Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

# **Supporting Information**

### Iodine-catalyzed oxidative functionalization of purines with (thio)ethers or methylarenes for the synthesis of purin-8-one analogues

Juanping Zhuge,<sup>a</sup> Ziyang Jiang,<sup>a</sup> Wei Jiang,<sup>a</sup> Gary Histand<sup>b</sup> and Dongen Lin\*<sup>a</sup>

<sup>a</sup>Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

<sup>b</sup>International School of Advanced Materials, South China University of Technology, Guangzhou 510640, China.

\*E-mail: <u>denlin@scut.edu.cn</u>

### **Table of contents**

| I . General Information                                                                       | 2  |
|-----------------------------------------------------------------------------------------------|----|
| II. General procedure for the synthesis of starting purine derivatives 1                      | 2  |
| I. General Procedure for the Direct Alkylation and Benzylation of Purines                     | 3  |
| $\mathbb{N}$ . GCMS of BnI, BnCH <sub>2</sub> I, BnC <sub>2</sub> H <sub>4</sub> I (Scheme 2) | 4  |
| <b>V</b> . X-ray Crystallographic analysis for product 7g                                     | 6  |
| VI. Analytical Data for the Products                                                          | 12 |
| VII. Reference                                                                                | 27 |
| VII. HMBC spectrum for 31                                                                     |    |
| X. DEPT spectrum (100 MHz, CDCl <sub>3</sub> ) of 5j                                          |    |
| X. <sup>1</sup> H NMR and <sup>13</sup> C NMR spectrum for all isolated products.             | 29 |

### **I**. General Information

All reactions were carried out in flame-dried sealed tubes with magnetic stirring under an air atmosphere unless otherwise noted. All alkyl ethers, thioethers and methylarenes were purchased from commercial supplies and used without further purification unless otherwise stated. C<sub>6</sub> and N<sub>7</sub> substituted purines were synthesized from 6-chloropurine and 2,6-dichloropurine according to Huang's method<sup>1</sup> and Kelley's method<sup>2</sup>. Purification of reaction products was carried out by flash chromatography using Qingdao Haiyang Chemical Co. Ltd. silica gel (300-400 mesh). Melting points were determined with a Büchi Melting Point B-545 instrument. Unless otherwise, the <sup>1</sup>H NMR spectra were obtained at 400 MHz or 500 MHz in CDCl<sub>3</sub> or DMSO-d<sub>6</sub>, the <sup>13</sup>C NMR spectra were recorded at 101 MHz or 126 MHz in CDCl<sub>3</sub> or DMSO-d<sub>6</sub>, with TMS or a residual nondeuterated solvent peak as the internal standard using a Bruker DRX-400 or Bruker Ascend<sup>TM</sup> 500 spectrometer. All coupling constants (J values) were reported in Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (bs), doublet (d), doublet of doublets (dd), doublet of quartets (dq), triplet (t), triplet of doublets (td), doublet of triplets (dt) and quartet (q). Splitting patterns that could not be interpreted or easily visualized are designated as multiple (m). Gas chromatograph mass spectra analyses were performed on a SHIMADZU model GCMS-QP5000 spectrometer. High-resolution mass spectra (HRMS) were collected on an IF-TOF spectrometer.

### **II**. General procedure for the synthesis of starting purine derivatives 1

In a 100 mL single neck flask, the corresponding 6-chloropurine (10 mmol, 1.0 equiv) and sodium methoxide (12 mmol, 1.2 equiv) were dissolved in methanol (20 mL). The mixture was stirred at 65 °C (oil bath) for 18 h. The reaction mixture was cooled to room temperature, and then concentrated under reduced pressure. The solid was dissolved in water (20 mL) and the pH adjusted to neutral with HCl. A large amount of white solids precipitated. The solid was filtred and dries then dissolved in CH<sub>3</sub>CN (25 mL), then  $K_2CO_3$  (12 mmol, 1.2 equiv), and bromoethane (12 mmol, 1.2 equiv) or benzyl chloride (12 mmol, 1.2 equiv) were added. The resulting solution was stirred at 75 °C (oil bath) for 18 h. The reaction mixture was cooled to room temperature, and concentrated under reduced pressure. The solid was dissolved in ethyl acetate (30 mL), and then filtered. The solvent

was removed under reduced pressure and the residue purified by flash column chromatography (petroleum ether : ethyl acetate = 4 : 1) , 6-chloropurine and 2,6-dichloropurine have the same operation, then obtained the starting purine derivatives **1**.

### **II**. General Procedure for the Direct Alkylation and Benzylation of Purines

**General Procedure for the Direct Alkylation of Purines:** 



Purine derivatives (1) (0.1 mmol),  $I_2$  (20 mmol%, 0.02 mmol),  $K_2CO_3$  (2 equiv, 0.2 mmol), alkyl ethers or thioethers (2 or 4) (4 mmol) and TBHP (3 equiv, 0.3 mmol, aq.70% in water) were successively added into a sealed tube. The reaction mixture was stirred at 90 °C (oil bath) under air for 12 h. The mistrate was then concentrated under reduced pressure and purified by flash column chromatography on silica gel or preparative TLC on GF254 (petroleum ether : ethyl acetate = 8 : 1) to afford the corresponding product 3 or 5.

### **General Procedure for the Direct Benzylation of Purines:**



Purine derivatives (1) (0.1 mmol),  $I_2$  (20 mmol%, 0.02 mmol), methylarenes (6) (4 mmol) and TBHP (3 equiv, 0.3 mmol, aq.70% in water) were successively added into a sealed tube. The reaction mixture was stirred at 90 °C (oil bath) under air for 12 h. The mistrate was then concentrated under reduced pressure and purified by flash column chromatography on silica gel or preparative TLC on GF254 (petroleum ether : ethyl acetate = 8 : 1) to afford the corresponding product 7.

# IV. GCMS of BnI, BnCH<sub>2</sub>I, BnC<sub>2</sub>H<sub>4</sub>I (Scheme 2)

Scheme 2(d)



### Scheme 2(e)



Scheme 2(f)



# V. X-ray Crystallographic analysis for product 7g



Crystal data have been deposited to CCDC, number 2041079.

Figure S1. The single crystal structure of 7g (the ellipsoid contour probability level is 50%)

| Identification code                   | 7g                                                    |
|---------------------------------------|-------------------------------------------------------|
| Empirical formula                     | $C_{20}H_{17}ClN_4O_2$                                |
| Formula weight                        | 380.83                                                |
| Temperature/K                         | 99.99(10)                                             |
| Crystal system                        | monoclinic                                            |
| Space group                           | P2 <sub>1</sub> /c                                    |
| a/Å                                   | 14.3648(11)                                           |
| b/Å                                   | 14.4679(12)                                           |
| c/Å                                   | 8.6646(7)                                             |
| α/°                                   | 90                                                    |
| β/°                                   | 101.100(8)                                            |
| γ/°                                   | 90                                                    |
| Volume/Å <sup>3</sup>                 | 1767.1(2)                                             |
| Ζ                                     | 4                                                     |
| $\rho_{calc}g/cm^3$                   | 1.431                                                 |
| µ/mm <sup>-1</sup>                    | 0.240                                                 |
| F(000)                                | 792.0                                                 |
| Crystal size/mm <sup>3</sup>          | $0.14 \times 0.13 \times 0.12$                        |
| Radiation                             | Mo Ka ( $\lambda = 0.71073$ )                         |
| $2\Theta$ range for data collection/° | 4.034 to 49.992                                       |
| Index ranges                          | $-17 \le h \le 16, -17 \le k \le 17, -8 \le l \le 10$ |
| Reflections collected                 | 7572                                                  |
| Independent reflections               | $3103 [R_{int} = 0.0285, R_{sigma} = 0.0394]$         |

| Table S1. | Crystal | data an | d structure | refinement | for 7g |
|-----------|---------|---------|-------------|------------|--------|
|-----------|---------|---------|-------------|------------|--------|

| Data/restraints/parameters                  | 3103/0/245                    |
|---------------------------------------------|-------------------------------|
| Goodness-of-fit on F <sup>2</sup>           | 1.068                         |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0366, wR_2 = 0.0855$ |
| Final R indexes [all data]                  | $R_1 = 0.0441, wR_2 = 0.0903$ |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.27/-0.27                    |

Table 2 Fractional Atomic Coordinates (×10<sup>4</sup>) and Equivalent Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 7g.  $U_{eq}$  is defined as 1/3 of of the trace of the orthogonalised  $U_{IJ}$  tensor.

| Atom | x          | у          | Z           | U(eq)     |
|------|------------|------------|-------------|-----------|
| Cl1  | 5093.2(3)  | 7393.7(3)  | 9474.2(6)   | 33.09(15) |
| 01   | 2307.7(8)  | 4697.1(9)  | 9926.9(14)  | 32.0(3)   |
| 02   | 164.7(8)   | 4028.7(10) | 2244.8(14)  | 33.9(3)   |
| N1   | 3503.6(9)  | 5740.1(10) | 9673.9(15)  | 20.2(3)   |
| N2   | 3403.5(9)  | 4417.4(10) | 8318.8(15)  | 20.3(3)   |
| N3   | 4721.8(10) | 4645.0(11) | 7018.5(15)  | 25.6(3)   |
| N4   | 5533.2(10) | 6093.6(11) | 7644.6(16)  | 27.3(4)   |
| C1   | 2658.7(11) | 7231.2(12) | 9828.1(18)  | 21.5(4)   |
| C2   | 2859.6(13) | 8146.4(13) | 10239(2)    | 30.1(4)   |
| C3   | 2294.8(13) | 8857.6(13) | 9516(2)     | 32.4(4)   |
| C4   | 1522.1(13) | 8659.9(13) | 8345(2)     | 30.1(4)   |
| C5   | 1316.5(12) | 7754.4(14) | 7919(2)     | 30.4(4)   |
| C6   | 1877.6(11) | 7041.4(13) | 8654.9(19)  | 25.9(4)   |
| C7   | 3242.5(12) | 6461.4(13) | 10701.4(19) | 24.7(4)   |
| C8   | 4215.9(11) | 5740.1(12) | 8810.4(17)  | 18.0(4)   |
| С9   | 4148.9(11) | 4905.4(12) | 7967.1(17)  | 19.7(4)   |
| C10  | 5397.6(12) | 5274.7(14) | 6934(2)     | 29.1(4)   |
| C11  | 4932.1(11) | 6322.9(12) | 8584.5(18)  | 21.4(4)   |
| C12  | 2986.4(12) | 4924.9(12) | 9374.8(18)  | 23.0(4)   |
| C13  | 3028.7(12) | 3525.7(12) | 7661(2)     | 26.4(4)   |
| C14  | 2277.7(12) | 3638.5(11) | 6187.5(19)  | 22.3(4)   |
| C15  | 2503.6(12) | 3581.6(12) | 4716(2)     | 24.1(4)   |
| C16  | 1823.8(12) | 3699.4(12) | 3351(2)     | 23.9(4)   |
| C17  | 895.4(12)  | 3879.6(12) | 3483(2)     | 24.6(4)   |
| C18  | 657.4(12)  | 3934.1(14) | 4961(2)     | 31.1(4)   |
| C19  | 1341.6(13) | 3813.7(14) | 6291(2)     | 30.9(4)   |
| C20  | 332.7(14)  | 3832.2(16) | 707(2)      | 40.5(5)   |

| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Cl1  | 4.8(2)          | 24.5(3)         | 46.7(3)         | -2.5(2)         | -1.2(2)         | -7.08(19)       |
| 01   | 28.2(7)         | 38.3(8)         | 30.4(6)         | 3.1(6)          | 7.6(6)          | -8.0(6)         |
| 02   | 22.6(6)         | 47.0(9)         | 28.0(6)         | 2.1(6)          | -5.4(5)         | -3.5(6)         |
| N1   | 19.8(7)         | 22.4(8)         | 17.8(7)         | -0.3(6)         | 2.1(6)          | -1.3(6)         |
| N2   | 21.3(7)         | 18.9(8)         | 18.8(7)         | 1.4(6)          | -0.9(6)         | -2.5(6)         |
| N3   | 24.9(7)         | 32.5(9)         | 18.4(7)         | 1.1(7)          | 1.6(6)          | 1.5(7)          |
| N4   | 20.9(7)         | 36.2(10)        | 23.5(7)         | 6.6(7)          | 1.3(6)          | -0.9(7)         |
| C1   | 1.4(8)          | 27.7(10)        | 16.5(8)         | -3.4(7)         | 6.1(7)          | -1.3(7)         |
| C2   | 31.5(9)         | 31.6(11)        | 24.6(9)         | -9.6(9)         | -1.0(8)         | -1.9(9)         |
| C3   | 39.9(11)        | 24.1(10)        | 33.9(10)        | -7.3(9)         | 9.3(9)          | -1.1(9)         |
| C4   | 30.7(10)        | 29.4(11)        | 31.7(9)         | 4.7(9)          | 10.2(8)         | 5.5(8)          |
| C5   | 21.0(9)         | 35.3(11)        | 32.0(9)         | 2.0(9)          | -2.0(8)         | -0.7(8)         |
| C6   | 23.1(9)         | 25.5(10)        | 27.9(9)         | -3.1(8)         | 2.3(7)          | -4.7(8)         |
| C7   | 25.8(9)         | 29.8(10)        | 17.1(8)         | -4.2(8)         | 0.5(7)          | -0.6(8)         |
| C8   | 16.9(8)         | 21.4(9)         | 12.8(7)         | 5.0(7)          | -4.3(6)         | 0.7(7)          |
| C9   | 19.9(8)         | 22.8(9)         | 13.5(7)         | 4.2(7)          | -4.4(7)         | 0.7(7)          |
| C10  | 24.8(9)         | 41.1(12)        | 21.5(8)         | 2.4(9)          | 4.6(7)          | 2.3(9)          |
| C11  | 17.9(8)         | 21.9(10)        | 20.0(8)         | 6.1(7)          | -7.0(7)         | -1.2(7)         |
| C12  | 20.8(9)         | 27.1(10)        | 19.0(8)         | 4.4(8)          | -1.1(7)         | -2.4(8)         |
| C13  | 29.4(9)         | 19.1(9)         | 27.2(9)         | 2.3(8)          | -3.4(8)         | -3.0(8)         |
| C14  | 24.8(9)         | 15.8(9)         | 24.5(9)         | 0.7(7)          | 0.0(7)          | -3.9(7)         |
| C15  | 19.5(8)         | 20.3(9)         | 30.8(9)         | -3.5(8)         | 0.5(7)          | 0.8(7)          |
| C16  | 24.7(9)         | 24.2(10)        | 22.3(8)         | -3.2(8)         | 3.5(7)          | -2.8(8)         |
| C17  | 20.7(9)         | 22.5(10)        | 27.4(9)         | 0.0(8)          | -3.6(7)         | -4.5(7)         |
| C18  | 17.5(9)         | 41.1(12)        | 34.9(10)        | -2.8(9)         | 5.7(8)          | -2.7(8)         |
| C19  | 28.9(10)        | 39.5(12)        | 24.9(9)         | -1.1(9)         | 6.4(8)          | -6.2(9)         |
| C20  | 33.2(10)        | 59.8(15)        | 24.5(9)         | 4.0(10)         | -4.7(8)         | -12.3(10)       |

Table 3 Anisotropic Displacement Parameters ( $Å^2 \times 10^3$ ) for 7g. The Anisotropic displacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*b*}U_{12}+...]$ .

### Table 4 Bond Lengths for 7g

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å |
|------|------|------------|------|------|----------|
| Cl1  | C11  | 1.7260(18) | C1   | C6   | 1.389(2) |
| 01   | C12  | 1.211(2)   | C1   | C7   | 1.507(2) |
| 02   | C17  | 1.366(2)   | C2   | C3   | 1.383(3) |
| 02   | C20  | 1.428(2)   | C3   | C4   | 1.382(3) |
| N1   | C7   | 1.467(2)   | C4   | C5   | 1.378(3) |
| N1   | C8   | 1.379(2)   | C5   | C6   | 1.387(3) |

| N1 | C12 | 1.391(2) | C8  | C9  | 1.405(2) |
|----|-----|----------|-----|-----|----------|
| N2 | C9  | 1.365(2) | C8  | C11 | 1.373(2) |
| N2 | C12 | 1.395(2) | C13 | C14 | 1.513(2) |
| N2 | C13 | 1.470(2) | C14 | C15 | 1.377(2) |
| N3 | C9  | 1.325(2) | C14 | C19 | 1.388(2) |
| N3 | C10 | 1.344(2) | C15 | C16 | 1.392(2) |
| N4 | C10 | 1.332(2) | C16 | C17 | 1.385(2) |
| N4 | C11 | 1.338(2) | C17 | C18 | 1.390(2) |
| C1 | C2  | 1.387(3) | C18 | C19 | 1.374(3) |

Table 5 Bond Angles for 7g.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|------------|------|------|------|------------|
| C17  | 02   | C20  | 117.33(14) | N2   | C9   | C8   | 107.85(14) |
| C8   | N1   | C7   | 129.24(14) | N3   | C9   | N2   | 126.80(16) |
| C8   | N1   | C12  | 108.92(13) | N3   | C9   | C8   | 125.35(15) |
| C12  | N1   | C7   | 121.76(14) | N4   | C10  | N3   | 128.37(16) |
| C9   | N2   | C12  | 109.18(14) | N4   | C11  | Cl1  | 116.59(12) |
| C9   | N2   | C13  | 127.72(14) | N4   | C11  | C8   | 121.58(16) |
| C12  | N2   | C13  | 123.02(14) | C8   | C11  | Cl1  | 121.82(13) |
| C9   | N3   | C10  | 112.49(15) | 01   | C12  | N1   | 126.76(16) |
| C10  | N4   | C11  | 116.60(15) | 01   | C12  | N2   | 126.56(16) |
| C2   | C1   | C6   | 118.39(16) | N1   | C12  | N2   | 106.68(14) |
| C2   | C1   | C7   | 120.56(15) | N2   | C13  | C14  | 112.40(14) |
| C6   | C1   | C7   | 120.96(16) | C15  | C14  | C13  | 121.18(15) |
| C3   | C2   | C1   | 121.27(16) | C15  | C14  | C19  | 118.32(15) |
| C4   | C3   | C2   | 119.78(18) | C19  | C14  | C13  | 120.49(16) |
| C5   | C4   | C3   | 119.62(17) | C14  | C15  | C16  | 121.84(16) |
| C4   | C5   | C6   | 120.55(17) | C17  | C16  | C15  | 118.83(16) |
| C5   | C6   | C1   | 120.39(17) | 02   | C17  | C16  | 124.86(15) |
| N1   | C7   | C1   | 113.80(13) | 02   | C17  | C18  | 115.25(15) |
| N1   | C8   | C9   | 107.37(14) | C16  | C17  | C18  | 119.88(15) |
| C11  | C8   | N1   | 137.05(16) | C19  | C18  | C17  | 120.15(16) |
| C11  | C8   | C9   | 115.58(15) | C18  | C19  | C14  | 120.97(16) |

