A Pd-Catalysed One-Pot Three-Step Reaction in the Synthesis of Naphthalenes and 1,2-Naphthoquinones

 Císařová, ${ }^{\text {b }}$ and Eliška Matoušováa, ${ }^{\text {, }}$
${ }^{a}$ Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Praha 2, Czech Republic
${ }^{\text {b }}$ Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Praha 2, Czech Republic

Contents

1. General experimental procedures ... 2
2. Synthesis of starting materials... 3
3. Tandem cyclisation/Suzuki cross-coupling reaction .. 10
4. Synthesis of naphthalenes... 32
5. Optimisation of the one-pot procedure.. 46
6. Reactions with boronic acid derivatives .. 48
7. Synthesis of 1,2-naphthoquinones ... 51
8. UV/Vis spectroscopy data... 56
9. X-ray structure data for compound 5a ... 57
10. Cytotoxicity screening... 59
11. References .. 61
12. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ... 62

1. General experimental procedures

Unless otherwise specified, the following general procedures were used in all reactions. Commercially available compounds were used without further purification unless otherwise stated. Levoglucosenone was kindly donated by the Circa Group Pty Ltd (Australia). Tetrahydrofuran (THF) purified and dried by distillation from sodium/benzophenone. Dry dichloromethane was purchased from Acros and used without purification. Analytical thin layer chromatography (TLC) was performed on Merck Silica gel 60- F254 coated aluminum plates. Eluated plates were checked using a UV lamp (254 nm) and/or by treatment with a suitable dip followed by heating. Followed dips were used: phosphomolybdate dip: $\left[\mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~g}), \mathrm{H}_{3}\left[\mathrm{P}_{\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)}\right)_{4}\right](4 \mathrm{~g}), \mathrm{H}_{2} \mathrm{SO}_{4}$ $\left.(10 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})\right]$; anisaldehyde dip: $\left[\mathrm{CH}_{3} \mathrm{COOH}\right.$ (99\%) (6 mL), anisaldehyde (8 $\left.\mathrm{mL}), \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(400 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{SO}_{4}(20 \mathrm{~mL})\right]$. Flash chromatography was performed on Acros Silica gel 60A (35-70 $\mu \mathrm{m}$). Proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ NMR spectra were recorded on a Bruker AVANCE III HD 400 instrument using the residual signals from $\mathrm{CHCl}_{3}, \delta 7.26 \mathrm{ppm}$ and $\delta 77.16 \mathrm{ppm} ; \mathrm{DMSO}, \delta 2.50 \mathrm{ppm}$ and $\delta 39.52 \mathrm{ppm} ;$ THF $\delta 3.58$ and 1.73 ppm, $\delta 67.57$ and $\delta 25.37$ ppm; MeOH $\delta 3.31$ and $\delta 49.00$ ppm, as internal references for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts, respectively. IR spectra were measured on Thermo Nicolet AVATAR 370 FT-IR spectrometer on KBr tablets of the compounds via DRIFT method. El and Cl mass spectra were measured using orthogonal acceleration time-of-flight mass spectrometer GCT Premier (Waters) coupled to a 7890A gas chromatograph (Agilent). ESI mass spectra (low resolution) were recorded using Q-Tof micro (Waters) mass spectrometer. ESI or APCI mass spectra (high resolution) was measured using LTQ Orbitrap XL hybrid mass spectrometer (Thermo Fisher Scientific) equipped with an electrospray ion source. Melting points were measured on Büchi Melting Point B-545 using capillary method and are uncorrected. Optical rotations measured on AUTOMATIC POLARIMETR, Autopol III are given in deg $\cdot \mathrm{mL} \cdot \mathrm{g}^{-1} \cdot \mathrm{dm}^{-1}$ with accuracy ± 2 and the mass concentrations (marked as c are given in $\mathrm{g} / 100 \mathrm{~mL}$). The cytotoxic activity screening was performed by our collaborators from the group of Dr. Hana Mertlikova-Kaiserova at the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences.

2. Synthesis of starting materials

2.1 Synthesis of compound 1a

2-lodocyclohex-2-en-1-one (SI1)

Applying modified procedure from the literature source, ${ }^{[1]}$ to a solution of cyclohex-2-en-1-one ($1.936 \mathrm{~mL}, 20.0 \mathrm{mmol}$) in THF/H2O ($50 / 50 \mathrm{~mL}$) K2CO3 $(3.317 \mathrm{~g}, 24.0 \mathrm{mmol}), l_{2}(7.594 \mathrm{~g}, 30.0 \mathrm{mmol})$ and 4-dimethylaminopyridine ($0.49 \mathrm{~g}, 4.0 \mathrm{mmol}$) were added subsequently. The reaction mixture was allowed to stir at room temperature and after 3 h was quenched with a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(15 \mathrm{ml})$ and extracted between brine (50 ml) and EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified on a silica gel column using hexanes/EtOAc (85/15) as eluent to obtain the target iodinated compound $\mathbf{S I 1}$ as a yellow amorphous solid ($4.22 \mathrm{~g}, 95 \%$). The iodination reaction was performed several times and the isolated yields were in the range of $75-95 \%$. The recorded spectral data were in agreement with previously reported values. ${ }^{[2]}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{td}, J=$ $6.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}$), 2.13-2.05 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 192.3,159.5,104.0$, 37.4, 30.1, 23.0.

2-lodocyclohex-2-en-1-ol (SI2)

Applying modified Luche reduction conditions, ${ }^{[3]}$ 2-iodocyclohex-2-en-1-one
 SI1 ($3.363 \mathrm{~g}, 15.15 \mathrm{mmol}$) and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(12.7 \mathrm{~g}, 34.09 \mathrm{mmol})$ were diluted with $\mathrm{MeOH}(140 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C} . \mathrm{NaBH}_{4}(0.716 \mathrm{~g}, 18.94 \mathrm{mmol})$ was added portionwise and the reaction was allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . Then the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and stirred for additional 10-15 min. After evaporation of MeOH , extraction between $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$ and EtOAc $(3 \times 50$ mL) the organic layers were separated, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting colorless solid compound SI2 was obtained in ($3.06 \mathrm{~g}, 90 \%$) and applied to the next step without purification. The reaction was performed several times and the yields were in the range of $77-90 \%$. The recorded spectral data were in agreement with previously reported values. ${ }^{[4]}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl 3) $\delta 6.50(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.95(\mathrm{~m}$, $4 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.2,103.8$, 72.2, 32.1, 29.5, 17.9.

6-(But-2-yn-1-yloxy)-1-iodocyclohex-1-ene (1a)

 2-lodocyclohex-2-en-1-ol SI2 (0.493 g, 2.2 mmol) and tetrabutylammonium iodide (TBAI) ($0.082 \mathrm{~g}, 0.22 \mathrm{mmol}$) were dissolved in dry THF (6.6 mL) under argon atmosphere. 1-Bromobut-2-yne (0.347 mL , $3.96 \mathrm{mmol})$ was added and the reaction mixture cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaH}(0.159 \mathrm{~g}, 60 \%$ dispersion in mineral oil, 3.96 mmol) was added portionwise and the reaction was stirred at $0^{\circ} \mathrm{C}$. After 20 min it was allowed to warm to room temperature and the stirring was continued overnight. Reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and extracted between brine $(30 \mathrm{~mL})$ and EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography on silica gel using hexanes/diethyl ether (90/10) as eluent delivered desired product 1a as a yellow oil ($0.590 \mathrm{~g}, 97 \%$). Compound $\mathbf{1 a}$ is relatively stable in a refrigerator under argon atmosphere within 4 days, after that it starts to decompose slowly.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.56-6.53(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 1 \mathrm{H})$, 2.19-1.92 (m, 3H), 1.86 (t, J = $2.3 \mathrm{~Hz}, 3 \mathrm{H}$), 1.85-1.58 (m, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 142.2, $98.8,82.7,78.1,75.5,57.7,29.5,29.3,17.2,3.8 ; \mathbf{I R}(\mathrm{KBr}) \mathrm{V}_{\max } 2941$, 2848, 2295, 2229, 1138, 1063, 988, 940, $806 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 276.0 ($10, \mathrm{M}^{++}$), 246.0 (48), 223.0 (70), 205.9 (95), 149.1 (35), 119.1 (100), 97.1 (48), 79.0 (85), 77.0 (60), 53.0 (40); HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}$ 276.0011, found 276.0014.
2.2 Synthesis of compound 1b

(1S,5R)-3-lodo-6,8-dioxabicyclo[3.2.1]oct-2-en-4-one (SI3)

According to a literature procedure ${ }^{[5]}$ to a solution of levoglucosenone $(1.5 \mathrm{~g}, 11.9 \mathrm{mmol})$ in dry 1,2-dichloroethane $(20 \mathrm{~mL})$ iodine ($4.2 \mathrm{~g}, 16.5$ mmol) and pyridine ($1.08 \mathrm{~mL}, 13.4 \mathrm{mmol}$) were added subsequently. The reaction mixture was allowed to stir at room temperature and after 15 min toluene (20 ml) was added. The resulting media was poured onto a 5 cm plug of silica and the product eluted with toluene. Concentration on a rotary evaporator provided the target iodinated levoglucosenone SI3 as a yellow crystalline solid ($2.45 \mathrm{~g}, 81 \%$). The recorded spectral data were in agreement with previously reported values. ${ }^{[5]}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (d, $J=5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.57 (s, 1H), 4.93 (ddd, $J=5.1$, $4.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (dd, $J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (d, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 183.2, 155.7, 101.1, 100.0, 74.4, 66.7.

