Supplementary Information for

K₂S₂O₈-mediated regio- and stereo-selective thiocyanation of enamides with NH₄SCN

Qingyun Gu,#a Qiyang Wang,#a Wenjing Dai,a Xin Wang,a Yingguo Ban,a

Tianqing Liu,^b Yu Zhao,^a Yanan Zhang,^a Yong ling*^a and Xiaobao Zeng,*^a

^a School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong,

Jiangsu Province 226001, People's Republic of China

^b NICM Health Research Institute, Western Sydney University, Sydney,

NSW, Australia

List

1. General information	
2. Preparation and characterizations of compounds 3aa-y,	4-9S1-
18	
3. Preliminary Mechanistic Studies	.S19
4. Plausible mechanism for Scheme 3cS20	
5. X-ray Crystallographic Data of 3ar	.S21-23
6. References	S24
7. ¹ H NMR and ¹³ C NMR spectra of compounds 3aa-y, 4-1	0825-55

1. General Information

All ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded in CDCl₃. TMS was used as an internal reference and *J* values are given in Hz. HR-MS were obtained on a Bruker micrOTOF-Q II spectrometer. PE is petroleum ether (60–90 °C). All enamides (**1a-e**)¹ are known compounds. They were purchased directly or were prepared according to the reported procedures. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

2. Preparation and characterizations of compounds 3aa-y, 4-9

2.1 Preparation and characterizations of compounds 3aa-y

A mixture of enamides (**1a-y**) (0.3 mmol), NH₄SCN (34.2 mg, 0.45 mmol, 1.5 equiv.) and $K_2S_2O_8$ (121.5 mg, 0.45 mmol, 1.5 equiv.) in HOAc (2 mL) was stirred at 50 °C for 6 h (monitored by TLC). After it was cooled down to room temperature, the reaction was quenched by the slow addition of a saturated solution of Na₂CO₃. The mixture was poured into water (15 mL) and was extracted with EtOAc (3 x 15 mL). The combined organic layers were washed with brine (2 x 15 mL) and dried over MgSO₄. The solvent was removed by vacuum and the residue was purified by column

chromatography (10% EtOAc in PE) to give the corresponding products **3aa-y**.

(*E*)-*N*-benzyl-*N*-(2-thiocyanato-1-(*p*-tolyl)vinyl)acetamide (3aa). 84.1 mg (87%); Yellow solid; mp 98-100 °C; ¹H NMR (400MHz, CDCl₃) δ 7.31-7.26 (m, 5H), 7.19-7.10 (m, 4H), 5.85 (s, 1H), 4.56 (s, 2H), 2.42 (s, 3H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 145.7, 141.2, 136.5, 129.9, 129.3, 128.6, 128.5, 128.1, 127.7, 111.3, 109.6, 49.7, 22.4, 21.4. HRMS *m*/*z* (ESI) calcd. for C₁₉H₁₉N₂OS (M + H)⁺ 323.1213, found 323.1212.

(*E*)-*N*-benzyl-*N*-(1-phenyl-2-thiocyanatovinyl)acetamide (3ab). 78.6 mg (85%); Yellow solid; mp 77-79 °C; ¹H NMR (400MHz, CDCl₃) δ 7.50-7.44 (m, 3H), 7.34-7.28 (m, 3H), 7.24-7.22 (m, 2H), 7.18-7.13 (m, 2H), 5.92 (s, 1H), 4.57 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 145.5, 136.4, 132.2, 130.7, 129.3, 128.6, 128.5, 128.2, 127.8, 112.2, 109.4, 49.8, 22.4. HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₇N₂OS (M + H)⁺ 309.1056, found 309.1056.

(*E*)-*N*-benzyl-*N*-(1-(4-methoxyphenyl)-2-thiocyanatovinyl)acetamide (3ac). 82.2 mg (81%); Yellow solid; mp 85-87 °C; ¹H NMR (400MHz, CDCl₃) δ 7.32-7.29 (m, 3H), 7.18-7.15 (m, 4H), 6.97 (d, *J* = 8.8 Hz, 2H), 5.80 (s, 1H), 4.57 (s, 2H), 3.87 (s, 3H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 161.3, 145.7, 136.5, 129.9, 128.7, 128.6, 127.8, 124.2, 114.7, 110.1, 109.7, 55.4, 49.8, 22.4. HRMS *m*/*z* (ESI) calcd. for C₁₉H₁₉N₂O₂S (M + H)⁺ 339.1162, found 339.1161.