## Table 6 Torsion Angles for 7g.

| А  | В   | С   | D   | Angle/°     | Α   | В  | С   | D  | Angle/°     |
|----|-----|-----|-----|-------------|-----|----|-----|----|-------------|
| 02 | C17 | C18 | C19 | -178.73(17) | C9  | C8 | C11 | N4 | -1.3(2)     |
| N1 | C8  | C9  | N2  | 0.28(17)    | C10 | N3 | C9  | N2 | -179.08(15) |
| N1 | C8  | C9  | N3  | -178.97(14) | C10 | N3 | C9  | C8 | 0.0(2)      |

| N1 | C8  | C11 | Cl1 | -2.1(3)     | C10 | N4  | C11 | Cl1 | -178.75(12) |
|----|-----|-----|-----|-------------|-----|-----|-----|-----|-------------|
| N1 | C8  | C11 | N4  | 178.81(16)  | C10 | N4  | C11 | C8  | 0.4(2)      |
| N2 | C13 | C14 | C15 | 95.83(19)   | C11 | N4  | C10 | N3  | 1.0(3)      |
| N2 | C13 | C14 | C19 | -83.4(2)    | C11 | C8  | C9  | N2  | -179.63(13) |
| C1 | C2  | C3  | C4  | -0.9(3)     | C11 | C8  | C9  | N3  | 1.1(2)      |
| C2 | C1  | C6  | C5  | 0.0(2)      | C12 | N1  | C7  | C1  | -97.01(18)  |
| C2 | C1  | C7  | N1  | -135.81(16) | C12 | N1  | C8  | C9  | -0.57(17)   |
| C2 | C3  | C4  | C5  | 0.6(3)      | C12 | N1  | C8  | C11 | 179.31(18)  |
| C3 | C4  | C5  | C6  | 0.1(3)      | C12 | N2  | C9  | N3  | 179.35(14)  |
| C4 | C5  | C6  | C1  | -0.4(3)     | C12 | N2  | C9  | C8  | 0.11(17)    |
| C6 | C1  | C2  | C3  | 0.6(3)      | C12 | N2  | C13 | C14 | 87.22(19)   |
| C6 | C1  | C7  | N1  | 47.7(2)     | C13 | N2  | C9  | N3  | -4.1(3)     |
| C7 | N1  | C8  | C9  | -177.48(14) | C13 | N2  | C9  | C8  | 176.62(14)  |
| C7 | N1  | C8  | C11 | 2.4(3)      | C13 | N2  | C12 | 01  | 3.1(3)      |
| C7 | N1  | C12 | 01  | -2.4(2)     | C13 | N2  | C12 | N1  | -177.17(13) |
| C7 | N1  | C12 | N2  | 177.82(13)  | C13 | C14 | C15 | C16 | -178.88(16) |
| C7 | C1  | C2  | C3  | -175.91(16) | C13 | C14 | C19 | C18 | 178.79(17)  |
| C7 | C1  | C6  | C5  | 176.53(15)  | C14 | C15 | C16 | C17 | 0.1(3)      |
| C8 | N1  | C7  | C1  | 79.6(2)     | C15 | C14 | C19 | C18 | -0.5(3)     |
| C8 | N1  | C12 | 01  | -179.60(15) | C15 | C16 | C17 | 02  | 178.53(16)  |
| C8 | N1  | C12 | N2  | 0.63(17)    | C15 | C16 | C17 | C18 | -0.4(3)     |
| C9 | N2  | C12 | 01  | 179.78(16)  | C16 | C17 | C18 | C19 | 0.3(3)      |
| C9 | N2  | C12 | N1  | -0.46(17)   | C17 | C18 | C19 | C14 | 0.1(3)      |
| C9 | N2  | C13 | C14 | -88.85(19)  | C19 | C14 | C15 | C16 | 0.4(3)      |
| C9 | N3  | C10 | N4  | -1.2(2)     | C20 | 02  | C17 | C16 | 11.1(3)     |
| C9 | C8  | C11 | Cl1 | 177.77(11)  | C20 | 02  | C17 | C18 | -169.95(17) |

Table 7 Hydrogen Atom Coordinates (Å×10<sup>4</sup>) and Isotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for 7g.

\_

| 10)101 /g |         |         |          |       |
|-----------|---------|---------|----------|-------|
| Atom      | x       | У       | Z        | U(eq) |
| H2        | 3383.95 | 8284.61 | 11015.23 | 36    |
| H3        | 2434.78 | 9466.81 | 9816.2   | 39    |
| H4        | 1142.99 | 9135.27 | 7847.8   | 36    |
| Н5        | 796.95  | 7620.24 | 7130.19  | 36    |
| Н6        | 1729.92 | 6432.55 | 8361.32  | 31    |
| H7A       | 3817.27 | 6722.05 | 11320.17 | 30    |
| H7B       | 2887.1  | 6180.81 | 11424.36 | 30    |
| H10       | 5826.07 | 5118.71 | 6297.31  | 35    |
| H13A      | 2759.08 | 3194.74 | 8443.86  | 32    |
|           |         |         |          |       |

| H13B | 3546.02 | 3157.46 | 7417.47 | 32 |
|------|---------|---------|---------|----|
| H15  | 3127.85 | 3461.01 | 4632.48 | 29 |
| H16  | 1989.99 | 3657.97 | 2367.67 | 29 |
| H18  | 33.6    | 4052.4  | 5050.55 | 37 |
| H19  | 1175.14 | 3850.04 | 7274.59 | 37 |
| H20A | -246.26 | 3906.97 | -47.73  | 61 |
| H20B | 554.07  | 3207.86 | 671.99  | 61 |
| H20C | 803.31  | 4249.57 | 462.52  | 61 |

## **VI.** Analytical Data for the Products

<sup>1f</sup> **7-ethyl-6-methoxy-7***H***-purine (1f):** White solid; mp 50-52 °C; 0.5g (10mmol), 29% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.59 (s, 1H), 8.02 (s, 1H), 4.36 (q, *J* = 7.3 Hz, 2H), 4.14

(s, 3H), 1.50 (t, *J* = Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 161.7, 157.1, 152.0, 144.9, 112.8, 54.1, 42.8, 16.8; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>8</sub>H<sub>11</sub>N<sub>4</sub>O: 179.0933, found: 179.0941; IR(KBr): 3421.6, 3135.2, 1616.6, 1561.1, 1485.2, 1404.4, 1348.9, 1273.0, 1131.9, 879.4, 799.5, 618.4.



<sup>3a</sup> 7-benzyl-6-chloro-9-(tetrahydrofuran-2-yl)-7*H*-purin-8(9*H*)-one (3a): White solid; mp 56-58 °C; 29.4 mg, 89% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.47 (s, 1H), 7.44-7.23 (m, 5H), 6.36 (dd, *J* = 7.7, 4.8 Hz, 1H), 5.34 (s, 2H), 4.33 (q, *J* = 7.7 Hz, 1H), 4.15-3.90 (m, 1H), 2.88-2.61 (m, 1H), 2.56-2.27 (m, 2H), 2.09 (dd, *J* = 11.7, 7.8 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  152.4, 150.5, 149.9, 136.2, 128.9, 128.0, 127.3, 119.4, 83.6, 70.3, 45.2, 29.2, 25.9; HRMS (ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>15</sub>ClN<sub>4</sub>NaO<sub>2</sub>: 353.0776, found: 353.0779; IR(KBr): 3062.6, 3029.9, 2954.5, 2883.1, 1732.5, 1603.0, 1574.8, 1472.0, 1432.1, 1167.4, 1139.2, 1061.5, 750.7, 698.9, 618.8.



<sup>3b</sup> 7-benzyl-2,6-dichloro-9-(tetrahydrofuran-2-yl)-7*H*-purin-8(9*H*)-one (3b): Yellow solid; mp 41-43 °C; 29.8 mg, 82% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.35-7.26 (m, 5H), 6.30 (dd, J = 7.6, 4.7 Hz, 1H), 5.29 (s, 2H), 4.34-4.27 (m, 1H), 4.04-3.97 (m, 1H), 2.72-2.61 (m, 1H), 2.51-2.35 (m, 2H), 2.11-2.01 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  152.3, 151.3, 151.0, 136.4, 135.9, 128.9, 128.2, 127.3, 118.4, 83.9, 70.4, 45.3, 29.5, 25.8; HRMS (ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>Cl<sub>2</sub>N<sub>4</sub>NaO<sub>2</sub>: 387.0386, found: 387.0390; IR(KBr): 3062.6, 3032.7, 2965.3, 2885.6, 1738.8, 1606.6, 1569.2, 1468.9, 1394.7, 1285.0, 1140.4, 1055.7, 744.0, 701.6, 577.0.



<sup>3c</sup> 7-benzyl-6-methoxy-9-(tetrahydrofuran-2-yl)-7*H*-purin-8(9*H*)-one (3c): White solid; mp 56-58 °C; 25.8 mg, 79% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.29 (s, 1H), 7.38 (d, *J* = 7.2 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 2H), 7.27 (d, *J* = 6.7 Hz, 1H), 6.29 (dd, *J* = 7.7, 5.0 Hz, 1H), 5.14 (s, 2H), 4.44-4.20 (m, 1H), 4.05 (s, 3H), 3.98 (td, *J* = 7.7, 4.7 Hz, 1H), 2.90-2.65 (m, 1H), 2.61-2.41 (m, 1H), 2.36-2.25 (m, 1H), 2.03 (dt, *J* = 11.8, 8.7 Hz, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.5, 152.3, 150.1, 148.7, 137.1, 128.6, 128.1, 127.8, 107.7, 83.2, 69.9, 53.8, 46.1, 29.1, 26.0;

HRMS (ESI): [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>18</sub>N<sub>4</sub>NaO<sub>3</sub>: 349.1271, found: 349.1275; IR(KBr): 3037.6, 2955.4, 2925.4, 2848.2, 1726.3, 1621.6, 1586.7, 1467.0, 1437.1, 1342.3, 1157.9, 1068.1, 1020.8, 749.0, 704.1, 619.4.