Using reaction conditions for SI2, the compound SI4 was obtained as brownish oil in ($2.431 \mathrm{~g}, 98 \%$) and applied to the next step without purification. The recorded spectral data were in agreement with previously reported values. ${ }^{[6]}$

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{g}]$	$\mathrm{V}[\mathrm{mL}]$
MeOH			98
SI 3	9.7	2.45	
NaBH_{4}	12.2	0.5	
$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	21.9	8.14	

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.78(\mathrm{dd}, J=4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.53(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=11.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (ddd, $J=6.9,4.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ $140.5,103.6,100.8,74.3,73.7,70.6$; Specific rotation $[\alpha]_{D}=-51.0^{\circ}\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$ $\left[\mathrm{lit} .^{6}[\alpha]_{\mathrm{D}}=-56.7\left(0.2, \mathrm{CHCl}_{3}\right)\right]$.

(1S,4R,5R)-4-(But-2-yn-1-yloxy)-3-iodo-6,8-dioxabicyclo[3.2.1]oct-2-ene (1b)

Reaction conditions for 1 were applied. Column chromatography on silica gel with hexanes/diethyl ether (80/20) as eluent delivered desired product 1b as a viscous yellowish oil (1.21 g, 67\%).

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{g}]$	$\mathrm{V}[\mathrm{mL}]$
THF			17.8
SI4	5.93	1.506	
TBAI	0.59	0.219	
1-bromobut-2-yne	10.67		0.9
$\mathrm{NaH}(60 \%$ dispersion in mineral oil)	10.67	0.256	

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{dd}, J=4.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.29(\mathrm{~m}, 3 \mathrm{H}), 3.95(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{ddd}, J=6.9$,
4.0, $1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86 (t, $J=2.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.0,100.4$, 99.7, 83.8, 80.0, 74.9, 73.7, 71.0, 59.1, 3.8; IR (KBr) $v_{\max } 3485,3354,2887,1625,1329$, 1129, 1087, $985 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 306.0 (18, M ${ }^{++ \text {), } 253.8 \text { (55), } 207.9 \text { (100), } 206.9 ~(180) ~}$ (40), 179.9 (17), 133.1 (30), 97.0 (18); HRMS (EI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{IO}_{3} 305.9753$, found 305.9754; Specific rotation [α] $=-39.3^{\circ}$ (c 1, CHCl_{3}).
2.3 Synthesis of compound 1c

N -(But-2-yn-1-yl)-4-methoxybenzenesulfonamide (SI5)

Mbs

Applying modified procedure from the literature source, ${ }^{[7]}$ 4-methoxybenzenesulfonamide ($2.25 \mathrm{~g}, 12 \mathrm{mmol}$) was dissolved in dry $\mathrm{MeCN}(10 \mathrm{~mL})$ under an argon atmosphere, then $\mathrm{K}_{2} \mathrm{CO}_{3}(829 \mathrm{mg}, 6 \mathrm{mmol})$ and 1 -bromobut-2-yne ($0.53 \mathrm{~mL}, 6 \mathrm{mmol}$) were added. The resulting mixture was heated at reflux for 2 h , before being cooled down and extracted with water (25 mL) and EtOAc (3 $\times 25 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Column chromatography on silica gel using hexanes/EtOAc (80/20 $\rightarrow 70 / 30 \rightarrow 60 / 40$) as eluent delivered desired product SI5 as a yellowish powder ($0.613 \mathrm{~g}, 43 \%$). The recorded spectral data were in agreement with previously reported values. ${ }^{[8]}$
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{bt}, \mathrm{J}=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dq}, J=6.1,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 3 \mathrm{H})$.

N -(But-2-yn-1-yl)-N-(2-iodocyclohex-2-en-1-yl)-4-methoxybenzenesulfonamide (1c)
Mbs $_{\wedge_{N}}$ Alcohol SI2 ($500 \mathrm{mg}, 2.23 \mathrm{mmol}$) was dissolved in dry THF (12 mL) under an argon atmosphere, then tributylphosphine ($542 \mathrm{mg}, 2.68$ $\mathrm{mmol})$ and sulfonamide $\mathbf{S} 5(588 \mathrm{mg}, 2.46 \mathrm{mmol})$ were added, and
the mixture was stirred until clear solution was formed. Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $\operatorname{DIAD}(541 \mathrm{mg}, 2.68 \mathrm{mmol})$ was added. After 5 min the reaction mixture was warmed to room temperature and stirred for 1 h . Silica gel (1.5 g) was added to the mixture, concentrated under reduced pressure and used directly to column chromatography on silicagel with hexanes/EtOAc (85/15 $\rightarrow 80 / 20 \rightarrow 70 / 30$) (to provide the title compound as a white crystalline solid (812 g, 82\%), m.p. $=141.3^{\circ} \mathrm{C}$ (recrystallized from hexanes/DCM).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.91-7.85(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.73$ (ddd, $\mathrm{J}=$ $5.2,3.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{dq}, J=18.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 3.60 (dq, $J=18.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20-1.78(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{t}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.55$ ($\mathrm{m}, 1 \mathrm{H}$) ; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,145.4,133.1,130.1,113.7,100.1,80.5$, 75.5, 61.6, 55.7, 33.9, 29.6, 29.0, 20.6, 3.7; IR (KBr) Vmax 2947, 2870, 2220, 1593, 1496, 1338, 1261, 1151, 1099, 1026, 833, 669, $577 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 469.0 (15), 468.0 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 446.0\left(5,[\mathrm{M}+\mathrm{H}]^{+}\right), 240.1$ (7); HRMS (ESI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{NISNa}$ 468.0101, found 468.0096.
2.4 Synthesis of compound 1d

4-Methoxy- N -(3-phenylprop-2-yn-1-yl)benzenesulfonamide (SI6)

Mbs The product was prepared from Mbs-protected propargylamine ${ }^{[9]}$ and iodobenzene using procedure from the literature source. ${ }^{[10]}$ Column chromatography on silica gel with hexanes/EtOAc ($80 / 20 \rightarrow 70 / 30 \rightarrow 1 / 1$) as eluent delivered the desired product SI6 (86\% yield) as a white crystalline solid.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.18$ - 7.13 (m, 2H), $6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 4.54(\mathrm{bs}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.2,131.7,131.5,129.8,128.7,128.3,122.2,114.4,84.9,83.5$, 55.7, 33.9; IR (KBr) $V_{\max } 3273,1598,1497,1425,1329,1263,1159,1027,836,755$, $692 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 302.1 (12), 301.1 (58, M ${ }^{+}$), 238.1 (82), 236.1 (80), 208.1 (60), 155.0 (80), 130.1 (100); HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{NS}$ 301.0773, found 301.0775.

N -(2-lodocyclohex-2-en-1-yl)-4-methoxy-N-(3-phenylprop-2-yn-1-yl)benzenesulfonamide (1d)

Mbs
 Alcohol SI2 (448 mg, 2 mmol) was dissolved in dry THF (12 mL) under an argon atmosphere, then tributylphosphine ($0.6 \mathrm{~mL}, 2.4$ mmol) and sulfonamide SI6 (723 mg, 2.4 mmol) were added, and the mixture was stirred until clear solution was formed. Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and DIAD (0.47 mL , 2.4 mmol) was added. After 5 min the reaction mixture was warmed to room temperature and stirred for 3 h . Silica gel (1.5 g) was added to the mixture, concentrated under reduced pressure and used directly to column chromatography on silicagel with hexanes/EtOAc (85/15 $\rightarrow 80 / 20 \rightarrow 70 / 30$ as eluent delivered the desired product 1d as a colourless oil ($0.800 \mathrm{~g}, 79 \%$).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.95-7.87$ (m, 2H), $7.34-7.18$ (m, 5H), $6.90-6.83$ (m, $2 H$), 6.78 (ddd, $J=5.3,3.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90 (d, J = $18.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), 2.22 - 2.06 (m, 2H), $2.03-1.79$ (m, 3H), $1.65-$ 1.59 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCI3) $\delta 162.9,145.6,133.1,131.6,130.1,128.4$, 128.3, 122.8, 113.9, 100.0, 85.7, 84.6, 61.6, 55.6, 34.3, 29.6, 29.0, 20.5; IR (KBr) Vmax 2947, 2917, 2869, 2851, 1736, 1595, 1503, 1341, 1302, 1263, 1153, 1099, 1027, 833, 761, 665, $588 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 1037.1 (50, [2M+Na] ${ }^{+}$), 531.0 (26), 530.0 (100, [M+Na] ${ }^{+}$, 448.3 (6), 447.3 (22), 433.1 (10), 365.1 (10); HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{NISNa} 530.0257$, found 530.0256 .