(E)-N-(1-([1,1'-biphenyl]-4-yl)-2-thiocyanatovinyl)-N-

benzylacetamide (**3ad**). 88.7 mg (77%); Yellow solid; mp 119-121 °C; ¹H **NMR (400MHz, CDCl₃)** δ 7.69-7.67 (m, 2H), 7.63-7.61 (m, 2H), 7.50-7.46 (m, 2H), 7.42-7.38 (m, 1H), 7.32-7.26 (m, 5H), 7.20-7.17 (m, 2H), 5.93 (s, 1H), 4.61 (s, 2H), 2.22 (s, 3H). ¹³C **NMR (100 MHz, CDCl₃)** δ 170.1, 145.3, 143.5, 139.4, 136.5, 130.9, 128.9, 128.8, 128.7, 128.6, 128.1, 127.8, 127.8, 127.0, 112.1, 109.4, 49.9, 22.4. HRMS *m/z* (ESI) calcd. for C₂₄H₂₁N₂OS (M + H)⁺ 385.1369, found 385.1369.

(E)-N-benzyl-N-(2-thiocyanato-1-(4-

(trifluoromethyl)phenyl)vinyl)acetamide (3ae). 90.3 mg (80%); Yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.73 (d, *J* = 8.1 Hz, 2H), 7.37-7.30 (m, 5H), 7.16-7.13 (m, 2H), 6.06 (s, 1H), 4.59 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 145.4, 139.1, 137.2, 131.1 (q, *J*_{C-F} = 33 Hz), 129.0, 128.4, 127.5, 126.1 (2C), 126.0 (q, *J*_{C-F} = 4 Hz), 123.8 (d, *J*_{C-F} = 271 Hz), 116.7, 49.9, 22.0. HRMS *m*/*z* (ESI) calcd. for C₁₉H₁₆F₃N₂OS (M + H)⁺ 377.0930, found 377.0929.

(*E*)-*N*-benzyl-*N*-(1-(4-fluorophenyl)-2-thiocyanatovinyl)acetamide (3af). 81.2 mg (83%); Yellow solid; mp 46-48 °C; ¹H NMR (400MHz, CDCl₃) δ 7.33-7.28 (m, 3H), 7.25-7.21 (m, 2H), 7.18-7.13 (m, 4H), 5.93 (s, 1H), 4.56 (s, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 163.6 (d, *J*_{*C*-*F*} = 251 Hz), 144.9, 136.3, 130.4 (d, *J*_{*C*-*F*} = 8 Hz), 128.7, 128.6, 128.3 (d, *J*_{*C*-*F*} = 4 Hz), 127.9, 116.6 (d, *J*_{*C*-*F*} = 22 Hz), 112.0, 109.1, 49.9, 22.4. HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₆FN₂OS (M + H)⁺ 327.0962, found 327.0961.

(*E*)-*N*-benzyl-*N*-(1-(4-chlorophenyl)-2-thiocyanatovinyl)acetamide (3ag). 82.1 mg (80%); Yellow solid; mp 90-92 °C; ¹H NMR (400MHz, CDCl₃) δ 7.45-7.43 (m, 2H), 7.32-7.29 (m, 3H), 7.18-7.13 (m, 4H), 5.95 (s, 1H), 4.57 (s, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 144.7, 136.8, 136.2, 130.7, 129.6, 129.5, 128.7, 128.6, 127.9, 112.6, 109.0, 49.9, 22.4. HRMS *m/z* (ESI) calcd. for C₁₈H₁₆ClN₂OS (M + H)⁺ 343.0666, found 343.0663.

(*E*)-*N*-benzyl-*N*-(1-(4-bromophenyl)-2-thiocyanatovinyl)acetamide (3ah). 98.4 mg (85%); Yellow solid; mp 91-93 °C; ¹H NMR (400MHz, CDCl₃) δ 7.60 (d, *J* = 8.3 Hz, 2H), 7.31-7.28 (m, 3H), 7.15 – 7.08 (m, 4H), 5.96 (s, 1H), 4.56 (s, 2H), 2.19 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 144.6, 136.1, 132.5, 131.1, 129.7, 128.6, 128.5, 127.8, 125.0, 112.6, 108.9, 49.9, 22.4. HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₆BrN₂OS (M + H)⁺ 387.0161, found 387.0161.

(*E*)-*N*-benzyl-*N*-(1-(4-iodophenyl)-2-thiocyanatovinyl)acetamide (3ai). 101.6 mg (78%); Yellow solid; mp 98-100 °C; ¹H NMR (400MHz, CDCl₃) δ 7.80 (d, *J* = 8.4 Hz, 2H), 7.33-7.28 (m, 3H), 7.15-7.13 (m, 2H), 6.96-6.94 (m, 2H), 5.95 (s, 1H), 4.56 (s, 2H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 144.8, 138.5, 136.2, 131.7, 129.7, 128.7, 128.6, 127.9, 112.7, 109.0, 97.1, 49.9, 22.4. HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₆IN₂OS (M + H)⁺ 435.0023, found 435.0022.