<sup>3d</sup> **6-chloro-7-ethyl-9-(tetrahydrofuran-2-yl)-7***H***-purin-8(9***H***)-one (3d): White solid; mp 35-36 °C; 22.3 mg, 83% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-***d***) \delta 8.45 (s, 1H), 6.31 (dd,** *J* **= 7.7, 4.9 Hz, 1H), 4.31 (q,** *J* **= 7.6 Hz, 1H), 4.19 (q,** *J* **= 7.1 Hz, 2H), 4.01 (td,** *J* **= 7.7, 4.9 Hz, 1H), 2.80-2.64 (m, 1H), 2.48 (dt,** *J* **= 13.4, 6.4 Hz, 1H), 2.37 (td,** *J* **= 13.4, 6.8 Hz, 1H), 2.13-2.00 (m, 1H), 1.39 (t,** *J* **= 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 151.9, 150.2, 149.8, 135.8, 119.3, 83.4, 70.2, 37.1, 29.2, 25.9, 15.5; HRMS (ESI): [M+Na]<sup>+</sup> calculated for C<sub>11</sub>H<sub>13</sub>ClN<sub>4</sub>NaO<sub>2</sub>: 291.0619, found 291.0622; IR(KBr): 3065.1, 2980.3, 2885.6, 1730.3, 1606.6, 1574.2, 1477.0, 1354.8, 1207.7, 1165.3, 1063.1, 624.3.** 

<sup>3e</sup> **2,6-dichloro-7-ethyl-9-(tetrahydrofuran-2-yl)-7***H***-purin-8(9***H***)-one (3e): Yellow solid; mp 32-34 °C; 24.2 mg, 80% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-***d***) δ 6.19 (dd,** *J* **= 7.6, 4.7 Hz, 1H), 4.23 (q,** *J* **= 7.5 Hz, 1H), 4.09 (q,** *J* **= 7.1 Hz, 2H), 3.96-3.89 (m, 1H), 2.64-2.53 (m, 1H), 2.46-2.37 (m, 1H), 2.35-2.25 (m, 1H), 2.03-1.95 (m, 1H), 1.30 (t,** *J* **= 7.1 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 151.7, 151.2, 150.7, 136.0, 118.3, 83.7, 70.4, 37.3, 29.4, 25.8, 15.4; HRMS (ESI): [M+Na]^+ calculated for C<sub>11</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>4</sub>NaO<sub>2</sub>: 325.0230, found: 325.0229; IR(KBr): 2978.5, 1742.8, 1608.4, 1571.0, 1485.8, 1401.8, 1312.6, 1288.5, 1097.6, 931.9, 618.8.** 

0 N → N → 0 3f 7-e

<sup>3f</sup> 7-ethyl-6-methoxy-9-(tetrahydrofuran-2-yl)-7*H*-purin-8(9*H*)-one (3f): White solid; mp 48-50 °C; 20.1 mg, 76% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.22 (s, 1H), 6.20 (dd, *J* = 7.6, 5.1 Hz, 1H), 4.22 (q, *J* = 7.5 Hz, 1H), 4.01 (s, 3H), 3.95 (q, *J* = 7.1 Hz, 2H), 3.91-3.87 (m, 1H), 2.73-2.62 (m, 1H), 2.45-2.34 (m, 1H), 2.30-2.18 (m, 1H), 2.01-1.90 (m, 1H), 1.24 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.4, 151.8, 149.8, 148.6, 107.6, 83.0, 69.8, 53.9, 37.7, 29.0, 25.9, 15.2; HRMS (ESI): [M+Na]<sup>+</sup> calculated for C<sub>12</sub>H<sub>16</sub>N<sub>4</sub>NaO<sub>3</sub>: 287.1115, found: 287.1117; IR(KBr): 3414.4, 3033.4, 2971.5, 2883.4, 1722.6, 1627.6, 1476.5, 1428.4, 1404.6, 1350.9, 1270.3, 1236.1, 1194.6, 1068.5, 663.3.

<sup>3g</sup> **7-benzyl-6-chloro-9-(5-methyltetrahydrofuran-2-yl)-7***H***-purin-8(9***H***)-one (3g): White solid; mp 72-74 °C; 22.4 mg, 65% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.38 (d, J = 5.4 Hz, 1H), 7.26-7.18 (m, 5H), 6.32 (t, J = 6.5 Hz, 0.6H), 6.20 (dd, J = 8.1, 3.4 Hz, 0.4H), 5.25 (s, 2H), 4.64-4.58 (m, 0.6H), 4.13-4.07 (m, 0.4H), 2.84-2.75 (m, 0.6H), 2.70-2.63 (m, 0.4H), 2.43-2.21 (m, 2H), 1.61-1.54 (m, 1H), 1.30 (d, J = 6.0 Hz, 1.2H), 1.21 (d, J = 6.1 Hz, 1.8H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.5, 152.2, 150.5, 150.5, 150.0, 149.8, 136.3, 136.2, 136.2, 128.8, 128.0, 127.4, 119.4, 83.4, 82.9, 77.9, 77.8, 45.2, 33.8, 32.3, 29.7, 29.6, 20.7, 20.3; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>17</sub>ClN<sub>4</sub>NaO<sub>2</sub>: 367.0932, found: 367.0936; IR(KBr): 3060.1, 3035.1, 2970.3, 2927.9, 2870.6, 1736.3, 1609.1, 1574.2, 1477.0, 1429.6, 1382.2, 1172.8, 1135.4, 1085.6, 749.0, 701.6, 604.4.** 



<sup>3h</sup> 7-benzyl-6-chloro-9-(tetrahydro-2H-pyran-2-yl)-7*H*-purin-8(9*H*)-one (3h): Yellow solid; mp 51-53 °C; 26.5 mg, 77% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.40 (s, 1H), 7.25-7.18 (m, 5H), 5.54 (d, J = 11.2 Hz, 1H), 5.26 (s, 2H), 4.10- 4.04 (m, 1H), 3.67-3.60 (m, 1H), 2.94-2.83 (m, 1H), 2.03-1.96 (m, 1H), 1.74-1.58 (m, 3H), 1.53-1.47 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  152.2, 150.7, 149.9, 136.4, 136.1, 128.8, 128.0, 127.3, 119.3, 81.6, 69.2, 45.4, 28.0, 24.8, 23.3; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>17</sub>ClN<sub>4</sub>NaO<sub>2</sub>: 367.0932, found: 367.0936; IR(KBr): 3057.6, 3027.7, 2937.9, 2853.1, 1741.2, 1606.6, 1574.7, 1479.5, 1427.1, 1145.4, 1080.6, 1040.7, 721.6, 699.1, 629.3.



<sup>3i</sup> **7-benzyl-6-chloro-9-(1,4-dioxan-2-yl)-7***H***-purin-8(9***H***)-one (3i): White solid; mp 109-111 °C; 29.5 mg, 81% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***<sub>3</sub>) δ 8.41 (s, 1H), 7.26-7.19 (m, 5H), 5.75 (dd,** *J* **= 10.1, 2.8 Hz, 1H), 5.26 (s, 2H), 4.73-4.67 (m, 1H), 3.96-3.92 (m, 2H), 3.81-** 3.71 (m, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.0, 150.7, 149.7, 136.8, 135.9, 128.9, 128.2, 127.4, 119.4, 78.0, 67.7, 66.2, 65.7, 45.5; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>15</sub>ClN<sub>4</sub>NaO<sub>3</sub>: 369.0725, found: 369.0729; IR(KBr): 2962.8, 2922.9, 2855.6, 1736.2, 1654.0, 1606.6, 1579.2, 1477.0, 1118.0, 1030.7, 1003.3, 724.1, 699.1, 629.3.



<sup>3</sup> **7-benzyl-9-(tert-butoxymethyl)-6-chloro-7***H***-purin-8(9***H***)-one (3j): Yellow solid; mp 36-38 °C; 31.3 mg, 86% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.41 (s, 1H), 7.24-7.20 (m, 5H), 5.35 (s, 2H), 5.26 (s, 2H), 1.23 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.5, 151.0, 150.2, 136.3, 136.2, 128.8, 128.0, 127.3, 119.5, 75.4, 64.4, 45.3, 27.9; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>19</sub>ClN<sub>4</sub>NaO<sub>2</sub>: 369.1089, found: 369.1096; IR(KBr): 3062.6, 3032.6, 2975.3, 2935.4, 1743.7, 1606.6, 1579.2, 1491.9, 1402.2, 1369.8, 1185.3, 1140.4, 1073.1, 744.0, 699.1, 621.8.** 



**7-benzyl-9-(1-butoxybutyl)-6-chloro-7***H***-purin-8(9***H***)-one (3k): White solid; mp 64-65 °C; 28.7 mg, 74% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.49 (s, 1H), 7.35-7.29 (m, 5H), 5.67 (t, J = 7.0 Hz, 1H), 5.37 (s, 2H), 3.55-3.48 (m, 1H), 3.45-3.39 (m, 1H), 2.49-2.39 (m, 1H), 2.25-2.17 (m, 1H), 1.56-1.51 (m, 2H), 1.39-1.26 (m, 4H), 0.97 (t, J = 7.4 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.9, 150.8, 150.0, 136.5, 136.4, 128.9, 128.0, 127.1, 119.1, 84.9, 69.3, 45.3, 34.6, 31.2, 19.2, 18.7, 13.7, 13.5; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>20</sub>H<sub>25</sub>ClN<sub>4</sub>NaO<sub>2</sub>: 411.1558, found: 411.1559; IR(KBr): 3067.5, 3035.1, 2962.8, 2930.4, 2873.1, 1736.2, 1604.1, 1571.7, 1469.5, 1429.6, 1377.2, 1175.3, 1127.9, 1075.6, 734.0, 699.1, 537.1.** 



<sup>31</sup> 7-benzyl-6-chloro-9-(1-ethoxyethyl)-7*H*-purin-8(9*H*)-one (3l): Yellow solid; mp 101-103 °C; 25.9 mg, 78% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.49 (s, 1H), 7.76- 6.92 (m, 5H), 5.86 (q, *J* = 6.2 Hz, 1H), 5.36 (d, *J* = 2.7 Hz, 2H), 3.65-3.53 (m, 1H), 3.51-3.37 (m, 1H), 1.91 (d, *J* = 6.3 Hz, 3H), 1.19 (t, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  152.7, 150.8, 149.9, 136.5, 136.3, 128.9, 128.1, 127.2, 119.2, 81.0, 64.7, 45.3, 19.4, 14.8; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>17</sub>ClN<sub>4</sub>NaO<sub>2</sub>: 355.0932, found: 355.0935; IR(KBr): 2982.8, 2925.4, 2853.1, 1738.7, 1604.1, 1574.2, 1477.0, 1382.2, 1187.8, 1122.9, 746.5, 699.1, 609.4.