3. Tandem cyclisation/Suzuki cross-coupling reaction

General procedure for the tandem reaction: The iodinated propargylic starting material 1 (1 mmol) was dissolved in $(9.1 \mathrm{~mL})$ of THF or DMF followed by addition of 2-bromo-(hetero)arylboronic acid (1.5 mmol), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0 \mathrm{mmol})$ and water (0.9 mL). The reaction mixture was degassed and backfilled with argon $(2 \times)$, then $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right) 4$ ($4 \mathrm{~mol} \%$) was added and the degassing procedure was repeated again $(2 \times)$. Reaction was stirred at $70^{\circ} \mathrm{C}\left(80^{\circ} \mathrm{C}\right.$ for DMF) until the full conversion of the starting material was observed by TLC, cooled down and extracted with water (25 mL) and EtOAc ($2 \times 25 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Crude mixture was subjected to column chromatography on silica gel delivering desired Heck/Suzuki product 2. Reaction and purification details are specified for the each substrate below.
(E)-3-(1-(2-Bromo-5-methoxyphenyl)ethylidene)-2,3,5,6,7,7a-hexahydrobenzofuran (2aa)
Reaction time: $9 \mathrm{~h} ;$ Column chromatography:
hexanes/diethyl ether

Yield: $80 \%(0.504 \mathrm{~g})$; pale yellow solid, $\mathrm{mp}=59.6{ }^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			17.1
Water			1.7
$\mathbf{1 a}$	1.88	519	

$(\mathrm{HO})_{2} \mathrm{~B}$	2.82	651	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.075	87	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3.76	1225	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.47(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45\left(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 6.75(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (d, $\left.J=3.3 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 6.69\left(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 6.67(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.80-4.73(\mathrm{~m}$, $\left.1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.62(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.60\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 4.49-4.41\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right)$, 4.22-4.13 (m, 1H, 1H ${ }^{\#}$), 3.79 (s, 3H), 3.77 (s, 3H ${ }^{\#}$), 2.21-2.11 (m, 1H, 1H $\left.{ }^{\#}\right), 1.95-1.84$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.89\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 1.79-1.70\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.50-1.23(\mathrm{~m}, 2 \mathrm{H}$, $\left.2 H^{\#}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 159.7,159.2^{\#}, 145.1,144.5^{\#}, 137.6,136.9^{\#}, 134.0,133.5$, $133.4^{\#}, 127.1,126.7^{\#}, 121.6,120.7^{\#}, 115.1,114.8^{\#}, 114.5,114.4^{\#}, 113.5,112.3^{\#}, 79.2$, 79.1\#, 70.5, 70.4 ${ }^{\#}$, 55.7 (1C, 1C\#), 28.7, 28.6\#, 25.8, 25.7\#, 21.8, 21.5\#, 19.4, 19.3\#, one aromatic signal is overlapped (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); IR (KBr) $V_{\max }$ 3425, 2944, 2857, 2833, 1592, 1565, 1467, 1296, 1234, 1069, 1048, $1018 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%) 336.1 ($9, \mathrm{M}^{+\bullet), ~} 334.1$ (10, $\mathrm{M}^{+\bullet), ~} 255.1$ (75), 237.1 (22), 226.1 (25), 225.1 (100), 212.1 (15), 199.1 (22), 171.1 (25); HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O} 2 \mathrm{Br} 334.0568$, found 334.0566 .
(E)-3-(1-(2-Bromo-4-methoxyphenyl)ethylidene)-2,3,5,6,7,7a-hexahydrobenzofuran (2ab)

Reaction time: 7 h ; Column chromatography: (90/10) hexanes/ diethyl ether
The boronic acid was synthesised according to a literature procedure. ${ }^{[11]}$

Yield: 81\% (0.368 g); colourless oil

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			13.7
Water			1.3
1a	1.50	414	
$(\mathrm{HO})_{2} \mathrm{~B}$	2.25	519	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.06	69	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3.00	977	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.14\left(\mathrm{~s}, 1 \mathrm{H}^{\#}\right), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right)$, 6.87 (dd, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (dd, $\left.J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right), 4.76-4.69\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right)$, $4.61(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 4.48-4.40\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.22-4.12$ ($\mathrm{m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}$), 3.81 (s, 3H, 3H $\left.\mathrm{H}^{\#}\right), 2.20-2.11\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.98-1.83\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.90(\mathrm{~s}$, 3 H), 1.87 ($\mathrm{s}, 3 \mathrm{H}^{\#}$), $1.80-1.68\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.51-1.23\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 159.1$, 159.0\#, 137.8, 137.2\#, 136.5, 135.9\#, 133.9, 133.8\#, 130.4, 130.0\#, 127.0, 126.5\#, 123.3, 122.2\#, 121.3, 120.4 ${ }^{\#}$, 118.4, 117.7\#, 114.7, 113.9\#, 79.2, 79.1\#, 70.5, 70.5\#, 55.7 (1C, $1 C^{\#}$), 28.7, 28.7\#, 25.7, 25.6\#, 22.1, 21.7\#, 19.4, 19.3 (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by ${ }^{\#}$); $\mathbf{I R}(\mathrm{KBr}) \mathrm{v}_{\max } 2938,2833,1598,1488,1281,1228$, $1075,1039 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 334.1$ (32, M+), 334.1 ($34, \mathrm{M}^{+}$), 316.0 (100), 255.1 (45), 235.1 (28), 222.1 (20), 199.0 (13), 165.1 (13); HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{Br}$ 334.0568 , found 334.0568 .
(E)-3-(1-(2-Bromo-3,4,5-trimethoxyphenyl)ethylidene)-2,3,5,6,7,7a-hexahydrobenzofuran (2ac)

Reaction time: 5 h ; Column chromatography: $(90 / 10 \rightarrow 85 / 15)$ hexanes/EtOAc

Yield: 93\% (0.368 g); dark orange oil

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			9.1
Water			0.9
1a	1.00	276	
$(\mathrm{HO})_{2} \mathrm{~B}$			
$\mathrm{Pr}\left(\mathrm{PPh}_{3}\right)_{4}$	0.04	46	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2.00	652	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.47\left(\mathrm{~s}, 1 \mathrm{H}^{\#}\right), 4.80-4.72\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.62(\mathrm{~d}, \mathrm{~J}=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.59\left(\mathrm{~d}, \mathrm{~J}=12.3 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 4.48-4.40\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 4.21-4.13\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 3.92(\mathrm{~s}, 3 \mathrm{H})$, 3.91 (s, 3H), 3.91 (s, $\left.3 \mathrm{H}^{\#}\right), 3.89$ ($\left.\mathrm{s}, 3 \mathrm{H}^{\#}\right)$, 3.84 (s, 3H), 3.82 (s, $3 \mathrm{H}^{\#}$), 2.21-2.11 (m, 1H, $\left.1 \mathrm{H}^{\#}\right), 1.95-1.84\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.89\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 1.80-1.69\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.52-$ $1.19\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) δ 153.6, 153.1\#, 151.8, 151.2\#, 142.1, 142.0\#, 139.7, 139.2\#, 137.6, 136.9\#, 133.6, 133.3\#, 127.1, 126.7\#, 121.4, 120.5\#, 109.1, 108.3, 108.0\#, 107.8\#,
 $21.8,21.6^{\#}, 19.4,19.3^{\#}$ (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); IR (KBr) $\mathrm{V}_{\text {max }}$ 2938, 2845, 1559, 1482, 1386, 1105, $1006 \mathrm{~cm}^{-1}$; MS (APCI) m/z (\%) 397.1 (44, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 395.1$ (45, [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$), 317.2 (15), 316.2 (100), 315.2 (20), 285.1 (40), 279.1 (22); HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Br} 395.0853$, found 395.0849.

(E)-3-(1-(2-Bromophenyl)ethylidene)-2,3,5,6,7,7a-hexahydrobenzofuran (2ad)

Reaction time: 9 h; Column chromatography: (95/5) hexanes/EtOAc
Yield: 77\% (0.234 g); yellow crystalline solid, $\mathrm{mp}=54.5{ }^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})
$\left.\begin{array}{|c|c|c|c|}\hline \text { Reagent } & \mathrm{n}[\mathrm{mmol}] & \mathrm{m}[\mathrm{mg}] & \mathrm{V}[\mathrm{mL}] \\ \hline \text { THF } & & & 9.1 \\ \hline \text { Water } & & & 0.9 \\ \hline \text { 1a } & 1.00 & 276 & \\ \hline(\mathrm{HO})_{2} \mathrm{~B} \\ \mathrm{Br}\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.61-7.55\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.34-7.25\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 7.21-7.10\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 4.69-$ $4.58\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 4.50-4.42\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.22-4.14\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right), 1.96-1.82\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.90\left(\mathrm{~s}, 3 \mathrm{H}^{*}\right), 1.78-1.68\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.50-$ 1.22 (m, 2H, 2H ${ }^{*}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 144.2,143.6^{\#}, 137.7,137.1^{\#}, 133.6,133.5^{\#}, 133.4,132.7^{\#}$, 130.1, 129.6\#, 128.6, 128.5\#, 128.3, 127.6\#, 127.3, 126.8\#, 123.0, 121.9\#, 121.5, 120.6\#, 79.2, 79.1\#, 70.5, 70.4\#, 28.7, 28.6\#, 25.7, 25.6\#, 21.8, 21.4\#, 19.3, 19.3\# (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); $\mathbf{I R}(\mathrm{KBr}) \mathrm{V}_{\max }$ 2944, 2866, 2830, 1473, 1431, 1102, 1075, 1021, $755 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 306.0 (92, M+), 304.0 (100, M+•), 250 (29), 248 (29), 225.1 (52), 222.0 (70), 169.1 (55), 165.1 (45), 141.1 (67), 128.1 (25), 115.1 (25); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{OBr} 304.0463$, found 304.0464.

