorine (4u) (3u:4u::2:3):

Yellow solid; R_f (hexane) 0.60; mp 180-182-92 °C; yield 140 mg, 84%; ¹H NMR (400 MHz, CDCl₃) δ 2.78 (s, 3 H, **3u**), 2.84 (s, 3 H, **4u**), 3.67 (d, J = 13.2 Hz, 1 H, **3u**), 3.71 (d, J = 12.6 Hz, 1 H, **4u**), 3.78 (d, J = 12.6 Hz, 1 H, **4u**), 4.44 (d, J = 13.2 Hz, 1 H, **3u**), 6.90 (d, J = 8.6 Hz, 1 H), 7.02-7.12 (m, 3 H), 7.15-7.36 (m, 11 H), 7.38-7.62 (m, 7 H), 7.67-7.72 (m, 3 H), 7.78 (t, J = 8.0 Hz, 3 H), 8.02 (d, J = 8.4 Hz, 1 H), 8.10 (d, J = 8.4 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 14.0, 20.0, 37.0, 37.9, 120.4, 121.3, 121.6, 124.0, 124.3, 124.4, 124.7, 125.3, 125.4, 125.5, 125.6, 125.7,

125.74, 125.8, 125.9, 126.2, 126.3, 127.0, 127.2, 127.7, 127.8, 128.0, 128.1, 128.3, 128.4, 128.7, 128.76, 128.8, 129.3, 129.5, 130.3, 131.7, 132.1, 132.3, 132.5, 132.9, 133.1, 133.6, 134.0, 134.2, 134.9, 135.2, 136.1, 136.7, 137.2, 138.7, 141.0, 143.2, 145.1, 145.4, 147.2; HRMS (ESI) calcd. for C₂₈H₂₁ (M + H)⁺ 357.1638, found 357.1636.

¹³C Spectrum of **1c**

S19

¹³C Spectrum of **1f**

¹³C Spectrum of **1g**

ARC-ACETAL-SM-13C ARC-ACETAL-SM-13C	148.362 147.755 142.609	132.240 128.753 127.680 127.443 127.443 126.488 121.617	116.346 111.658 108.788	101.620	94.386	85.405	77.578 77.260 76.943	64.219
	$\nabla = 1$	15121	235	1	1		\searrow	

¹H Spectrum of 1n

¹³C Spectrum of **1n**

¹H Spectrum of **3a**

¹³C Spectrum of **3a**

ARC-H-PH-1-13C 13C	144,422 136,257 136,257 136,257 136,257 136,257 136,257 136,257 137,757 132,357 132,357 132,357 122,457 123,457 123,457 123,457 123,457 123,457 123,457 123,457 123,457 123,45	₹77.471 77.260 77.048	
		•	

¹³C Spectrum of **3b**

S28

¹³C Spectrum of **3c**

S32

¹³C Spectrum of **3e**

¹³C Spectrum of **3f**

¹³C Spectrum of **3h**

¹³C Spectrum of **3i**

¹³C Spectrum of **3**l

¹³C Spectrum of **3m**

¹H Spectrum of **3n**

¹³C Spectrum of **3n**

¹³C Spectrum of **30**

¹H Spectrum of **3p**

¹³C Spectrum of **3p**

¹H Spectrum of **3**q

¹³C Spectrum of **4**q

¹³C Spectrum of **3r** and **4r**

¹H Spectrum of **3s** and **4s**

S66

¹H Spectrum of **3t**

¹³C Spectrum of **3t**

¹H Spectrum of **3u** and **4u**

¹³C Spectrum of **3u** and **4u**

The crystal parameters of compound 3a

	CCDC 1873106
Formula	C ₂₃ H ₁₆
Formula weight	292.36
T/K	293(2)
Crystal system	Triclinic
Space group	P-1
a/Å	8.7105(6)
b/Å	9.7870(7)
c/Å	10.2324(12)
<i>α</i> /°	107.954(7)
$\beta^{\prime \circ}$	100.920(7)
γ/°	104.829(5)
$V/Å^3$	767.28(12)
Z	2
Abs. Coeff./mm ⁻¹	0.072
Abs. Correction	Multi-Scan
GOF on F^2	1.031
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0606
	wR2 = 0.1172
R indices [all data]	R1 = 0.1672
	wR2 = 0.1977