(*E*)-*N*-benzyl-*N*-(2-thiocyanato-1-(*m*-tolyl)vinyl)acetamide (3aj). 82.1 mg (85%); Yellow solid; mp 93-95 °C; ¹H NMR (400MHz, CDCl₃) δ 7.37-7.27 (m, 5H), 7.18-7.16 (m, 2H), 7.03-6.99 (m, 2H), 5.90 (s, 1H), 4.57 (s, 2H), 2.39 (s, 3H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 145.6, 139.4, 136.5, 132.2, 131.5, 129.1, 128.7, 128.6, 128.5, 127.8, 125.5, 112.0, 109.6, 49.9, 22.4, 21.4. HRMS *m/z* (ESI) calcd. for C₁₉H₁₉N₂OS (M + H)⁺ 323.1213, found 323.1211.

(*E*)-*N*-benzyl-*N*-(2-thiocyanato-1-(*o*-tolyl)vinyl)acetamide (3ak). 80.2 mg (83%); Yellow solid; mp 93-95 °C; ¹H NMR (400MHz, CDCl₃) δ 7.36 (t, *J* = 7.5 Hz, 1H), 7.32-7.22 (m, 5H), 7.09-7.02 (m, 3H), 6.13 (s, 1H), 4.50 (s, 2H), 2.35 (s, 3H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 146.0, 137.0, 136.6, 131.4, 131.3, 130.5, 129.6, 128.6, 127.5, 127.4, 126.5, 110.7, 109.8, 49.5, 22.8, 19.4. HRMS *m*/*z* (ESI) calcd. for C₁₉H₁₉N₂OS (M + H)⁺ 323.1213, found 323.1216.

(*E*)-N-benzyl-*N*-(1-(2-bromophenyl)-2-thiocyanatovinyl)acetamide (3al). 77.8 mg (67%); Yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.68-7.65 (m, 1H), 7.37-7.32 (m, 2H), 7.31-7.26 (m, 3H), 7.14-7.09 (m, 3H), 6.17 (s, 1H), 4.56 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 146.2, 136.5, 134.0, 132.9, 131.9, 131.8, 128.6, 127.9, 127.7, 127.5, 122.9, 111.6, 109.6, 50.1, 22.9. HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₆BrN₂OS (M + H)⁺ 387.0161, found 387.0165.

(E)-N-benzyl-N-(1-(3-bromo-4-fluorophenyl)-2-

thiocyanatovinyl)acetamide (3am). 94.5 mg (78%); White solid; mp 144-146 °C; ¹H NMR (400MHz, CDCl₃) δ 7.40–7.30 (m, 4H), 7.23-7.13 (m, 4H), 5.99 (s, 1H), 4.58 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 160.1 (d, $J_{C-F} = 253$ Hz), 143.6, 136.1, 133.4, 129.9 (d, $J_{C-F} = 4$ Hz), 129.3 (d, $J_{C-F} = 8$ Hz), 128.8, 128.6, 128.1, 117.4 (d, $J_{C-F} = 23$ Hz), 113.2, 110.5 (d, $J_{C-F} = 21$ Hz), 108.7, 50.2, 22.5. HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₅BrFN₂OS (M + H)⁺ 405.0067, found 405.0067.

(E)-N-benzyl-N-(1-(3,4-dimethoxyphenyl)-2-

thiocyanatovinyl)acetamide (3an). 82.8 mg (75%); Yellow solid; mp 129-131°C; ¹H NMR (400MHz, CDCl₃) δ 7.32-7.27 (m, 3H), 7.20-7.18 (m, 2H), 6.92 (d, J = 8.3 Hz, 1H), 6.81 (dd, J = 8.3, 2.1 Hz, 1H), 6.57 (d, J = 2.1 Hz, 1H), 5.88 (s, 1H), 4.63 (s, 2H), 3.94 (s, 3H), 3.80 (s, 3H), 2.17 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 150.9, 149.5, 145.8, 136.6, 128.8, 128.6 (2C), 127.8, 124.7, 121.8, 111.1, 110.3, 109.7, 56.0 (2C), 50.3, 22.6. HRMS *m*/*z* (ESI) calcd. for C₂₀H₂₁N₂O₃S (M + H)⁺ 369.1267,

found 369.1267.

(*E*)-*N*-methyl-*N*-(1-phenyl-2-thiocyanatovinyl)acetamide (3ao). 59.2 mg (85%); Brown solid; mp 102-104 °C; ¹H NMR (400MHz, CDCl₃) δ
7.49-7.48 (m, 3H), 7.31-7.29 (m, 2H), 6.27 (s, 1H), 3.03 (s, 3H), 2.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 147.6, 132.5, 130.7, 129.3, 128.1, 110.5, 109.6, 35.6, 22.2. HRMS *m/z* (ESI) calcd. for C₁₂H₁₃N₂OS (M + H)⁺ 233.0743, found 233.0743.

(*E*)-*N*-(1-phenyl-2-thiocyanatovinyl)-*N*-(prop-2-yn-1-yl)acetamide
(3ap). 63.8 mg (83%); Yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.49-7.47 (m, 3H), 7.34-7.32 (m, 2H), 6.43 (s, 1H), 4.25 (d, *J* = 2.4 Hz, 2H),
2.30 (t, *J* = 2.5 Hz, 1H), 2.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ
169.7, 144.7, 132.1, 130.8, 129.3, 128.1, 112.7, 109.5, 77.9, 72.9, 36.4,
22.3. HRMS *m/z* (ESI) calcd. for C₁₄H₁₃N₂OS (M + H)⁺ 257.0743, found

257.0743.