(E)-3-(1-(6-Bromo-3-fluoro-2-methoxyphenyl)ethylidene)-2,3,5,6,7,7a-hexahydrobenzofuran (2ae)

Reaction time: 9 h; Column chromatography: (90/10) hexanes/diethyl ether

Yield: 67% (0.282 g); yellow amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			10.8

Water			1.1
1a	1.19	3304	
$(\mathrm{HO})_{2} \mathrm{OMe}$	1.79	445	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.05	55	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3	775	

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 6.99$ (dd, $J=7.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.90 (dd, $J=5.4$, 2.3 Hz , $1 \mathrm{H}), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.14$ $(\mathrm{m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.50-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.0(\mathrm{~d}, \mathrm{~J}=$ $12.2 \mathrm{~Hz}), 137.1,135.2,132.9(\mathrm{~d}, J=15.8 \mathrm{~Hz}), 124.1$ (d, $J=2.5 \mathrm{~Hz}), 121.8,119.9,116.2$ (d, $J=4.3 \mathrm{~Hz}$), $115.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 79.1,70.7,56.6,28.7,25.7,21.7,19.2(\mathrm{C}-\mathrm{F}$ signal is not clearly visible in the spectrum even when measured in high concentration, it is probably around 148 ppm and splitted); IR (KBr) $\mathrm{V}_{\max }$ 2944, 2857, 2830, 1601, 1568, 1479, 1410, 1326, 1257, 1213, 1069, $1045 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 354.0 ($9, \mathrm{M}^{+\bullet}$), 352.0 (10, $\mathrm{M}^{+\bullet}$), 338.1 (15), 334.0 (100), 332.0 (80), 319.0 (20), 291.0 (20), 253.1 (13), 209.1 (13), 183.1 (10); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{BrF} 352.0474$, found 352.0468 .
(E)-3-(1-(2-Bromo-5-fluorophenyl)ethylidene)-2,3,5,6,7,7a-hexahydrobenzofuran (2af)

Reaction time: 8 h ; Column chromatography: (96/4) hexanes/EtOAc
Yield: $85 \%(0.274 \mathrm{~g})$; yellow crystalline solid, $m p=92.2{ }^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			9.1
Water			0.9
1a	1.00	276	
$(\mathrm{HO})_{2} \mathrm{~B}$	1.50	328	
Br			

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.04	46	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2.00	652	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.57-7.51\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 6.98-6.82\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 4.77-4.70\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.62$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.60\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right), 4.48-4.41\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.21-4.13(\mathrm{~m}$, $\left.1 \mathrm{H}, 1 \mathrm{H}^{*}\right)$, 2.21-2.12 (m, 1H, $\left.1 \mathrm{H}^{\#}\right), 1.96-1.84\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.89\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right)$, $1.80-1.71\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.51-1.23\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 162.5(\mathrm{~d}, \mathrm{~J}=247.8 \mathrm{~Hz})$, $162.1^{\#}(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 146.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 145.4^{\#}(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 137.5,136.9^{\#}$, 134.7 (d, J=8.2 Hz), 134.2, 134.1\#, $134.0^{\#}(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 126.1(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 125.6^{\#}$ (d, $J=1.3 \mathrm{~Hz}$), 122.0, 121.1\#, 117.3 (d, $J=3.2 \mathrm{~Hz}$), 117.1 ($\mathrm{d}, J=21.8 \mathrm{~Hz}$), 116.6 ${ }^{\#}(\mathrm{~d}, J=$ 22.0 Hz), 116.2\# (d, $J=3.2 \mathrm{~Hz}$), 115.8 (d, $J=22.5 \mathrm{~Hz}), 115.7^{\#}(\mathrm{~d}, J=22.4 \mathrm{~Hz}), 79.1$, 79.1\#, 70.4, 70.4 ${ }^{\#}$, 28.6, 28.6\#, 25.8, 25.6\#, 21.5, 21.1\#, 19.3, 19.2\# (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); $\mathbf{I R}(\mathrm{KBr}) \mathrm{V}_{\max } 3055,2938$, 2869, 2839, 1574, 1461, 1305, 1198, 1069, $1003 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 324.0 (92, M+), 322.0 ($100, \mathrm{M}^{+}$), 266.0 (33), 268 (29), 240.0 (70), 238.0 (66), 187.1 (55), 159.1 (75), 146.1 (25), 133.0 (20); HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OBrF} 322.0369$, found 322.0368.

Methyl (E)-3-bromo-4-(1-(5,6,7,7a-tetrahydrobenzofuran-3(2H)-ylidene)ethyl)benzoate (2ai)

Reaction time: 4 h ; Column chromatography: $(95 / 5 \rightarrow 90 / 10)$ hexanes/EtOAc

The boronic acid was synthesised according to a literature procedure. ${ }^{[11]}$
Yield: 60\% (0.087 g); yellowish oil

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			3.6
Water			0.4

1a	0.40	110	
$(\mathrm{HO})_{2} \mathrm{~B}$	0.52	134	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.016	18	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.8	261	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 8.26(d, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.25\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 7.97(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.93\left(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right)$, $4.68-4.57\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 4.48-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.41\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 4.20-4.12(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 2.19-2.10\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.89\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 1.88-1.82$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.77-1.68\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.48-1.19\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 165.8$ (1C, $1 C^{\#}$), 149.0, 148.4\#, 137.5, 136.9\#, 134.6, 134.1, 134.0\#, 133.95\#, 130.5, 130.4\#, 130.2, 129.7\#, 129.4, 128.7\#, 126.3, 125.8\#, 123.2, 122.12, 122.10\#, 121.1\#, 79.1, 79.0\#, 70.4, $70.3^{\#}, 52.5$ (1C, $1 C^{\#}$), 28.6, 28.5\#, 25.7, 25.6\#, 21.4, 21.0\#, 19.22, 19.17" (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); IR (KBr) $V_{\max }$ 2949, 2829, 1727, 1549, 1435, 1379, 1282, 1238, 1113, $774 \mathrm{~cm}^{-1}$; MS (APCI) m/z (\%) 365.1 (68, [M+H]+), 363.1 (63, [M+H]+), 347.0 (99), 345.0 (100), 284.1 (49), 266.1 (96), 253.1 (67); HRMS (APCI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Br} 363.0590$, found 363.0586.
(E)-3-(1-(4-Bromothiophen-3-yl)ethylidene)-2,3,5,6,7,7a-hexahydrobenzofuran (2aj) Me Reaction time: 3.5 h ; Column chromatography: (99/1) hexanes/EtOAc

Yield: 79\% (0.173 g); yellow oil

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			6.4
Water			0.6

1 a	0.70	193	
$(\mathrm{HO})_{2} \mathrm{~B}$	1.05	217	
Br			
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.03	32	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.40	456	

${ }^{1}{ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) $\delta 7.73$ (d, $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.39 (bs, 1H), 4.76-4.70 (m, $1 \mathrm{H}), 4.54$ (dd, $J=13.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33$ (dd, $J=13.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 1 \mathrm{H})$, 2.09-2.01 (m, 1H), 1.93-1.85 (m, 2H), 1.84 (s, 3H), 1.74-1.65 (m, 1H), 1.41-1.27 (m, 1H), 1.22-1.10 (m, 1H); ${ }^{13}$ C NMR (101 MHz , DMSO- d_{6}) $\delta 142.5,137.6,135.1,124.6$, 123.1, 120.9, 119.9, 78.2, 69.6, 28.1, 25.0, 22.0, 18.7, one aromatic signal was not found; IR (KBr) $\mathbf{v}_{\max } 3506,3270,2944,2866,2827,1335,1075,1006,794 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%) 312.0\left(28, \mathrm{M}^{++}\right), 310.0\left(30, \mathrm{M}^{+}\right), 231.1$ (100), 216.1 (13), 203.1 (18), 187.1 (12), 161.0 (8), 147.0 (8); HRMS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{OSBr} 310.0027$, found 310.0027.