ORTEP diagram of compound **3a**, thermal ellipsoids are drawn on 35% probability level
CCDC 1873107
$C_{24}H_{18}$
306.38
293(2)
Monoclinic
P2(1)/n
9.8016(6)
12.5556(7)
14.0526(8)
90.00
108.162(3)
90.00
1643.22(17)
4
0.070
Multi-Scan
1.074
Rl = 0.0517
wR2 = 0.0715
R1 = 0.1455
wR2 = 0.1611

The crystal parameters of compound 3c

ORTEP diagram of compound **3c**, thermal ellipsoids are drawn on 35% probability level

Table 1: Energy optimized structure of 3a at [DFT-B3LYP/6-311++G(d,p)] level of theory

Compound Name	Method used	Energy (Hartree)
3a	DFT-B3LYP/6-31+G(d,p)	-886.168565
3a	DFT-B3LYP/6-311++G(d,p)	-886.325690

Optimized Structure of compound 3a

Compound 3a [DFT-B3LYP/6-311++G(d,p)]

Compound Name	Method used	Energy (Hartree)
3q	DFT-B3LYP/6-31+G(d,p)	-1039.815027
4q	DFT-B3LYP/6-31+G(d,p)	-1039.820533
$\Delta \mathbf{E} = \mathbf{E}_{3\mathbf{q}} - \mathbf{E}_{4\mathbf{q}}$	DFT-B3LYP/6-31+G(d,p)	0.005506 (3.45 kcal/mol)
3q	DFT-B3LYP/6-311++G(d,p)	-1039.998898
4q	DFT-B3LYP/6-311++G(d,p)	-1040.004372
$\Delta E = E_{3q} - E_{4q}$	DFT-B3LYP/6-311++G(d,p)	0.005474 (3.43 kcal/mol)

Table 2: Energy optimized structures of compounds 3q and 4q and their comparison

As we can see from Table 1, in DFT-B3LYP/6-31+G(d,p) method, Compound 3q is 0.005506 Hartree (3.45 kcal/mol) higher in energy than that of the Compound 4q. Similarly, in DFT-B3LYP/6-311++G(d,p) method, Compound 3q is 0.005474 Hartree (3.43 kcal/mole) higher in energy than that of the Compound 4q. In other words, Compound 4q is more stable than that of Compound 3q. (1 Hartree = 627.51 kcal/mole)

Optimized Structure of compounds 3q and 4q

Compound 3q [DFT-B3LYP/6-311++G(d,p)]

Compound 4q [DFT-B3LYP/6-311++G(d,p)]

HPLC spectrum of compound 3a

Report Method: Detried Induction Report		
Lefter then not represent exception of these		
Page: 1 of 2		

S78

4

33452 FMAss/Oslouts

HPLC spectrum of compound 3f

Feport N	At 1	nd	Dataled Individual Report	
Page:	1	of	2	

Rinted 11/29/2020 7:33/02 PM/vsar/Calcultz

HPLC spectrum of compound **3q**

Rept Mithod Ditalod Individual Report	Rinled 11/27/202
Page: 1 of 2	8 14 CD FW Asia Catalia

HPLC spectrum of compound **4q**

Report Method Detailed Individual Report Page: 1 of 2 Frinted: 11/2//2020 8:10:31 FMAsse/Calcultin References

- 1 R. Mancuso, S. Mehta, B. Gabriele, G. Salerno, W. S. Jenks and R. C. Larock, J. Org. Chem., 2010, 75, 897–901.
- 2 Y. –F. Qiu, Y. –J. Niu, X. Wei, B. –Q. Cao, X. -C. Wang and Z. -J. Quan, *J. Org. Chem.*, 2019, **84**, 4165–4178.
- 3 C. Wang, X. Xie, J. Liu, Y. Liu and Y. Li, Chem. Eur. J., 2015, 21, 559–564.
- 4 S. Ge, W. Cao, T. Kang, B. Hu, H. Zhang, Z. Su, X. Liu and X. Feng, *Angew. Chem. Int. Ed.*, 2019, **58**, 4017-4021.
- 5 X. Zeng, L. Ilies and E. Nakamura, J. Am. Chem. Soc. 2011, 133, 17638–17640.
- 6 A. J. Cresswell, S. G. Davies, J. A. Lee, P. M. Roberts, A. J. Russell, J. E. Thomson and M. J. Tyte, *Org. Lett.*, 2010, **12**, 2936-2939.