(E)-N-allyl-N-(1-phenyl-2-thiocyanatovinyl)acetamide (3aq). 62.7 mg

(81%); Yellow solid; mp 59-61 °C; ¹H NMR (400MHz, CDCl₃) δ 7.48-7.47 (m, 3H), 7.31-7.26 (m, 2H), 6.24 (s, 1H), 5.79 (ddt, J = 16.6, 10.1, 6.3 Hz, 1H), 5.18 (d, J = 10.1 Hz, 1H), 5.05 (d, J = 17.2 Hz, 1H), 4.02 (d, J = 6.2 Hz, 2H), 2.16 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 145.9, 132.5, 132.2, 130.6, 129.2, 128.1, 118.8, 111.6, 109.6, 49.7, 22.4. HRMS m/z (ESI) calcd. for C₁₄H₁₅N₂OS (M + H)⁺ 259.0900, found 259.0900.

(*E*)-*N*-(2-bromobenzyl)-*N*-(1-phenyl-2-thiocyanatovinyl)acetamide
(3ar). 84.5 mg (73%); Yellow solid; mp 140-142 °C; ¹H NMR (400MHz, CDCl₃) δ 7.54-7.44 (m, 4H), 7.27-7.25 (m, 1H), 7.21-7.14 (m, 4H), 6.09 (s, 1H), 4.77 (s, 2H), 2.23 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 145.2, 135.5, 133.0, 132.2, 130.8, 130.7, 129.5, 129.2, 128.2, 127.7, 123.9, 112.8, 109.5, 49.8, 22.4. HRMS *m/z* (ESI) calcd. for C₁₈H₁₆BrN₂OS (M + H)⁺ 387.0161, found 387.0161.

(E)-N-(2-bromobenzyl)-N-(1-(4-chlorophenyl)-2-

thiocyanatovinyl)acetamide (**3as**). 84.4 mg (67%); Yellow solid; m.p. 141-143 °C; ¹**H NMR (400MHz, CDCl₃)** δ 7.52 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.44-7.41 (m, 2H), 7.27-7.20 (m, 2H), 7.18-7.13 (m, 3H), 6.12 (s, 1H), 4.76

(s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 144.2, 136.7, 135.3, 133.0, 130.8, 130.6, 129.5, 129.5, 127.7, 123.9, 113.3, 109.0, 76.7, 49.8, 22.3. HRMS *m/z* (ESI) calcd. for C₁₈H₁₅BrClN₂OS (M + H)⁺ 420.9772, found 420.9775.

(E)-N-(2-bromobenzyl)-N-(1-(4-iodophenyl)-2-

thiocyanatovinyl)acetamide (**3at**). 106.0 mg (69%); Yellow solid; m.p. 150-152 °C; ¹H NMR (400MHz, CDCl₃) δ 7.81-7.77 (m, 2H), 7.53 (d, *J* = 7.9 Hz, 1H), 7.29-7.25 (m, 1H), 7.22-7.14 (m, 2H), 6.95-6.91 (m, 2H), 6.11 (s, 1H), 4.76 (s, 2H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 144.3, 138.4, 135.3, 133.0, 131.7, 130.8, 129.7, 129.6, 127.7, 123.9, 113.4, 109.0, 97.1, 49.8, 22.4. HRMS *m/z* (ESI) calcd. for C₁₈H₁₅BrIN₂OS (M + H)⁺ 512.9128, found 512.9125.

(E)-N-benzyl-N-(1-phenyl-2-thiocyanatovinyl)propionamide (3au).
79.2 mg (82%); Yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.48-7.46 (m, 3H), 7.32-7.30 (m, 3H), 7.23-7.21 (m, 2H), 7.19-7.17 (m, 2H), 5.91 (s, 1H), 4.58 (s, 2H), 2.44 (q, J = 7.4 Hz, 2H), 1.20 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 145.3, 136.7, 132.5, 130.8, 129.4, 128.8,

128.7, 128.3, 127.9, 112.1, 109.6, 50.2, 27.7, 10.0. HRMS *m/z* (ESI) calcd. for C₁₉H₁₉N₂OS (M + H)⁺ 323.1213, found 323.1212.

(*E*)-*N*-benzyl-*N*-(1-phenyl-2-thiocyanatovinyl)butyramide (3av). 88.7
(88%); Yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.48-7.46 (m, 3H), 7.34-7.28 (m, 3H), 7.24-7.21 (m, 2H), 7.18-7.16 (m, 2H), 5.88 (s, 1H), 4.58 (s, 2H), 2.40 (t, *J* = 7.4 Hz, 2H), 1.74 (q, *J* = 7.3 Hz, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.9, 145.3, 136.7, 132.4, 130.7, 129.3, 128.7, 128.6, 128.2, 127.8, 111.9, 109.5, 50.0, 36.1, 19.1, 13.9. HRMS *m/z* (ESI) calcd. for C₂₀H₂₁N₂OS (M + H)⁺ 337.1369, found 337.1369.