(E)-2-Bromo-3-(1-(5,6,7,7a-tetrahydrobenzofuran-3(2H)-ylidene)ethyl)pyridine (2ak)

Reaction time: 7 h ; Column chromatography: $(85 / 15)$ hexanes/EtOAc
Yield: $43 \%\left(0.218 \mathrm{~g}\right.$); pale yellow crystalline solid; $\mathrm{mp}=69.1^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})

Reagent	n [mmol]	m [mg]	V [mL]
DMF			9.1
Water			0.9
1a	1.64	453	
	2.46	496	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.065	6	
${\mathrm{Cs} 2 \mathrm{CO}_{3}}$	3.28	1069	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 8.34-8.28\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right)$, 7.48 (ddd, $J=26.0,7.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}$), $7.32-7.22$
$\left(\mathrm{m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.75-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.64\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 4.66-4.57\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.50-4.40$ $\left(\mathrm{m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.24-4.13\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.23-2.12\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.00-1.81\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$, $1.95(\mathrm{~s}, 3 \mathrm{H}), 1.93\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 1.80-1.71\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.51-1.21\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) δ 148.7, 148.6\#, 142.9, 142.0\#, 141.3, 140.6\#, 138.8, 138.3\#, 137.8, 137.0, 135.2\#, 124.7, 124.2\#, 123.6, 122.8\#, 122.8, 121.5\#, 79.1, 79.0\#, 70.5 (1C, 1C\#), 28.6, 28.5\#, 25.8, 25.6\#, 21.0, 21.0", 19.2, 19.2\#, one aromatic signal is overlapped (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by ${ }^{\#}$); IR (KBr) $V_{\max } 3369$, 2935, 2863, 2833, 1545, 1389,
 (13), 198.1 (23), 182.1 (10); HRMS (EI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NOBr} 305.0415$, found 305.0416.
(5S,8R,8aS,E)-3-(1-(2-Bromo-5-methoxyphenyl)ethylidene)-2,3,5,6,8,8a-hexahydro-5,8-epoxyfuro[2,3-c]oxepine (2ba)

Reaction time: 5 h ; Column chromatography: $(99 / 1 \rightarrow 95 / 5)$ dichloromethane/diethyl ether
Yield: 70\% (0.256 g); brownish amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			9.1
Water			0.9
1b	1.0	306	
$(\mathrm{HO})_{2} \mathrm{~B}$			
Br	1.50	346	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.04	46	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	2.0	651	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.50-7.42\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 6.75-6.62\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.71\left(\mathrm{~s}, 1 \mathrm{H}^{\#}\right)$, 4.86-4.80 (m, 1H, 1H ${ }^{\#}$), 4.76-4.67 (m, 1H, 1H $\left.{ }^{\#}\right), 4.60-4.55\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.54-4.44(\mathrm{~m}$,
$\left.2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 3.88(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right)$ 3.77-3.71 (m, 1H, 1H ${ }^{\#}$), $1.92(\mathrm{~s}, 3 \mathrm{H}), 1.90\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 159.8,159.1^{\#}, 144.2$, 143.7\#, 135.2, 134.5\#, 134.3, 133.4\#, 131.8, 131.5\#, 130.5, 129.9\#, 120.3, 119.4\#, 114.9, 114.9\#, 114.5 (1C, $1 C^{\#}$), 112.8, 112.1\#, 100.1, 100.0\#, 80.3, $80.3^{\#,} 74.2$ (1C, 1C\#), 72.7 (1C, 1C"), 71.4, 71.3\#, 55.7 (1C, 1C"), 21.6, 21.3\# (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by ${ }^{\#}$); $\mathbf{I R}(\mathrm{KBr}) V_{\max } 3557,3482,3416,2920,2851,1712,1619$, 1464, 1299, 1225, 1066, $1024 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%) 366.0 ($8, \mathrm{M}^{+\bullet}$), 364.0 (10, $\mathrm{M}^{+\bullet}$), 302.0 (12), 277.1 (100), 239.1 (18), 201.1 (17), 199.0 (20), 183.0 (18), 152.1 (17); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Br} 364.0310$, found 364.0319; Specific rotation [α] D $=-32^{\circ}\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$.
($5 S, 8 R, 8 \mathrm{aS}, E$)-3-(1-(2-Bromo-4-methoxyphenyl)ethylidene)-2,3,5,6,8,8a-hexahydro-5,8-epoxyfuro[2,3-c]oxepine (2bb)

Reaction time: $10 \mathrm{~h} ;$ Column chromatography: (97/3) dichloromethane/EtOAc

Yield: 88\% (0.546 g); brownish amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			15.5
Water			1.5
1b	1.70	520	
OU			
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.55	589	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	3.40	1108	

${ }^{1} \mathrm{H}$ NMR (400 MHz , THF-d8; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.19(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 6.92$ (dd, $\left.J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90$ (dd, $\left.J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 5.52-$ $5.50\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.81-4.76\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 4.62-4.53\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.51-4.46(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right)$, 4.43-4.40 (m, 1H), 4.39-4.36 (m, $\left.1 \mathrm{H}^{\#}\right), 4.35-4.32\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (s, $3 \mathrm{H}^{\#}$), $3.69(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 3.61-3.54\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right.$, signal overlapped by the solvent signal), 1.90 (s, 3H), 1.87 (s, 3H ${ }^{\#}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , THF- d_{8}; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 160.8$, 160.6\#, 136.6, 136.6\#, 136.2, 136.1\#, 134.0, 133.9\#, 131.0, 131.0\#, 130.4, 129.8\#, 123.5, 122.9\#, 121.4, 120.5\#, 119.4, 118.6\#, 115.5, 114.6\#, 101.2, 101.2\#, 81.7, $81.6^{\#,} 74.7$ (1C, $1 C^{\#}$), 73.6, 73.6 ${ }^{\#}, 71.7,71.7^{\#}, 56.0\left(1 \mathrm{C}, 1 \mathrm{C}^{\#}\right)$, 21.9, $21.7^{\#}$ (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); IR (KBr) $\mathrm{V}_{\max }$ 2950, 2836, 1604, 1491, 1284, 1228, 1129, 1081, 1033, $976 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%) 366.0$ ($95, \mathrm{M}^{+}$), 364.0 ($100, \mathrm{M}^{+}$), 318.0 (30), 285.1 (32), 239.1 (60), 211.1 (48), 196.1 (50), 179.1 (15), 165.1 (20); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{Br} 364.0310$, found 364.0309; Specific rotation [α] $=-42^{\circ}$ (c 1 , CHCl_{3}).
(5S,8R,8aS, E)-3-(1-(2-bromo-5-fluorophenyl)ethylidene)-2,3,5,6,8,8a-hexahydro-5,8-epoxyfuro[2,3-c]oxepine (2bf)

Reaction time: $18 \mathrm{~h} ;$ Column chromatography: (95/5 $\rightarrow 80 / 20$) hexanes/EtOAc

Yield: 62\% (0.110 g); brown foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			4.5
Water			0.5
1b	0.50	153	
$(\mathrm{HO})_{2} \mathrm{~B}$	0.75	164	
$\mathrm{Pr}\left(\mathrm{PPh}_{3}\right)_{4}$	0.02	23	

$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.00	325	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.58-7.54\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right) ; 7.53(\mathrm{dd}, \mathrm{J}=8.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.83\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$, 5.71 (s, $1 \mathrm{H}^{*}$), 5.70 (s, 1H), $4.82-4.79\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.75-4.66$ (m, 1H, $\left.1 \mathrm{H}^{*}\right), 4.61-$ $4.55\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.53-4.45\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 3.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, \mathrm{~J}=6.6$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{\#}\right), 3.76-3.71\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right)$, 1.92 (s, 3 H), 1.92 (s, $\left.3 \mathrm{H}^{\#}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 162.5$ (d, J $=248.5 \mathrm{~Hz}$), 161.9\# ($\mathrm{d}, J=248.5 \mathrm{~Hz}$), $145.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 144.5^{\#}(\mathrm{~d}, J=7.7 \mathrm{~Hz})$, $135.1^{\#}, 135.0^{\#}(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 134.4,134.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 132.4^{\#}, 132.2,129.4$ (d, $J=$ 1.4 Hz), $128.7^{\#}$ (d, $J=1.3 \mathrm{~Hz}$), 120.6, $119.7^{\#}, 116.7$ (d, $\left.J=3.1 \mathrm{~Hz}\right), 116.58$ (d, $J=22.4$ Hz), 116.55\# (d, J=22.0 Hz), 116.2 (d, $J=22.4 \mathrm{~Hz}$), $116.1^{\#}(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 116.0^{\#}(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}$), 100.0, 99.9\#, 80.2, 80.1\#, 74.1\#, 74.0, 72.61\#, 72.59, 71.3, 71.2 ${ }^{\#}$, 21.3\#, 21.0; IR (KBr) $\mathrm{v}_{\max } 3062,2949,2885,2843,1712,1601,1574,1462,1402,1300,1213,1176$, 1131, 1087, 1074, 1055, 1028, 989, 979, 916, 889, 847, 814, 679, 623, 611, $461 \mathrm{~cm}^{-1}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{BrFNa} 375.0003$, found 374.9998 .