<sup>3n</sup> **(here the second second** 



<sup>5a</sup> **7-benzyl-6-chloro-9-(tetrahydrothiophen-2-yl)-7***H***-purin-8(9***H***)-one (5a): White solid; mp 55-57 °C; 26.0 mg, 75% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-***d***) \delta 8.47 (s, 1H), 7.35-7.28 (m, 5H), 6.35 (dd,** *J* **= 8.0, 6.0 Hz, 1H), 5.33 (s, 2H), 3.49 (td,** *J* **= 9.6, 5.5 Hz, 1H), 3.00 (m, 1H), 2.84-2.57 (m, 2H), 2.51-2.36 (m, 1H), 2.21-1.97 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.1, 150.4, 149.5, 136.2, 136.2, 128.9, 128.0, 127.3, 119.4, 60.6, 45.3, 34.6, 34.2, 31.8; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>15</sub>ClN<sub>4</sub>NaOS: 369.0547, found: 369.0550; IR(KBr): 3065.1, 2930.4, 2853.1, 1733.7, 1601.6, 1576.7, 1479.5, 1434.6, 1167.8, 1137.9, 1075.6, 744.0, 699.1, 539.6.** 



<sup>56</sup> **7-benzyl-2,6-dichloro-9-(tetrahydrothiophen-2-yl)-7***H***-purin-8(9***H***)-one (5b): Yellow solid; mp 39-41 °C; 26.6 mg, 70% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d) \delta 7.36-7.27 (m, 5H), 6.30 (t, J = 6.8 Hz, 1H), 5.30 (s, 2H), 3.52-3.44 (m, 1H), 3.03-2.97 (m, 1H), 2.66-2.57 (m, 2H), 2.49-2.40 (m, 1H), 2.12-2.05 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.0, 150.9, 136.4, 135.8, 129.0, 128.2, 127.3, 118.4, 60.9, 45.4, 34.8, 34.4, 31.9; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>14</sub>Cl<sub>2</sub>N<sub>4</sub>NaOS: 403.0158, found: 403.0155; IR(KBr): 2925.4, 2855.6, 1746.2, 1606.6, 1571.7, 1484.4, 1399.7, 1227.7, 1140.4, 1073.1, 749.0, 701.6, 621.8.** 

<sup>5c</sup> 7-benzyl-6-methoxy-9-(tetrahydrothiophen-2-yl)-7*H*-purin-8(9*H*)-one (5c): White solid; mp 116-118 °C; 22.6 mg, 66% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-*d*) δ 8.32 (s, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.31 (t, J = 7.3 Hz, 2H), 7.28-7.26 (m, 1H), 6.35-6.19 (m, 1H), 5.14 (s, 2H), 4.05 (s, 3H), 3.48 (td, J = 9.1, 8.6, 5.0 Hz, 1H), 2.97 (dt, J = 10.2, 4.4 Hz, 1H), 2.75-2.66 (m, 1H), 2.62 (dt, J = 10.7, 5.1 Hz, 1H), 2.39 (dq, J = 12.2, 6.3, 5.5 Hz, 1H), 2.08-2.00 (m, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.6, 152.0, 150.0, 148.3, 137.1, 128.7, 128.1, 127.9, 107.8, 60.2, 53.9, 46.3, 34.5, 34.3, 31.8; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>17</sub>H<sub>18</sub>N<sub>4</sub>NaO<sub>2</sub>S: 365.1043, found: 365.1051; IR(KBr): 3032.6, 2935.4, 2855.6, 1718.8, 1621.6, 1472.0, 1434.6, 1399.7, 1339.8, 1272.5, 1157.9, 1093.0, 741.5, 699.1, 601.9.



<sup>5d</sup> **6-chloro-7-ethyl-9-(tetrahydrothiophen-2-yl)-7H-purin-8(9H)-one (5d):** White solid; mp 33-35 °C; 19.0 mg, 67% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d) δ 8.47 (s, 1H), 6.32 (t, J = 7.2 Hz, 1H), 4.20 (q, J = 7.1 Hz, 2H), 3.52-3.45 (m, 1H), 3.02-2.97 (m, 1H), 2.70-2.59 (m, 2H), 2.45-2.38 (m, 1H), 2.11-2.04 (m, 1H), 1.39 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 151.6, 150.1, 149.4, 135.8, 119.4, 60.4, 37.3, 34.6, 34.2, 31.8, 15.5; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>11</sub>H<sub>13</sub>ClN<sub>4</sub>NaOS: 307.0391, found: 307.0393; IR(KBr): 3060.1, 2977.8, 2940.4, 2860.6, 1728.8, 1606.6, 1574.2, 1477.0, 1354.8, 1197.7, 1167.8, 1095.5, 542.1.

<sup>5e</sup> **2,6-dichloro-7-ethyl-9-(tetrahydrothiophen-2-yl)-7***H***-purin-8(9***H***)-one (5e): Yellow solid; mp 30-32 °C; 21.9mg, 69% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-***d***) δ 6.26 (dd,** *J* **= 8.1, 5.5 Hz, 1H), 4.17 (q,** *J* **= 7.2 Hz, 2H), 3.47 (td,** *J* **= 10.1, 9.5, 5.4 Hz, 1H), 3.00 (dd,** *J* **= 16.5, 4.0 Hz, 1H), 2.72-2.52 (m, 2H), 2.50-2.34 (m, 1H), 2.18-2.01 (m, 1H), 1.39 (t,** *J* **= 7.2 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 151.4, 150.8, 150.5, 135.9, 118.4, 60.6, 37.4, 34.7, 34.4, 31.9, 15.5; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>11</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>4</sub>NaOS: 341.0001, found: 341.0003; IR(KBr): 2976.8, 2935.9, 2858.6, 1737.0, 1606.9, 1568.4, 1485.5, 1398.4, 1228.1, 1177.6, 1074.8, 867.2, 769.0, 711.6, 618.0, 574.2.**  <sup>57</sup> **7-ethyl-6-methoxy-9-(tetrahydrothiophen-2-yl)-7H-purin-8(9H)-one (5f):** White solid; mp 106-108 °C; 17.9 mg, 64% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  8.33 (s, 1H), 6.31 (t, 1H), 4.09 (s, 3H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.56-3.42 (m, 1H), 2.98 (dd, *J* = 16.2, 4.1 Hz, 1H), 2.77-2.56 (m, 2H), 2.45-2.34 (m, 1H), 2.05 (dd, *J* = 12.3, 6.3 Hz, 1H), 1.33 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  152.5, 151.6, 149.8, 148.3, 107.7, 60.1, 54.0, 37.9, 34.5, 34.3, 31.8, 15.3; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>12</sub>H<sub>16</sub>N<sub>4</sub>NaO<sub>2</sub>S: 303.0886, found: 303.0890; IR(KBr): 2942.7, 1719.8, 1622.0, 1472.9, 1429.2, 1355.5, 1272.8, 1113.1, 1092.2, 997.8, 779.7.



<sup>5g</sup> **7-benzyl-6-chloro-9-((methylthio)methyl)-7***H***-purin-8(9***H***)-one (5g): Yellow solid; mp 69-71 °C; 21.8 mg, 68% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.48 (s, 1H), 7.34-7.30 (m, 5H), 5.35 (s, 2H), 5.07 (s, 2H), 2.31 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.8, 150.8, 149.8, 136.3, 136.1, 128.9, 128.1, 127.3, 119.5, 45.5, 44.2, 16.1; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>14</sub>H<sub>13</sub>ClN<sub>4</sub>NaOS: 343.0391, found: 343.0393; IR(KBr): 3065.1, 3032.6, 2925.4, 2848.2, 1733.7, 1611.6, 1581.7, 1484.4, 1427.1, 1392.2, 1170.3, 1135.4, 1068.1, 736.5, 701.6, 604.4.** 



<sup>5h</sup> **7-benzyl-6-chloro-9-(1-(ethylthio)ethyl)-7***H***-purin-8(9***H***)-one (5h): White solid; mp 80-82 °C; 21.9 mg, 63% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.50 (s, 1H), 7.34-7.29 (m, 5H), 5.84 (q, J = 7.2 Hz, 1H), 5.35 (d, J = 3.4 Hz, 2H), 2.65-2.60 (m, 1H), 2.53-2.48 (m, 1H), 1.98 (d, J = 7.2 Hz, 3H), 1.23 (t, J = 7.5 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.3, 150.6, 149.6, 136.4, 136.3, 128.9, 128.1, 127.3, 119.3, 53.8, 45.4, 26.0, 19.8, 14.6; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>17</sub>ClN<sub>4</sub>NaOS: 371.0704, found: 371.0710; IR(KBr): 3062.6, 2967.8, 2927.9, 2850.6, 1731.3, 1604.1, 1569.2, 1474.5, 1429.6, 1352.3, 1170.3, 1120.5, 1075.6, 744.0, 701.6, 534.6.** 



**7-benzyl-6-chloro-9-((phenylthio)methyl)-7***H***-purin-8(9***H***)-one (5i): White solid; mp 83-85 °C; 26.4 mg, 69% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) δ 8.37 (s, 1H), 7.45-7.43 (d, 2H), 7.33-7.28 (t, 3H), 7.26-7.20 (t, 5H), 5.34 (s, 2H), 5.28 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.1, 150.7, 149.5, 136.2, 136.1, 133.2, 132.0, 129.1, 128.9, 128.5, 128.1, 127.3, 119.3, 45.4, 45.2; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>19</sub>H<sub>15</sub>ClN<sub>4</sub>NaOS: 405.0547, found: 405.0551; IR(KBr): 3065.1, 2925.4, 2853.1, 1738.7, 1606.6, 1581.7, 1491.9, 1444.6, 1167.8, 1135.4, 746.5, 696.6, 599.4.** 