(*E*)-*N*-benzyl-*N*-(1-(naphthalen-2-yl)-2-thiocyanatovinyl)acetamide
(3aw). 82.7 mg (77%); Yellow oil; ¹H NMR (400MHz, CDCl₃) δ 7.94 (d, J = 8.6 Hz, 1H), 7.91-7.85 (m, 2H), 7.67 (d, J = 1.8 Hz, 1H), 7.63-7.58 (m, 2H), 7.34-7.29 (m, 4H), 7.20-7.17 (m, 2H), 6.01 (s, 1H), 4.62 (s, 2H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 145.6, 136.5, 133.9, 132.8, 129.6, 129.5, 128.6, 128.7 (2C), 128.4, 127.9, 127.8 (2C), 127.3, 124.2, 112.5, 109.5, 50.0, 22.6. HRMS *m/z* (ESI) calcd. for C₂₂H₁₉N₂OS (M + H)⁺

359.1213, found 359.1212.

(E)-N-benzyl-N-(2-thiocyanato-1-(thiophen-3-yl)vinyl)acetamide

(3ax). 78.2 mg (83%); Yellow solid; m.p. 60-62 °C; ¹H NMR (400MHz, CDCl₃) δ 7.45 (dd, J = 5.1, 2.9 Hz, 1H), 7.37-7.36 (m, 1H), 7.34-7.29 (m, 3H), 7.21-7.19 (m, 2H), 7.07 (d, J = 5.0 Hz, 1H), 5.84 (s, 1H), 4.64 (s, 2H), 2.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 140.4, 136.5, 134.1, 128.8, 128.6, 127.9, 127.8, 127.7, 126.3, 112.0, 109.1, 50.3, 22.2. HRMS *m/z* (ESI) calcd. for C₁₆H₁₅N₂OS₂ (M + H)⁺ 315.0620, found 315.0620.

(*E*)-*N*-benzyl-*N*-(1-phenyl-2-selenocyanatovinyl)acetamide (3ay). 91.9 mg (86%); Yellow solid; m.p. 68-70 °C; ¹H NMR (400MHz, CDCl₃) δ 7.50-7.46 (m, 3H), 7.34-7.28 (m, 3H), 7.18-7.14 (m, 4H), 6.26 (s, 1H), 4.58 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 145.4, 136.5, 133.7, 130.8, 129.6, 128.6 (2C), 127.8, 127.5, 111.0, 100.2, 49.9, 22.4. HRMS *m*/*z* (ESI) calcd. for C₁₈H₁₇N₂OSe (M + H)⁺ 357.0501, found 357.0500.

2.2 Preparation and characterizations of compounds 4-9

Preparation of product **4** from **3ab**: Compound **3ab** (154.2 mg, 0.5 mmol), ZnBr₂ (112.6 mg, 0.5 mmol, 1 equiv.) and NaN₃ (81.3 mg, 1.25 mmol, 2.5 equiv.) were combined in a mixed solvent [H₂O/*i*PrOH (1:1, 3 mL)] and refluxed for 12 h. Upon completion of the reaction, the mixture was diluted with EtOAc. The solvent was then removed under vacuo. Column chromatography of the residue (petroleum ether/EtOAc, 1:1) provided tetrazole **4** as yellow solid in 133.4 mg (76%); m.p. 141-143 °C;

E-N-(2-((1*H*-tetrazol-5-yl)thio)-1-phenylvinyl)-*N*-benzylacetamide (4). ¹H NMR (400MHz, DMSO- d_6) δ 7.58-7.54 (m, 2H), 7.49-7.42 (m, 3H), 7.35-7.21 (m, 3H), 7.22-7.21 (m, 2H), 6.83 (s, 1H), 4.51 (s, 2H), 2.21 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 170.5, 154.1, 137.5, 134.6, 134.3, 129.1, 129.0, 128.5, 128.4, 127.8, 127.3, 126.0, 49.2, 22.2. HRMS m/z (ESI) calcd. for C₁₈H₁₈N₅OS (M + H)⁺ 352.1227, found 352.1225.