(E)-3-(1-(2-bromo-5-methoxyphenyl)ethylidene)-1-((4-methoxyphenyl)sulfonyl)-

2,3,5,6,7,7a-hexahydro-1 H-indole (2ca)

Reaction time: 23 h ; Column chromatography: $(85 / 15 \rightarrow 80 / 20)$ hexanes/EtOAc
Yield: 59% (0.149 g); yellowish foam
(27\% of unreacted starting material was isolated)

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			4.5
Water			0.5
1c	0.50	223	
$\mathrm{HO})_{2} \mathrm{~B}$ Br $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.02	23	

$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.00	326	

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.85-7.77\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 7.44(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right)$, $7.08-7.00\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 6.71-6.64\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 6.47\left(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 4.90-4.82$ (m, 1H, 1H ${ }^{\text {\# }}$), $4.26-4.19$ (m, 1H, $\left.1 \mathrm{H}^{\#}\right), 3.90$ (s, 3H), 3.89 (s, $\left.3 \mathrm{H}^{\#}\right), 3.78$ (s, 3H), $3.78-$ $3.73\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.47-3.37\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.59-2.51\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.89$ $(\mathrm{s}, 3 \mathrm{H}), 1.87\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 1.88-1.70\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 1.49-1.23\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right) ;{ }^{33} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 163.3$, $163.2^{\#}, 159.6,159.3^{\#}, 144.8,144.2^{\#}, 135.3,134.5^{\#}, 134.0,133.5^{\#}, 130.3,130.3^{\#}, 129.3$, $129.0^{\#}, 128.9,128.3^{\#}, 127.8,127.4^{\#}, 124.7,123.7^{\#}, 115.0,114.6^{\#}, 114.6,114.4^{\#}, 114.36$ (1C, 1C\#), 113.4, 112.0\#, 60.9, 60.7\#, 55.8 (1C, 1C\#), 55.6, 55.6\#, 52.6, 52.6\#, 29.5, 29.5\#, 25.2, 25.1", 22.2, 21.8\#, 19.8, 19.7 (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); IR (KBr) $V_{\text {max }}$ 2939, 2837, 1595, 1496, 1464, 1346, 1261, 1161, 1093, 1041, 814, 671, 594, $561 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 1031.1 (23, [2M+Na] ${ }^{+}$), 528.1 (94, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $526.1\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $506.1\left(4,[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O} 4 \mathrm{NBrS} 504.0839$, found 504.0843 .

(E)-3-(1-(2-bromo-4-methoxyphenyl)ethylidene)-1-((4-methoxyphenyl)sulfonyl)-

 2,3,5,6,7,7a-hexahydro-1 H -indole (2cb)

Reaction time: 16 h ; Column chromatography: $(95 / 5 \rightarrow 80 / 20)$ hexanes/EtOAc
Yield: $62 \%(0.079 \mathrm{~g})$ as a mixture of E / Z isomers (9.7:1); yellowish foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			2.3
Water			0.3
1c	0.25	111	

$(\mathrm{HO})_{2} \mathrm{~B}$			
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right) 4$	0.02	87	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.00	163	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.84-7.77\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 7.11(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06\left(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}^{*}\right)$, $7.06-7.01$ (m, 2H, 3H ${ }^{\#}$), 6.85 (dd, $\left.J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 6.81(\mathrm{~d}, J=8.5,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.76 (dd, J = 8.8, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.85-4.78\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.26-4.18\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.89$ $(\mathrm{s}, 3 \mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.78\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 3.78-3.71\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.46-3.37(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right), 2.60-2.50\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{*}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.77\left(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 1.78$ - $1.70\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.53-1.27\left(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{H}^{\#}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 163.24^{\#}, 163.22,159.1$, 159.0\#, 136.1\#, 135.5\#, 135.4, 134.7, 130.31, 130.27, 130.25, 129.7\#, 129.6, 129.3\#, 128.9\#, 128.2\#, 127.6\#, 127.4\#, 124.4, 123.4, 123.2\#, 121.9\#, 118.4, 117.8, 114.6\#, 114.36, 114.34, 113.9\#, 60.9, 60.7\#, 55.8 (1C, 1C\#), 55.6 (1C, 1C\#), 52.7, 52.6\#, 29.5 (1C, 1C\#), 25.2, 25.0\#, 22.5\#, 22.1, 19.8, 19.7\# (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); IR (KBr) $\mathrm{V}_{\text {max }}$ 2968, 2939, 2837, 1597, 1495, 1460, 1346, 1261, 1225, 1161, 1034, 835, 818, 669, 579, $558 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 1031.2 (12, $\left.[2 \mathrm{M}+\mathrm{Na}]^{+}\right), 528.1\left(97,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $526.1\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right), 507.1(4), 506.1\left(11,[\mathrm{M}+\mathrm{H}]^{+}\right)$, 505.1 (4), 504.1 (12, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O} 4 \mathrm{NBrS} 504.0839$, found 504.0839.

(E)-3-(1-(2-bromo-4-fluorophenyl)ethylidene)-1-((4-methoxyphenyl)sulfonyl)-

2,3,5,6,7,7a-hexahydro-1 H -indole (2cf)

Reaction time: 48 h ; Column chromatography: $(95 / 5 \rightarrow 83 / 17)$ hexanes/EtOAc
Yield: $53 \% ~(0.131 \mathrm{~g})$; white foam
(27% of unreacted starting material was isolated)

Reagent	$\mathrm{n}[\mathrm{mmol}]$		$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF				4.5
Water				0.5
1c	0.50		223	
$(\mathrm{HO})_{2} \mathrm{~B}$				
Br	0.75		164	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.02		23	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	1.00		326	

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.85-7.78$ (m, 2H, 2H ${ }^{\#}$), 7.51 (dd, $\left.J=8.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.46$ (dd, $J=8.8,5.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}^{*}\right), 7.08-7.00\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{*}\right), 6.89\left(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 6.87-6.80(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right), 6.65$ (dd, $\left.J=8.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85-4.80\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 4.26-4.18\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right)$, 3.90 (s, 3H), 3.89 (s, 3H ${ }^{\#}$), $3.81-3.71\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.46-3.38\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.61-$ $2.51\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.86\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 1.88-1.80\left(\mathrm{~m}, 1 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 1.80-1.71(\mathrm{~m}$, $1 \mathrm{H}, 1 \mathrm{H}^{\#}$), $1.48-1.30\left(\mathrm{~m}, 3 \mathrm{H}, 1 \mathrm{H}^{\#}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 163.3$ (1C, 1C ${ }^{\#}$), 162.4 (d, $J=$ 247.8 Hz), $162.2^{\#}(\mathrm{~d}, J=248.5 \mathrm{~Hz}), 145.7(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 145.1^{\#}(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 135.2^{\#}$, $134.6^{\#}(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 134.4,134.2$ (d, $\left.J=8.4 \mathrm{~Hz}\right), 130.3,130.2^{\#}, 130.1^{\#}, 129.7,128.0$ (d, $J=1.2 \mathrm{~Hz}), 127.51,127.4^{\# \#}, 127.2^{\#}(\mathrm{~d}, ~ J=1.5 \mathrm{~Hz}), 125.1,124.1^{\#}, 117.3(\mathrm{~d}, J=3.1$ Hz), 117.0\# (d, J=22.1 Hz), 116.3 (d, $J=22.4 \mathrm{~Hz}), 115.96^{\#}(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 115.95(\mathrm{~d}, J$ $=22.4 \mathrm{~Hz}$), 115.8\# (d, J=22.2 Hz), 114.39, 114.38\#, 60.8, 60.6\#, 55.8 (1C, 1C\#), 52.6, 52.5\#, 29.50, 29.47\#, 25.2, 25.1\#, 21.9\#, 21.5, 19.71, 19.66" (\#atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#); IR (KBr) $\mathrm{V}_{\text {max }}$ 2941, 2839, 1597, 1576, 1496, 1462, 1346, 1306, 1261, 1161, 1093, 1026, 835, 816, 671, 594, $561 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) $1007.2\left(9,[2 \mathrm{M}+\mathrm{Na}]^{+}\right), 532.1\left(23,[\mathrm{M}+\mathrm{K}]^{+}\right), 530.1\left(22,[\mathrm{M}+\mathrm{K}]^{+}\right), 516.1\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $514.1\left(98,[\mathrm{M}+\mathrm{Na}]^{+}\right), 494.1\left(37,[\mathrm{M}+\mathrm{H}]^{+}\right)$, $492.1\left(36,[\mathrm{M}+\mathrm{H}]^{+}\right), 342.1$ (6); HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{NBrFS} 492.0639$, found 492.0640.
(E)-3-((2-bromo-5-methoxyphenyl)(phenyl)methylene)-1-((4-methoxyphenyl)sulfo-nyl)-2,3,5,6,7,7a-hexahydro-1 H-indole (2da)

Reaction time: 23 h ; Column chromatography: ($85 / 15 \rightarrow 80 / 20$) hexanes/EtOAc

Yield: 72\% (0.081 g); white foam
(33% of unreacted starting material was isolated)

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			1.8
Water			0.2
1d	0.20	102	
$(\mathrm{HO})_{2} \mathrm{~B}$			
$\mathrm{Pr}\left(\mathrm{PPh}_{3}\right)_{4}$	0.008	9.2	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.40	130	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.66-7.60\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 7.40-7.35\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.33-7.22\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right)$, $7.12-7.05\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 6.96-6.88\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 6.70-6.62\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 6.37(\mathrm{~d}, \mathrm{~J}=$ $\left.3.1 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 5.17-5.13(\mathrm{~m}, 1 \mathrm{H}), 5.06-5.01\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 4.40(\mathrm{~d}, \mathrm{~J}=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (d, $\left.J=14.7 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 3.92(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.84\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.70\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.65-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.51\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 2.57$ - $2.44\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.02-1.63\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 1.52-1.34\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 163.2$, 163.1\#, 159.2, 159.0\#, 142.9, 142.9\#, 140.3, 139.6\#, 136.5, 136.0\#, 133.9, 133.9\#, 133.5, 132.8\#, 132.7, 132.0\#, 130.1, 130.0\#, 129.1, 128.8\#, 128.4, 128.3\#, 128.2, 127.8\#, 127.7, 127.6\#, 126.7, 126.0\#, 116.8, 116.6\#, 115.2, 114.7\#, 114.4, 114.3\#, 114.28, 113.5\#, 59.9, 59.6\#, 55.7, 55.7\#, 55.6, 55.5\#, 52.8, 52.7\#, 29.9, 29.6\#, 25.2, 25.1\#, 19.9, 19.8\# ("atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by ${ }^{\#}$); $\mathbf{I R}(\mathrm{KBr}) \mathrm{Vmax}^{\text {max }}$ 2935, 2837, 1595, 1496, 1464, 1343, 1261, 1159, 1093, 1018, 835, 669, 598, $565 \mathrm{~cm}^{-1}$;

MS (APCI) $m / z(\%) 568.1\left(100,[\mathrm{M}+\mathrm{H}]^{+}\right), 566.1\left(97,[\mathrm{M}+\mathrm{H}]^{+}\right), 486.2$ (50), 379.1 (9), 300.2 (46); HRMS (APCI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{NBrS} 566.0995$, found 566.0999.