<sup>5</sup>**j 7-benzyl-6-chloro-9-(1,4-oxathian-3-yl)-7***H***-purin-8(9***H***)-one (5j): White solid; mp 143-145 °C; 26.1 mg, 72% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) δ 8.51 (s, 1H), 7.35-7.29 (s, 5H), 5.68 (d, J = 7.6 Hz, 1H), 5.34 (s, 2H), 4.67-4.61 (t, 1H), 4.19-4.09 (t, 2H), 3.99-3.93 (t, 1H), 3.16-3.01 (m, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 151.9, 150.6, 149.6, 136.6, 136.0, 128.9, 128.2, 127.4, 119.4, 70.1, 67.9, 49.7, 45.6, 28.4; HRMS(ESI): [M+Na]<sup>+</sup> calculated for C<sub>16</sub>H<sub>15</sub>ClN<sub>4</sub>NaO<sub>2</sub>S: 385.0496, found: 385.0500; IR(KBr): 3065.1, 3030.1, 2925.4, 2853.1, 1733.7, 1601.6, 1579.2, 1472.0, 1432.1, 1167.8, 1142.9, 1105.5, 746.5, 704.1, 629.3.** 

1-methyl-3-(tetrahydrothiophen-2-yl)-1*H*-benzo[d]imidazol-2(3*H*)-one(5k):

White solid; mp 138-140 °C; 18.7 mg, 80% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-*d*)  $\delta$  7.19 (d, *J* = 8.4 Hz, 1H), 7.00 (m, *J* = 7.9 Hz, 2H), 6.87 (d, *J* = 7.1 Hz, 1H), 6.26 (t, *J* = 7.7 Hz, 1H), 3.29 (s, 3H), 3.21 (td, *J* = 10.4, 5.2 Hz, 1H), 2.98-2.92 (m, 1H), 2.38-2.24 (m, 3H), 2.04-1.89 (m, 1H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.6, 130.3, 127.0, 121.4, 121.0, 110.3, 107.6, 60.8, 34.3, 33.9, 30.9, 27.1; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>OS: 235.0900, found: 235.0904; IR(KBr): 2936.8, 2864.3, 1705.4, 1616.5, 1497.7, 1391.9, 1249.2, 1055.1, 907.2, 745.6, 689.5, 560.9, 438.9.



**7a 7a 7,9-dibenzyl-6-chloro-7,9-dihydro-8***H***-purin-8-one (7a)<sup>3</sup>: Colorless oil; 24.5 mg, 70% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d) \delta 8.49 (s, 1H), 7.54 (d, J = 7.0 Hz, 2H), 7.34 (dt, J = 13.8, 6.4 Hz, 8H), 5.35 (s, 2H), 5.19 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.1, 150.8, 150.2, 136.4, 136.0, 135.4, 128.9, 128.9, 128.7, 128.3, 128.1, 127.4, 119.3, 45.4, 44.5; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>16</sub>N<sub>4</sub>OCl: 351.1013, found: 351.1021; IR(KBr): 3063.1, 3032.6, 2927.4, 2851.4, 1732.4, 1604.1, 1577.9, 1496.1, 1435.7, 1398.9, 1349.5, 1260.5, 1169.9, 1013.9, 747.2, 699.0, 537.3.** 



<sup>7a'</sup> **1,7,9-tribenzyl-7,9-dihydro-1***H***-purine-6,8-dione(7a'):** White solid; mp 62-64 °C; 9.3 mg, 22% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.63-7.51 (m, 5H), 7.44-7.27 (m, 11H), 5.49 (s, 2H), 5.32 (s, 2H), 5.27 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  155.2, 151.5, 148.7, 141.1, 137.4, 136.5, 135.3, 129.2, 128.8, 128.7, 128.6, 128.5, 128.3, 127.9, 127.6, 107.2, 50.3, 46.7, 44.6; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>26</sub>H<sub>23</sub>N<sub>4</sub>O<sub>2</sub>: 423.1816, found: 423.1815; IR(KBr): 3031.2, 2952.5, 1703.3, 1657.2, 1540.1, 1453.4, 1386.3, 1253.9, 1119.9, 1070.5, 943.1, 821.0, 723.9, 695.8, 518.2, 499.9.



**7b 7,9-dibenzyl-2,6-dichloro-7,9-dihydro-8***H***-purin-8-one (7b): Yellow solid; mp 114-116 °C; 28.4 mg, 74% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 7.54 (d,** *J* **= 8.7 Hz, 1H), 7.34 (m, 9H), 5.32 (s, 2H), 5.16 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.0, 151.7, 151.2, 136.2, 136.0, 134.9, 128.9, 128.9, 128.9, 128.5, 128.2, 127.3, 118.3, 45.5, 44.7; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>15</sub>N<sub>4</sub>OCl<sub>2</sub>: 385.0623, found: 385.0629; IR(KBr): 3063.7, 3029.0, 2925.3, 2853.1, 1955.8, 1732.2, 1609.9, 1576.9, 1450.1, 1397.0, 1281.7, 1141.5, 1013.9, 906.1, 876.5, 753.4, 695.7, 574.2, 450.3.** 

80-82 °C; 24.6 mg, 71% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.36 (s, 1H), 7.51 (d, J = 7.3

S20

7,9-dibenzyl-6-methoxy-7,9-dihydro-8H-purin-8-one (7c)<sup>3</sup>: White solid; mp

Hz, 2H), 7.43 (d, J = 7.3 Hz, 2H), 7.37-7.25 (m, 6H), 5.20 (s, 2H), 5.16 (s, 2H), 4.08 (s, 3H) ; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.0, 152.4, 150.4, 149.1, 137.2, 136.2, 128.7, 128.7, 128.5, 128.1, 128.0, 127.9, 107.6, 53.9, 46.4, 44.1; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>19</sub>N<sub>4</sub>O<sub>2</sub>: 347.1508, found: 347.1514; IR(KBr): 3444.5, 1717.8, 1626.6, 1496.0, 1339.4, 1107.4, 1029.1, 697.9, 613.5.



**7d 9-benzyl-6-chloro-7-ethyl-7,9-dihydro-8***H***-purin-8-one (7d): Light yellow oil; 17.9 mg, 62% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.43 (s, 1H), 7.47 (d,** *J* **= 7.2 Hz, 2H), 7.26 (dt,** *J* **= 13.8, 7.4 Hz, 3H), 5.09 (s, 2H), 4.16 (q,** *J* **= 7.1 Hz, 2H), 1.36 (t,** *J* **= 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.4, 150.4, 150.1, 135.5, 135.5, 128.7, 128.7, 128.2, 119.2, 44.2, 37.3, 15.6; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>14</sub>N<sub>4</sub>OCl: 289.0856, found: 289.0865; IR(KBr): 3063.2, 3033.4, 2977.7, 2934.7, 1731.9, 1604.5, 1577.9, 1497.0, 1351.0, 1259.4, 1169.5, 1095.5, 933.6, 820.0, 748.7, 641.3, 538.6.** 



<sup>7e</sup> **9-benzyl-2,6-dichloro-7-ethyl-7,9-dihydro-8***H***-purin-8-one (7e): Yellow solid; mp 88-90 °C; 21.3 mg, 66% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) δ 7.46 (d, J = 7.8 Hz, 2H), 7.26 (dt, J = 14.3, 6.9 Hz, 3H), 5.06 (s, 2H), 4.13 (q, J = 7.1 Hz, 2H), 1.35 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.3, 151.6, 150.8, 135.6, 134.9, 128.8, 128.8, 128.3, 118.3, 44.5, 37.4, 15.6; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>14</sub>H<sub>13</sub>N<sub>4</sub>OCl<sub>2</sub>: 323.0466, found: 323.0475; IR(KBr): 3448.3, 3065.8, 2929.6, 2853.6, 1957.4, 1871.6, 1731.6, 1609.6, 1575.4, 1454.7, 1348.1, 1230.3, 1084.9, 930.7, 862.5, 710.3, 676.6, 574.8, 448.7.** 



**9-benzyl-7-ethyl-6-methoxy-7,9-dihydro-8***H***-purin-8-one (<b>7f**)<sup>3</sup>: White solid; mp 95-97 °C; 17. 1 mg, 60% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.33 (s, 1H), 7.47 (d, J =7.2 Hz, 2H), 7.28 (dt, J = 15.1, 7.0 Hz, 3H), 5.11 (s, 2H), 4.07 (s, 3H), 4.07-4.01 (m, 2H), 1.33 (t, J =7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 152.5, 152.3, 150.1, 149.0, 136.3, 128.6, 128.4, 127.9, 107.4, 54.0, 44.0, 37.9, 15.4; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>17</sub>N<sub>4</sub>O<sub>2</sub>: 285.1352, found: 285.1361; IR(KBr): 3293.2, 3063.7, 3033.4, 2977.9, 2948.7, 1964.4, 1905.4, 1716.5, 1617.8, 1584.6, 1502.7, 1472.4, 1347.3, 1292.2, 1116.0, 1023.5, 955.6, 888.4, 788.6, 660.9, 568.0, 487.5.

### <sup>°°</sup> 7-benzyl-6-chloro-9-(4-methoxybenzyl)-7,9-dihydro-8*H*-purin-8-one

(7g): White solid; mp 124-126 °C; 29.7 mg, 78% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.48 (s, 1H), 7.49 (d, J = 8.4 Hz, 2H), 7.37-7.25 (m, 5H), 6.87 (d, J = 8.4 Hz, 2H), 5.34 (s, 2H), 5.12 (s, 2H), 3.79 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.6, 153.1, 150.8, 150.2, 136.3, 135.9, 130.3, 128.9, 128.0, 127.6, 127.4, 119.3, 114.2, 55.3, 45.4, 44.0; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>18</sub>N<sub>4</sub>O<sub>2</sub>Cl: 381.1118, found: 381.1123; IR(KBr): 3065.1, 3035.6, 2982.3, 2940.8, 2845.7, 2360.1, 2342.1, 1864.4, 1741.1, 1605.3, 1574.0, 1513.3, 1494.6, 1428.0, 1303.5, 1258.5, 1166.3, 1058.6, 935.3, 832.9, 744.6, 688.8.