Preparation of product **5** from **3al**: To a mixture of $Pd(OAc)_2$ (5.6 mg, 0.025 mmol, 5 mol%), PPh₃ (13.1 mg, 0.05 mmol, 10 mol%), and Cs_2CO_3 (325.8 mg, 1 mmol, 2 equiv.) was added a solution of **3al** (193.6 mg, 0.5

mmol) in 2 mL DMF under nitrogen atmosphere. After stirring at 100 °C overnight, the reaction mixture was quenched with water, extracted with EtOAc, washed with brine. The combined organic layers were dried over anhydrous Na_2SO_4 and evaporated in vacuo. The residue was purified by column chromatography over silica gel (petroleum ether/EtOAc, 10:1). The product of **5** was isolated as yellow oil in 45% yield (63.2 mg);

N-(benzo[*b*]thiophen-3-yl)-*N*-benzylacetamide (5). ¹H NMR (400MHz, CDCl₃) δ 7.87-7.81 (m, 1H), 7.54-7.48 (m, 1H), 7.43-7.37 (m, 2H), 7.27-7.20 (m, 5H), 6.93 (s, 1H), 5.51 (d, *J* = 14.1 Hz, 1H), 4.27 (d, *J* = 14.1 Hz, 1H), 1.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.1, 138.6, 137.6, 135.1, 134.9, 128.9, 128.4, 127.5, 125.2, 124.9, 124.2, 123.3, 120.7, 51.4, 22.0. HRMS m/z (ESI) calcd. for C₁₇H₁₆NOS (M + H)⁺ 282.0947, found 282.0945.

Preparation of product **6** from **3ar**: To a mixture of $Pd(OAc)_2$ (5.6 mg, 0.025 mmol, 5 mol%), PPh₃ (13.1 mg, 0.05 mmol, 10 mol%), and Cs₂CO₃ (325.8 mg, 1 mmol, 2 equiv.) was added a solution of **3ar** (193 mg, 0.5 mmol) in 2 mL DMF under nitrogen atmosphere. After stirring at 100 °C overnight, the reaction mixture was quenched with water, extracted with EtOAc, washed with brine. The combined organic layers were dried over

anhydrous Na_2SO_4 and evaporated in vacuo. The residue was purified by column chromatography over silica gel (petroleum ether/EtOAc, 10:1). The product of **6** was isolated as yellow solid in 36% yield (50.6 mg); m.p. 86-88 °C;

1-(3-phenylbenzo[*f*][1,4]thiazepin-4(5*H*)-yl)ethan-1-one (6). ¹H NMR (400MHz, CDCl₃) δ 7.49-7.46 (m, 1H), 7.39-7.33 (m, 4H), 7.31-7.26 (m, 2H), 7.20-7.15 (m, 2H), 6.07 (s, 1H), 4.84 (s, 2H), 1.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 141.6, 139.0, 138.5, 132.6, 131.4, 129.1, 128.0, 127.7 (2C), 126.1, 124.5, 113.8, 53.1, 23.9. HRMS m/z (ESI) calcd. for C₁₇H₁₆NOS (M + H)⁺ 282.0947, found 282.0943.

Preparation of product 7 from **3as**: To a mixture of $Pd(OAc)_2$ (5.6 mg, 0.025 mmol, 5 mol%), PPh₃ (13.1 mg, 0.05 mmol, 10 mol%), and Cs₂CO₃ (325.8 mg, 1 mmol, 2 equiv.) was added a solution of **3as** (210.0 mg, 0.5 mmol) in 2 mL DMF under nitrogen atmosphere. After stirring at 100 °C overnight, the reaction mixture was quenched with water, extracted with EtOAc, washed with brine. The combined organic layers were dried over anhydrous Na₂SO₄ and evaporated in vacuo. The residue was purified by column chromatography over silica gel (petroleum ether/EtOAc, 10:1). The product of **7** was isolated as yellow solid in 33% yield (52.0 mg); m.p.

90-92 °C;

1-(3-(4-chlorophenyl)benzo[*f*][1,4]thiazepin-4(5*H*)-yl)ethan-1-one (7). ¹H NMR (400MHz, CDCl₃) δ 7.49-7.45 (m, 1H), 7.36-7.31 (m, 2H), 7.30-7.25 (m, 3H), 7.21-7.16 (m, 2H), 6.06 (s, 1H), 4.82 (s, 2H), 1.64 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.7, 140.3, 138.4, 137.6, 133.7, 132.3, 131.4, 129.3, 127.8, 127.7, 126.2, 125.7, 114.5, 53.1, 23.9. HRMS m/z (ESI) calcd. for C₁₇H₁₅CINOS (M + H)⁺ 316.0557, found 316.0554.

Preparation of product **9** from **3aa**: To a solution of **3aa** (161.0 mg, 0.5 mmol) in a mixed solvent of THF/H₂O (1:1, 2.0 mL) was added concentrated hydrochloric acid (1 mL), and the vial was heated at 50 °C for 24 h. Upon completion of the reaction, the mixture was diluted with EtOAc. The solvent was then removed under vacuo. The residue was purified by column chromatography over silica gel (petroleum ether/EtOAc, 20:1). The product of **9** was isolated as yellow solid in 81% yield (77.4 mg);

2-thiocyanato-1-(*p*-tolyl)ethan-1-one (9).² ¹H NMR (400MHz, CDCl₃) δ 7.84 (d, *J* = 8.2 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.73 (s, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 190.4, 146.0, 131.4, 129.8, 128.5, 112.0, 43.0, 21.8.