(E)-3-((2-bromo-4-methoxyphenyl)(phenyl)methylene)-1-((4-methoxyphenyl)-

 sulfonyl)-2,3,5,6,7,7a-hexahydro-1 H-indole (2db)

Reaction time: 72 h ; Column chromatography: (95/5 \rightarrow 80/20) hexanes/EtOAc

Yield: $82 \%(0.092 \mathrm{~g})$ as a mixture of E / Z isomers (2.4:1); brown foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			1.8
Water			0.2
1d	0.20	100	
$(\mathrm{HO})_{2} \mathrm{~B}$	0.30	68	
$\mathrm{Pr}\left(\mathrm{PPh}_{3}\right)_{4}$	0.008	9	
$\mathrm{Cs} 2 \mathrm{CO}_{3}$	0.39	128	

(\boldsymbol{E})-2db (major): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.67-7.60\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 7.32-7.21\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}^{\#}\right), 7.09-$ $7.04\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 6.95-6.89\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 6.81-6.73\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 5.13-5.07(\mathrm{~m}$, $\left.1 \mathrm{H}^{\#}\right), 5.01-4.96(\mathrm{~m}, 1 \mathrm{H}), 4.42\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 4.34(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-$ $3.86\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.47(\mathrm{~m}$, $\left.1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.62-2.46\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.03-1.84\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.84-1.70\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right)$, $1.52-1.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$;
(Z)-2db (minor): ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.67\left(\mathrm{~m}, 2 \mathrm{H}^{\#}\right), 7.32-7.15(\mathrm{~m}$, $\left.4 \mathrm{H}, 4 \mathrm{H}^{\#}\right), 7.09-7.04\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 7.04-6.98\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 6.92-6.87\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 6.81$ $-6.73\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 5.50-5.45\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 5.43-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}$,
$\left.1 \mathrm{H}^{\#}\right), 3.93(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.47$ (m, 1H, 1H ${ }^{\#}$), $3.57(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.48\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 2.62-2.46(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right), 2.03-1.84\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.84-1.70\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.52-1.35\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$ (\# atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#);

Mixture of E / Z isomers of $\mathbf{2 d b}:{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 163.3^{Z}, 163.2^{E}, 163.13^{Z \#}, 163.09{ }^{\text {E\# }}, 159.5$, $159.4,159.1,140.9,140.4,139.8$ 136.8, 136.2, 134.8, 134.53, 134.46, 134.41, 133.95, $133.1,132.6,132.3,132.1,131.5,131.0,130.4,130.3,130.12,130.07,129.99,129.1$, 128.8, 128.7, 128.6, 128.5, 128.42, 128.40, 128.2, 127.9, 127.6, 127.4, 127.3, 126.9, 126.7, 126.6, 125.7, 125.0, 123.4, 118.7^{Z}, $118.4^{\text {E, }} 117.94^{Z \#}, 117.90^{\text {E\# }}, 114.7,114.4$, 114.30, 114.29, 114.0, 113.8, 60.89Z, 60.73 ${ }^{Z \#}$, $59.95^{\text {E\# }}$, $59.63^{E}, 55.76^{E}, 55.75,55.70$,

 assigned to the major E isomer; ${ }^{Z}$ signal could be assigned to the minor Z isomer); IR (KBr) $V_{\max }$ 2939, 2837, 1597, 1493, 1441, 1346, 1284, 1261, 1225, 1159, 1093, 1036, 835, 700, 669, $558 \mathrm{~cm}^{-1}$; MS (APCI) m/z (\%) 590.1 ($8,[\mathrm{M}+\mathrm{Na}]^{+}$), $588.1\left(6,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $568.1\left(97,[\mathrm{M}+\mathrm{H}]^{+}\right), 566.1$ (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 381.1$ (12), 379.1 (13), 300.2 (89); HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{NBrS} 566.0995$, found 566.0997.
(E)-3-((2-bromo-5-fluorophenyl)(phenyl)methylene)-1-((4-methoxyphenyl)sulfonyl)-2,3,5,6,7,7a-hexahydro-1 H-indole (2df)

Reaction time: $7 \mathrm{~h}, 80{ }^{\circ} \mathrm{C}$; Column chromatography: $(95 / 5 \rightarrow$ 80/20) hexanes/EtOAc
Yield: $75 \%(0.104 \mathrm{~g})$ as a mixture of E / Z isomers (2.5:1); white foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			2.3
Water			0.2
1d	0.25	127	

$(\mathrm{HO})_{2} \mathrm{~B}$	0.33	72	
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	0.01	12	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.50	163	

(E)-2df (major): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.66-7.59\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 7.48-7.41\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.34-$ $7.22\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}^{\#}\right), 7.11-7.06\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.04-6.98\left(\mathrm{~m}, 4 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 6.49(\mathrm{dd}, \mathrm{J}=8.8$, $\left.3.1 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 5.15-5.09\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 5.06-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.41\left(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 4.34$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94-3.89\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.52$ $\left(\mathrm{m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.61-2.44\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.03-1.85\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right), 1.53-1.39\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$;
(Z)-2df (minor): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.68\left(\mathrm{~m}, 2 \mathrm{H}^{\#}\right), 7.50-7.41(\mathrm{~m}$, $\left.1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.34-7.22\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}^{\#}\right), 7.11-7.06\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.04-6.98\left(\mathrm{~m}, 4 \mathrm{H}, 3 \mathrm{H}^{\#}\right)$, 6.56 (dd, $\left.J=8.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 5.52-5.47\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 5.45-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $\left.14.9 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 3.94-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}^{\#}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.58$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3,52-3.48\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 3.44\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 2.61-2.44(\mathrm{~m}$, $\left.1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.03-1.85\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 1.85-1.74\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 1.53-1.39\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$ (\# atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#);
Mixture of E / Z isomers of 2df: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 163.3,163.2,162.1$ (d, $J=247.9 \mathrm{~Hz}$), 162.04 (d, $J=247.9 \mathrm{~Hz}), 161.99(\mathrm{~d}, J=248.7 \mathrm{~Hz}), 143.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 143.8(\mathrm{~d}, J=7.8 \mathrm{~Hz})$, $139.9,139.8,139.1,136.5,136.1,134.8(d, J=8.4 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 134.6(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 133.6,133.2(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 132.9,131.8(\mathrm{~d}, J=1.5$ $\mathrm{Hz})$, 131.6, 130.3, 130.09, 130.06, 130.0, 129.1, 128.9, 128.8, 128.34, 128.32, 128.30, $127.95,127.93,127.80,127.75,127.66,127.61,127.5,127.3,126.4,119.1$ ($\mathrm{d}, \mathrm{J}=3.1$ $\mathrm{Hz}), 118.7(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 118.0(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 117.4(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 116.3(\mathrm{~d}, J=$ 22.3 Hz), 116.1 (d, $J=22.3 \mathrm{~Hz}$), 114.42, 114.39, 114.35, 114.30, 60.8, 60.7, 59.8, 59.5, $55.8,55.7,55.6,53.4,53.1,52.7,52.6,29.9,29.8,29.6,29.5,25.24,25.17,25.1,20.5$,
19.9, 19.8, 19.7 (distinguishing between signals of E / Z isomers was not possible); IR (KBr) $V_{\max }$ 2933, 2862, 2839, 2825, 1597, 1576, 1498, 1464, 1348, 1269, 1157, 1097, 1032, 827, 702, 671, 598, $561 \mathrm{~cm}^{-1}$; MS (ESI) m / z (\%) 1131.1 (12, [2M+Na]+), 578.1 (97, $[\mathrm{M}+\mathrm{Na}]^{+}$), 576.1 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 530.0 (39), 301.1 (13); HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{NBrFSNa} 576.0615$, found 576.0614.