<sup>7h</sup> **7-benzyl-6-chloro-9-(4-methylbenzyl)-7,9-dihydro-8***H***-purin-8-one (7h): White solid; mp 92-94 °C; 28.0 mg, 77% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.49 (s, 1H), 7.44 (d,** *J* **= 7.7 Hz, 2H), 7.39-7.27 (m, 5H), 7.17 (d,** *J* **= 7.8 Hz, 2H), 5.35 (s, 2H), 5.16 (s, 2H), 2.34 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.1, 150.8, 150.3, 138.1, 136.4, 135.9, 132.5, 129.5, 128.9, 128.7, 128.0, 127.4, 119.3, 45.4, 44.2, 21.2; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>18</sub>N<sub>4</sub>OCI: 365.1169, found: 365.1178; IR(KBr): 3034.9, 2953.9, 2924.8, 1945.5, 1871.1, 1741.8, 1605.2, 1571.2, 1454.6, 1361.8, 1252.3, 1137.0, 939.0, 843.9, 739.9, 694.8, 544.9, 471.8.** 



<sup>7i</sup> **C**<sup>1</sup>**7-benzyl-6-chloro-9-(4-chlorobenzyl)-7,9-dihydro-8***H***-purin-8-one (7i): White solid; mp 101-103 °C; 31.1 mg, 81% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-***d***) \delta 8.47 (s, 1H), 7.47 (d,** *J* **= 8.1 Hz, 2H), 7.38-7.16 (m, 7H), 5.34 (s, 2H), 5.13 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 153.0, 150.8, 150.1, 136.2, 136.1, 134.3, 133.8, 130.2, 129.0, 128.9, 128.1, 127.4, 119.3, 45.4, 43.7; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>15</sub>N<sub>4</sub>OCl<sub>2</sub>: 385.0623, found: 385.0632; IR(KBr): 3455.8, 2058.2, 3033.1, 2967.4, 2923.4, 2849.7, 2360.0, 1862.4, 1732.5, 1606.1, 1583.8, 1498.9, 1397.1, 1274.0, 1172.0, 1013.8, 920.0, 838.2, 752.8, 697.2, 571.5.** 



<sup>7j</sup> <sup>Br</sup> 7-benzyl-9-(4-bromobenzyl)-6-chloro-7,9-dihydro-8*H*-purin-8-one (7j): White solid; mp 140-142 °C; 35.5 mg, 83% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.47 (s, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 7.35-7.28 (m, 5H), 5.34 (s, 2H), 5.12 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.0, 150.8, 150.0, 136.2, 136.2, 134.3, 132.0, 130.5, 128.9, 128.1, 127.4, 122.5, 119.3, 45.4, 43.8; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>15</sub>N<sub>4</sub>OClBr: 429.0118, found: 429.0126; IR(KBr): 3087.8, 3030.4, 2865.2, 2849.5, 1865.6, 1730.5, 1605.8, 1583.2, 1498.1, 1354.5, 1273.8, 1171.4, 1012.4, 900.4, 736.2, 697.5, 536.9, 476.2.



<sup>7k</sup> <sup>7</sup>-benzyl-6-chloro-9-(4-iodobenzyl)-7,9-dihydro-8*H*-purin-8-one (7k): White solid; mp 163-165 °C; 39.0 mg, 82% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.47 (s, 1H), 7.67 (d, *J* = 8.1 Hz, 2H), 7.42-7.08 (m, 7H), 5.35 (s, 2H), 5.11 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.0, 150.8, 150.0, 138.0, 136.2, 136.2, 134.9, 130.7, 128.9, 128.1, 127.4, 119.3, 94.2, 45.5, 43.9; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>15</sub>N<sub>4</sub>OCII: 476.9979, found: 476.9980; IR(KBr): 3031.2, 2964.7, 2849.5, 1909.5, 1867.8, 1722.8, 1605.9, 1581.9, 1495.0, 1354.8, 1225.0, 1170.9, 1014.8, 919.5, 836.7, 752.7, 697.5, 570.7, 472.0.



<sup>71</sup> **NO**<sub>2</sub> **7-benzyl-6-chloro-9-(4-nitrobenzyl)-7,9-dihydro-8***H***-purin-8-one (71): White solid; mp 138-140 °C; 28.4 mg, 72% yield; <sup>1</sup>H NMR (500 MHz, Chloroform-***d***) \delta 8.47 (s, 1H), 8.20 (d,** *J* **= 8.6 Hz, 2H), 7.65 (d,** *J* **= 8.5 Hz, 2H), 7.37-7.29 (m, 4H), 7.26 (s, 1H), 5.35 (s, 2H), 5.25 (s, 2H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) \delta 152.8, 150.9, 149.9, 147.9, 142.1, 136.5, 136.0, 129.6, 129.0, 128.2, 127.4, 124.1, 119.4, 45.6, 44.0; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>15</sub>N<sub>5</sub>O<sub>3</sub>Cl: 396.0858, found: 396.0860; IR(KBr): 3054.2, 3028.5, 2865.1, 2846.0, 1859.3, 1736.1, 1601.3, 1579.2, 1495.5, 1358.5, 1278.6, 1172.6, 1010.5, 901.9, 733.2, 694.8.** 

 7-benzyl-6-chloro-9-(2-methylbenzyl)-7,9-dihydro-8*H*-purin-8-one
 (7m):

 White solid; mp 80-82 °C; 26.9 mg, 74% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.47 (s, 1H),

7.37 (d, J = 6.4 Hz, 4H), 7.32 (dd, J = 9.6, 4.5 Hz, 2H), 7.22 (d, J = 3.9 Hz, 2H), 7.17 (dd, J = 7.6, 4.1 Hz, 1H), 5.38 (s, 2H), 5.22 (s, 2H), 2.57 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 153.2, 150.8, 150.5, 136.4, 136.3, 136.0, 133.3, 130.7, 128.9, 128.4, 128.2, 128.1, 127.4, 126.3, 119.3, 45.4, 42.0, 19.6; HRMS (ESI):  $[M+H]^+$  calculated for  $C_{20}H_{18}N_4OCl$ : 365.1169, found: 365.1178; IR(KBr): 3438.3, 3066.1, 3025.3, 2924.6, 2853.5, 1947.3, 1911.6, 1723.5, 1613.9, 1492.0, 1352.9, 1299.6, 1162.0, 1068.8, 958.9, 897.0, 775.1, 661.5, 540.0.



7-benzyl-6-chloro-9-(2-chlorobenzyl)-7,9-dihydro-8*H*-purin-8-one (7n): White solid; mp 100-102 °C; 30.7 mg, 80% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  8.45 (s, 1H), 7.46-7.27 (m, 5H), 7.21 (m, 4H), 5.39 (s, 2H), 5.34 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 153.0, 150.9, 150.3, 136.3, 136.2, 133.1, 132.4, 129.9, 129.3, 128.9, 128.8, 128.1, 127.4, 127.0, 119.4, 45.5, 42.2; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>19</sub>H<sub>15</sub>N<sub>4</sub>OCl<sub>2</sub>: 385.0623, found: 385.0627; IR(KBr): 3451.7, 3066.5, 3033.7, 1881.4, 1731.9, 1606.6, 1581.6, 1498.5, 1433.6, 1356.5, 1267.0, 1171.7, 1139.6, 1013.7, 918.2, 753.3, 693.1, 538.3.



7-benzyl-1,9-bis(2-chlorobenzyl)-7,9-dihydro-1*H*-purine-6,8-dione

(7n'): White solid; mp 65-67 °C; 7.4 mg, 15% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d)  $\delta$  7.60 (s, 1H), 7.37 (s, 7H), 7.19 (dd, J = 5.6, 3.4 Hz, 4H), 7.08-6.99 (m, 2H), 5.48 (d, J = 5.6 Hz, 4H), 5.40 (s, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 155.0, 151.2, 149.0, 141.6, 135.1, 134.3, 133.6, 133.0, 132.8, 129.8, 129.7, 129.2, 128.8, 128.7, 128.3, 127.1, 127.0, 126.9, 126.6, 107.0, 50.5, 44.6, 42.5; HRMS (ESI):  $[M+Na]^+$  calculated for  $C_{26}H_{20}Cl_2N_4NaO_2$ : 513.0856, found: 513.0862; IR(KBr): 3432.9, 3063.5, 2965.4, 1672.7, 1562.4, 1457.3, 1346.2, 1276.5, 1092.4, 1018.2, 756.0, 659.3.



<sup>31</sup>7-benzyl-6-chloro-9-(3-chlorobenzyl)-7,9-dihydro-8*H*-purin-8-one (70): Yellow solid; mp 62-64 °C; 29.6 mg, 77% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 7.49 (s, 1H), 7.42-7.21 (m, 8H), 5.35 (s, 2H), 5.14 (s, 2H) ; <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 153.0, 150.9, 150.1, 137.2, 136.2, 136.2, 134.7, 130.2, 128.9, 128.7, 128.6, 128.1, 127.4, 126.8, 119.3, 45.5, 43.8; HRMS (ESI):  $[M+H]^+$  calculated for  $C_{19}H_{15}N_4OCl_2$ : 385.0623, found: 385.0631; IR(KBr): 3450.0, 3062.8, 3032.4, 2930.5, 2850.3, 1954.6, 1873.3, 1735.1, 1602.9, 1578.3, 1493.9, 1455.0, 1345.8, 1253.1, 1170.3, 1134.7, 1078.0, 1029.3, 899.0, 825.4, 749.7, 698.0, 565.3, 460.2.



**7-benzyl-6-chloro-9-(3,5-dimethylbenzyl)-7,9-dihydro-8***H***-purin-8-one (7p):** White solid; mp 93-95 °C; 27.2 mg, 72% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  8.49 (s, 1H), 7.46-7.26 (m, 5H), 7.12 (s, 2H), 6.96 (s, 1H), 5.37 (s, 2H), 5.13 (s, 2H), 2.32 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.2, 150.8, 150.3, 138.5, 136.4, 136.0, 135.2, 130.0, 128.9, 128.1, 127.4, 126.2, 119.3, 45.4, 44.4, 21.3; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>21</sub>H<sub>20</sub>N<sub>4</sub>OCl: 379.1326, found: 379.1331; IR(KBr): 3455.8, 3067.3, 2917.4, 2857.0, 2735.9, 2360.0, 1941.1, 1899.2, 1732.3, 1606.7, 1577.5, 1454.5, 1349.5, 1257.8, 1135.0, 901.2, 704.9, 692.4, 540.3.