3. Preliminary Mechanistic Studies

To a solution of enamides **1b** (75.4 mg, 0.30 mmol), NH₄SCN (34.3 mg, 0.45 mmol, 1.5 equiv.), $K_2S_2O_8$ (121.6 mg, 0.45 mmol, 1.5 equiv.) in HOAc (2 mL) was added DPE (162.2 mg, 0.6 mmol, 3 equiv.). The vial was sealed with a septum and allowed to stir at 50 °C for 6 h. Upon completion of the reaction, the mixture was diluted with EtOAc. The solvent was then removed under vacuo. The residue was purified by column chromatography over silica gel (petroleum ether/EtOAc, 3:1). The adduct product **10** of DPE and SCN radical was isolated as yellow oil in 31% yield (55.1 mg). Trace amount of corresponding **3ab** was detected.

NCS SCN Ph Ph 10

(1,2-dithiocyanatoethane-1,1-diyl)dibenzene(10).³ ¹H NMR (400MHz, CDCl₃) δ 7.44-7.37 (m, 6H), 7.34-7.29 (m, 4H), 4.01 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 129.1, 129.0, 126.1, 111.2, 72.0, 46.5.

4. Plausible mechanism for Scheme 3c

Scheme 3c. Preparation of seven-membered S-containing heterocycles

Based on the results obtained and previous reports,⁴ a plausible reaction mechanism is proposed. Initially, transition-metal catalyst Pd(II) is reduced to Pd(0) species in the presence of PPh₃. Meanwhile, intermediate **A** is probably generated from **3ar** through isomerization reaction under heating conditions. The active Pd(0) species then undergoes oxidative addition with intermediate **A** to afford intermediates **B**. Intramolecular nucleophilic reaction of thiolate with the metal complex furnishes intermediates **C**, followed by reductive elimination reaction to provide seven-membered ring product 6 and Pd(0) species.

5. X-ray Crystallographic Data of 3ar

Sample preparation: Single crystals of **3ar** for X-ray diffraction experiment was obtained by slow evaporation of DCM/*n*-hexane (1:10, v/v) solution containing **3ar**. CCDC 2014798 contain the supplementary crystallographic data for this paper, these data can be obtained free of charge from the Cambridge Crystallographic Data Center.

Table S1 Crystal data and structure refinement for 3ar (CCDC

2014798).

Identification code	3ar
Empirical formula	C ₁₈ H ₁₅ BrN ₂ OS
Formula weight	387.29
Temperature/K	99.9(4)
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	10.6922(6)
b/Å	8.9341(8)
c/Å	17.5905(13)
α/°	90
β/°	98.505(6)
γ/°	90
Volume/Å ³	1661.9(2)
Z	4
$\rho_{calc}g/cm^3$	1.548
µ/mm ⁻¹	2.604
F(000)	784.0
Crystal size/mm ³	$0.13 \times 0.12 \times 0.1$
Radiation	Mo Ka ($\lambda = 0.71073$)
2O range for data collection/°	3.852 to 49.996
Index ranges	$-12 \le h \le 12, -10 \le k \le 6, -20 \le l \le 20$
Reflections collected	7414
Independent reflections	2931 [$R_{int} = 0.0508$, $R_{sigma} = 0.0641$]
Data/restraints/parameters	2931/0/209
Goodness-of-fit on F ²	1.072
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0482, wR_2 = 0.1103$
Final R indexes [all data]	$R_1 = 0.0607, wR_2 = 0.1207$
Largest diff. peak/hole / e Å ⁻³	1.04/-1.61

Ato m	Atom	Length/Å	Atom	Atom	Length/Å
Brl	C6	1.905(4)	C3	C4	1.392(5)
S 1	C9	1.766(4)	C4	C5	1.373(6)
S 1	C10	1.684(4)	C5	C6	1.380(5)
01	C12	1.223(4)	C8	C9	1.325(5)
N1	C7	1.468(4)	C8	C13	1.486(5)
N1	C8	1.430(5)	C11	C12	1.505(5)
N1	C12	1.370(4)	C13	C14	1.392(5)
N2	C10	1.149(5)	C13	C18	1.391(5)
C1	C2	1.392(5)	C14	C15	1.385(5)
C1	C6	1.400(5)	C15	C16	1.389(6)
C1	C7	1.516(5)	C16	C17	1.375(6)
C2	C3	1.380(5)	C17	C18	1.391(5)

Table S2 Bond Lengths for 3ar (CCDC 2014798).

Table S3 Bond Angles for 3ar (CCDC 2014798).

Atom	n Atom	Atom	Angle/°	Atom	n Atom	Atom	Angle/°	
C10	S 1	C9	101.08(18)	C9	C8	N1	119.6(3))
C8	N1	C7	115.6(3)	C9	C8	C13	124.8(3))
C12	N1	C7	119.1(3)	C8	C9	S 1	121.2(3))
C12	N1	C8	125.3(3)	N2	C10	S 1	172.8(4))
C2	C1	C6	116.2(3)	01	C12	N1	120.1(3))
C2	C1	C7	121.5(3)	01	C12	C11	121.8(3))
C6	C1	C7	122.2(3)	N1	C12	C11	118.0(3))
C3	C2	C1	121.9(3)	C14	C13	C8	119.5(3))
C2	C3	C4	120.0(3)	C18	C13	C8	121.8(3))
C5	C4	C3	119.6(4)	C18	C13	C14	118.7(3))
C4	C5	C6	119.5(3)	C15	C14	C13	120.7(4))
C1	C6	Br1	119.6(3)	C16	C15	C14	120.1(4))
C5	C6	Br1	117.7(3)	C17	C16	C15	119.6(4))
C5	C6	C1	122.7(3)	C16	C17	C18	120.6(4))

Table S3 Bond Angles for 3ar (CCDC 2014798).

Ato	m Atoı	m Atom	Angle/°	Aton	n Aton	n Atom	Angle/°
N1	C7	C1	113.3(3)	C17	C18	C13	120.3(4)
N1	C8	C13	115.6(3)				

6. Reference

[1]. (a) Van den Berg, M.; Haak, R. M.; Minnaard, A. J.; de Vries, A. H.
M.; de Vries, J. G.; Feringa, B. L. Rhodium/MonoPhos-Catalysed
Asymmetric Hydrogenation of Enamides. *Adv. Synth. Catal.* 2002, *344*, 1003-1007; (b) Pankajakshan, S.; Xu, Y.-H.; Cheng, J. K.; Low, M. T.;
Loh, T.-P. Palladium Catalyzed Direct C-H Arylation of Enamides with
Simple Arenes. *Angew. Chem. Int. Ed.* 2012, *51*, 5701-5705; (c) Shen, Z.Y.; Cheng, J.-K.; Wang, C.; Yuan, C.; Loh, T.-P.; Hu, X.-H. Iron-Catalyzed Carbamoylation of Enamides with Formamides as a Direct
Approach to N-Acyl Enamine Amides. *ACS Catal.* 2019, *9*, 8128–8135.

[2]. Kumaraswamy, G.; Vijaykumar, S. Photo-sensitized oxy-thiocynation of terminal alkynes/1,3-aryldienes and their one-pot conversion to 2-hydroxy 4-substitutedaryl thiazoles. *Org. Biomol. Chem.* **2019**, *17*, 2232-2241.

[3]. Amrita, D.; Alakananda, H. Potassium Persulfate-Mediated Thiocyanation of 2*H*-Indazole under Iron-Catalysis. *Adv. Synth. Catal.* **2019**, *361*, 842-849. [4]. (a) Still, I. W. J.; Toste, F. D. Reduction of Aryl Thiocyanates with SmI2 and Pd-Catalyzed Coupling with Aryl Halides as a Route to Mixed Aryl Sulfides. *J. Org. Chem.* **1996**, *61*, 7677-7680; (b) Ke, F.; Qu, Y.; Jiang, Z.; Li, Z.; Wu, D.; Zhou, X. An Efficient Copper-Catalyzed Carbon-Sulfur Bond Formation Protocol in Water. *Org. Lett.* **2011**, *13*, 454–457.

7. ¹H NMR and ¹³C NMR spectra of compounds 3aa-y, 4-10 ¹H NMR spectrum of 3aa

¹³C NMR spectrum of 3aa

¹³C NMR spectrum of 3ab

¹³C NMR spectrum of 3ac

¹³C NMR spectrum of 3ad

¹³C NMR spectrum of 3ae

¹³C NMR spectrum of 3af

¹³C NMR spectrum of 3ag

¹³C NMR spectrum of 3ah

¹³C NMR spectrum of 3ai

¹³C NMR spectrum of 3aj

¹³C NMR spectrum of 3ak

¹H NMR spectrum of 3al

¹³C NMR spectrum of 3al

¹³C NMR spectrum of 3am

¹³C NMR spectrum of 3an

¹³C NMR spectrum of 3ao

¹³C NMR spectrum of 3ap

¹³C NMR spectrum of 3aq

¹³C NMR spectrum of 3ar

¹³C NMR spectrum of 3as

¹³C NMR spectrum of 3at

¹H NMR spectrum of 3au

 4.58	247 245 245 243	122 120 118	-0.00
1	The second secon	\checkmark	

¹³C NMR spectrum of 3au

¹³C NMR spectrum of 3av

- 7.13 - 7.13 - 7.13 - 7.15 - 7.75 - 7.72

¹³C NMR spectrum of 3aw

¹³C NMR spectrum of 3ax

¹H NMR spectrum of 3ay

¹³C NMR spectrum of 3ay

¹H NMR spectrum of 4

¹³C NMR spectrum of 4

¹H NMR spectrum of 5

¹³C NMR spectrum of 5

¹³C NMR spectrum of 6

¹³C NMR spectrum of 7

¹³C NMR spectrum of 9

¹³C NMR spectrum of 10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)