<sup>7q</sup> **7-benzyl-6-chloro-9-(1-phenylethyl)-7,9-dihydro-8***H***-purin-8-one (7q): Yellow solid; mp 62-64 °C; 24.8 mg, 68% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-d) \delta 8.47 (s, 1H), 7.61 (d, J = 7.5 Hz, 2H), 7.48-7.18 (m, 8H), 5.92 (d, J = 7.3 Hz, 1H), 5.35 (s, 2H), 2.11 (d, J = 7.3 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 152.8, 150.5, 150.3, 139.7, 136.5, 136.0, 128.9, 128.7, 128.2, 128.0, 127.5, 127.3, 119.1, 52.9, 45.3, 17.7; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>20</sub>H<sub>18</sub>N<sub>4</sub>OCl: 365.1169, found: 365.1178; IR(KBr): 3063.8, 3032.0, 2981.6, 2935.3, 1954.2, 1876.5, 1728.5, 1602.8, 1572.6, 1478.8, 1396.7, 1332.4, 1173.1, 1139.0, 1028.2, 938.0, 845.0, 748.7, 697.6, 570.9.** 



**1-benzyl-3-methyl-1,3-dihydro-2***H***-benzo[d]imidazol-2-one (7r)<sup>3</sup>:** White solid; mp 85-87 °C; 21.4 mg, 90% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.27 (d, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.4 Hz, 2H), 7.15-7.10 (m, 1H), 6.93 (dt, *J* = 22.8, 7.7 Hz, 2H), 6.79 (d, *J* = 7.7 Hz, 2H), 4.94 (s, 2H), 3.27 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.3, 136.6, 130.0, 129.0, 128.6, 127.6, 127.6, 121.2, 121.1, 108.0, 107.4, 44.6, 27.0; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>15</sub>H<sub>15</sub>N<sub>2</sub>O: 239.1184, found: 239.1191; IR(KBr): 3402.0, 3026.9, 2921.9, 1911.2, 1856.6, 1711.8, 1617.6, 1499.7, 1398.7, 1246.8, 1121.5, 1097.3, 925.2, 836.7, 731.7, 635.4, 557.7, 455.5.



**1,3-dibenzyl-1,3-dihydro-2***H***-benzo[d]imidazol-2-one (7s)<sup>3</sup>:** White solid; mp 106-108 °C; 27.6 mg, 88% yield; <sup>1</sup>H NMR (400 MHz, Chloroform-*d*)  $\delta$  7.45 (d, *J* = 7.4 Hz, 4H), 7.36 (t, *J* = 7.4 Hz, 4H), 7.33-7.26 (m, 2H), 7.03 (dd, *J* = 5.4, 3.2 Hz, 2H), 6.98-6.93 (m, 2H), 5.17 (s, 4H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.7, 136.6, 129.4, 128.9, 127.8, 127.7, 121.5, 108.5, 45.0; HRMS (ESI): [M+H]<sup>+</sup> calculated for C<sub>21</sub>H<sub>19</sub>N<sub>2</sub>O: 315.1497, found: 315.1506; IR(KBr): 3366.6, 3063.7, 3025.2, 2925.4, 1946.8, 1875.2, 1697.3, 1608.4, 1586.7, 1491.8, 1407.3, 1355.9, 1201.9, 1164.0, 1079.2, 915.3, 849.3, 751.0, 697.2.



<sup>8</sup> Bn 3-benzyl-1-methyl-1*H*-benzo[d]imidazol-3-ium chloride (8): White solid; mp 95-97 °C; 1.55 g (5 mmol), 60% yield; <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 10.34 (s, 1H), 8.01 (d, *J* = 7.2 Hz, 1H), 7.95 (d, *J* = 8.1 Hz, 1H), 7.59 (dd, *J* = 16.0, 6.4 Hz, 4H), 7.35 (q, *J* = 12.3, 9.4 Hz, 3H), 5.85 (s, 2H), 4.13 (s, 3H); <sup>13</sup>C NMR (101 MHz, DMSO) δ 143.6, 134.6, 132.4, 131.0, 131.0, 129.4, 129.1, 128.8, 127.0, 127.0, 114.2, 50.2, 33.9; HRMS (ESI) calculated for  $[C_{15}H_{15}N_2]^+$ : 223.1230, found: 223.1236; IR(KBr): 3358.8, 3063.5, 2965.4, 1672.7, 1562.4, 1457.3, 1346.2, 1206.9, 1092.4, 1018.2, 851.4, 756.0, 659.3.

### **VI**. Reference

- 1. L.-K. Huang, Y.-C. Cherng, Y.-R. Cheng, J.-P. Jang, Y.-L. Chao and Y.-J. Cherng, *Tetrahedron*, 2007, **63**, 5323-5327.
- J. L. Kelley, R. G. Davis, T. E. W. McLean, T. R. C. Glen, F. E. Soroko and B. R. Cooper, J. Med. Chem., 1995, 38, 3884-3888.
- J.-P. Li, Y. Huang, M.-S. Xie, G.-R. Qu, H.-Y. Niu, H.-X. Wang, B.-W. Qin and H.-M. Guo, J. Org. Chem., 2013, 78, 12629-12636.





S27

# IX. DEPT spectrum (100 MHz, CDCl<sub>3</sub>) of 5j



X.<sup>1</sup>H NMR and <sup>13</sup>C NMR spectrum for all isolated products.



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **1f** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **3a** 

# 



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **3a** 



# $^1\text{H}$ NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 3b





### <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **3b**



# <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of 3c



<sup>13</sup>C NMR spectrum (126 MHz, CDCl<sub>3</sub>) of **3c** 

![](_page_31_Figure_1.jpeg)

# $^1\text{H}$ NMR spectrum (500 MHz, CDCl<sub>3</sub>) of 3d

![](_page_31_Figure_3.jpeg)

### <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **3d**

![](_page_32_Figure_1.jpeg)

<sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of **3e** 

![](_page_32_Figure_3.jpeg)

<sup>13</sup>C NMR spectrum (126 MHz, CDCl<sub>3</sub>) of **3e** 

![](_page_33_Figure_1.jpeg)

 $^1\text{H}$  NMR spectrum (500 MHz, CDCl<sub>3</sub>) of 3f

![](_page_33_Figure_3.jpeg)

### <sup>13</sup>C NMR spectrum (126 MHz, CDCl<sub>3</sub>) of **3f**

![](_page_34_Figure_1.jpeg)

<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **3g** 

![](_page_34_Figure_3.jpeg)

![](_page_34_Figure_4.jpeg)

<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **3g** 

![](_page_35_Figure_1.jpeg)

<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **3h** 

![](_page_35_Figure_3.jpeg)

![](_page_35_Figure_4.jpeg)


<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 3i









<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **3**k

# 



# <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **3k**



# <sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of **3**l







<sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of 3n



 $^{13}\text{C}$  NMR spectrum (126 MHz, CDCl<sub>3</sub>) of 3n



<sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of **5a** 



# <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 5a



S43







S44

#### <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **5c**



### <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **5d**





# <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **5d**



<sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of **5e** 



<sup>13</sup>C NMR spectrum (126 MHz, CDCl<sub>3</sub>) of **5e** 



# $^1\text{H}$ NMR spectrum (500 MHz, CDCl<sub>3</sub>) of $\mathbf{5f}$



<sup>13</sup>C NMR spectrum (126 MHz, CDCl<sub>3</sub>) of **5f** 



# $^{1}$ H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **5g**





# <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **5g**





5.0

4.5 4.0 3.5 f1 (ppm) 1.03

3.0 2.5

3.05-

2.0 1.5 1.0

3.04

0.5

0.0 -0.5 -1.0 -1.

1.00 -2.01 +

6.5 6.0 5.5

-00.1

10.0 9.5 9.0

5.06

8.5 8.0 7.5 7.0

# <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **5h**



# <sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **5**i





<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **5**i





S51



 $^{1}$ H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of **5**k



# <sup>13</sup>C NMR spectrum (126 MHz, CDCl<sub>3</sub>) of **5**k



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7a



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7a



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7a'



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7a'



<sup>1</sup>H NMR spectrum (400 MHz,  $CDCl_3$ ) of **7b** 



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7b



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7c



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7c



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7d



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7d



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7e



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7e



<sup>1</sup>H NMR spectrum (400 MHz,  $CDCl_3$ ) of **7f** 



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **7f** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7g



 $^{13}\text{C}$  NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7g



 $^{1}$ H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **7h** 



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **7h** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7i



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7i



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7j



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **7j** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7k



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7k



<sup>1</sup>H NMR spectrum (500 MHz, CDCl<sub>3</sub>) of **7**l





<sup>13</sup>C NMR spectrum (126 MHz, CDCl<sub>3</sub>) of **7**I



 $^1\text{H}$  NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7m



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **7m** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **7n** 



# <sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **7n**



 $^1\text{H}$  NMR spectrum (400 MHz, CDCl\_3) of  $7n^{\prime}$ 



<sup>13</sup>C NMR spectrum (101MHz, CDCl<sub>3</sub>) of **7n**'



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **70** 



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **70** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of **7p** 



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **7p** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7q



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7q



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7r


<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of **7r** 



<sup>1</sup>H NMR spectrum (400 MHz, CDCl<sub>3</sub>) of 7s



<sup>13</sup>C NMR spectrum (101 MHz, CDCl<sub>3</sub>) of 7s



<sup>1</sup>H NMR spectrum (400 MHz, DMSO- $d_6$ ) of **8** 



<sup>13</sup>C NMR spectrum (101 MHz, DMSO- $d_6$ ) of **8** 