Methyl (E)-3-bromo-4-((1-((4-methoxyphenyl)sulfonyl)-1,2,5,6,7,7a-hexahydro-3H-indol-3-ylidene)(phenyl)methyl)benzoate (2di)

Mbs

Reaction time: 72 h ; Column chromatography: (95/5 \rightarrow 80/20) hexanes/EtOAc

Yield: $63 \%(0.093 \mathrm{~g})$ as a mixture of E / Z isomers (3.2:1); yellowish foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
THF			2.3
Water			0.3
1d	0.25	127	
$(\mathrm{HO})_{2}$			
$\mathrm{Pr}\left(\mathrm{PPh}_{3}\right)_{4}$	0.38	97	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.50	163	

(E)-2di (major): ${ }^{\mathbf{1}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 8.18\left(\mathrm{~d}, ~ J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.90-7.86\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 7.72$ $-7.76\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 7.33-7.19\left(\mathrm{~m}, 4 \mathrm{H}, 4 \mathrm{H}^{\#}\right), 7.06-6.99\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 6.98-6.89(\mathrm{~m}$, $\left.2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 5.08-5.04\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 4.96-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.43\left(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 4.35(\mathrm{~d}, \mathrm{~J}$ $=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.82\left(\mathrm{~m}, 7 \mathrm{H}, 7 \mathrm{H}^{\#}\right), 3.67-3.48\left(\mathrm{~m}, 1 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.63-2.45(\mathrm{~m}, 1 \mathrm{H}$, $\left.1 \mathrm{H}^{\#}\right), 2.00-1.71\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 1.49-1.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$;
(Z)-2di (minor): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 8.30\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 8.21(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ (dd, J
$=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.86\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 7.72-7.76\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 7.44(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33-7.19\left(\mathrm{~m}, 3 \mathrm{H}, 4 \mathrm{H}^{\#}\right), 7.06-6.99\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 6.98-6.89\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right), 5.54-$ $5.50\left(\mathrm{~m}, 1 \mathrm{H}^{\#}\right), 5.48-5.43(\mathrm{~m}, 1 \mathrm{H}), 3.98\left(\mathrm{~d}, \mathrm{~J}=14.9 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 3.95-3.82\left(\mathrm{~m}, 7 \mathrm{H}, 6 \mathrm{H}^{\#}\right)$, $3.67-3.48\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 3.40\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}^{\#}\right), 2.63-2.45\left(\mathrm{~m}, 2 \mathrm{H}, 1 \mathrm{H}^{\#}\right), 2.00-$ $1.71\left(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{H}^{\#}\right), 1.49-1.36\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}^{\#}\right)$ (${ }^{\#}$ atropoisomer signals - the signals are in pairs but could not be assigned to the particular atropoisomer, one signal of the pair is always marked by \#);
Mixture of E / Z isomers of 2di: ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$; mixture of atropoisomers, signals of both atropoisomers are listed) $\delta 165.67^{E}, 165.66$ ($1 C^{E \#}, 1^{Z \#}$), $165.5^{Z}, 163.3^{Z}$, $163.23^{E}, 163.18^{Z \#}, 163.1^{\text {E\#, }}, 147.4,146.9,146.84,146.80,139.8,139.0,138.5,136.5$, $136.0,134.63,134.61,134.51,134.48,134.2,134.1,133.6,133.4,132.8,132.7$, 132.03, 132.00, 131.89, 131.88, 131.1, 130.9, 130.51, 130.49, 130.2, 130.1, 130.04, 130.01, 129.9, 129.19, 129.16, 129.0, 128.93, 128.88, 128.8, 128.59, 128.57, 128.4, 128.3, 128.0, 127.83, 127.80, 127.77, 127.68, 127.66, 127.5, 127.4, 126.9, 126.6, 124.9, 123.3, 123.2, 122.6, 114.4, 114.33, 114.30, 60.8 ${ }^{Z}$, $60.7^{Z \#}, 59.8^{\text {E\# }}, 59.4^{E}, 55.8^{E, Z^{\#}}$, $53.3^{Z}, 53.2^{Z \#}, 52.7^{E}, 52.6^{\text {E\#, }} 52.53^{\text {E\#, }} 52.2^{Z}, 29.9^{Z}, 29.8^{\text {E }}, 29.7^{Z \#}, 29.6^{\text {E\# }}, 25.19^{\text {E\#, }}$, $25.17^{Z}, 25.1^{E, Z \#}, 19.8^{E \#}, 19.73^{E, Z \#}, 19.68^{Z}$ (${ }^{E}$ signal could be assigned to the major E isomer; ${ }^{Z}$ signal could be assigned to the minor Z isomer); IR (KBr) $\mathrm{V}_{\max }$ 2947, 2868, 2839, 1726, 1597, 1496, 1435, 1346, 1284, 1261, 1244, 1159, 1111, 1093, 1024, 835, 764, 700, 669, 606, $563 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 1211.2 (11, [2M+Na] ${ }^{+}$), 618.1 (98, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 616.1\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right), 596.1\left(12,[\mathrm{M}+\mathrm{H}]^{+}\right), 594.1\left(14,[\mathrm{M}+\mathrm{H}]^{+}\right), 279.1$ (10); HRMS (ESI) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{NBrS} 594.0944$, found 594.0945.

4. Synthesis of naphthalenes

Table S1. Optimisation of the conditions of the Heck reaction of 2aa

Entry	Catalyst (mol\%)	Ligand (mol\%)	Base (eq)	Solvent	Time
[h]	Yield ${ }^{[a]}$				
1					

21	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{K}_{2} \mathrm{CO}_{3}(4)$	DMSO/ $\mathrm{H}_{2} \mathrm{O}(4: 1)$	6.5	10
22	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{K}_{2} \mathrm{CO}_{3}(4)$	DMA/ $\mathrm{H}_{2} \mathrm{O}(4: 1)$	3	61
23	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{K}_{2} \mathrm{CO}_{3}(4)$	iPrOH/ $\mathrm{H}_{2} \mathrm{O}(4: 1)$	5	12
24	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(4)$	DMF	5	4
25	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{K}_{2} \mathrm{CO}_{3}(0.5)$	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1)	2	29
26	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{Na}_{2} \mathrm{CO}_{3}(4)$	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1)	23	39
27	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{Cs}_{2} \mathrm{CO}_{3}(4)$	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1)	5	51
28	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{K}_{3} \mathrm{PO}_{4}$ (4)	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1)	5	63
29	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	DIPEA (4)	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1)	5	19
30	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	KOtBu (2)	DMF/ $\mathrm{H}_{2} \mathrm{O}(4: 1)$	2	0
31	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{Li}_{2} \mathrm{CO}_{3}(2)$	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1)	19	12
32	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	KF (2)	DMF/ $\mathrm{H}_{2} \mathrm{O}(4: 1)$	18	27
33	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{NaHCO}_{3}(2)$	DMF/ $\mathrm{H}_{2} \mathrm{O}(4: 1)$	12	30
34	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{K}_{2} \mathrm{CO}_{3}(2)$	DMF/ $\mathrm{H}_{2} \mathrm{O}(2: 1)$	4	11
35	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (20)	$\mathrm{K}_{2} \mathrm{CO}_{3}(2)$	DMF/ $\mathrm{H}_{2} \mathrm{O}(9: 1)$	2	63
36	$\mathrm{Pd}(\mathrm{OAc})_{2}(5)$	XPhos (10)	$\mathrm{K}_{2} \mathrm{CO}_{3}(2)$	DMF/ $\mathrm{H}_{2} \mathrm{O}(4: 1)$	4	7
37	$\mathrm{Pd}(\mathrm{OAc})_{2}(10)$	XPhos (10)	$\mathrm{K}_{2} \mathrm{CO}_{3}(2)$	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (4:1)	2	16

${ }^{[a]}{ }^{1} \mathrm{H}$ NMR yield; 3,4,5-trimethoxybenzaldehyde was used as internal standard. ${ }^{[b]} 2$ equiv. of $n B u_{4} \mathrm{NOAc}$ were used as additive. ${ }^{[c]} 2$ equiv. of $n \mathrm{Bu}_{4} \mathrm{NCl}$ were used as additive.

General procedure 1 for the Heck reaction: Compound 2 (1.0 mmol), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0$ mmol), XPhos ($20 \mathrm{~mol} \%$) and XPhosPd G2 ($10 \mathrm{~mol} \%$) were dissolved in DMF (8 mL) and stirred for 5 minutes followed by addition of water (2 mL). The reaction mixture was degassed and backfilled with argon (3x) and stirred at $110{ }^{\circ} \mathrm{C}$ for an indicated time. Upon completion, it was cooled down, filtrated through the sand/cotton layer and
extracted between brine ($2 \times 20 \mathrm{~mL}$) and EtOAc (20 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. Crude mixture was subjected to column chromatography on silica gel providing desired naphthalene product 3. Reaction and purification details are specified for the each substrate below.

General procedure 2 for the Heck reaction: Compound 2 (0.2 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (0.4 $\mathrm{mmol})$ were dissolved in DMF (1.8 mL) and water $(0.18 \mathrm{~mL})$. The reaction mixture was degassed and backfilled with argon (3x), or degassed by bubbling Ar through the mixture for 5 minutes. Then $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.02 \mathrm{mmol})$ and $\mathrm{P}(0-\mathrm{tol})_{3}(0.04 \mathrm{mmol})$ were added, the mixture was degassed again and stirred at $130^{\circ} \mathrm{C}$ for an indicated time. Upon completion, it was cooled down, diluted with toluene and concentrated under reduced pressure. Crude mixture was subjected to column chromatography on silica gel providing desired naphthalene product 3. Reaction and purification details are specified for the each substrate below.

8-Methoxy-6-methyl-2,3,3a,5-tetrahydro-1H-phenanthro[1,10-bc]furan (3aa)

General procedure 1; Reaction time: 2 h ; Column chromatography: (97/3) hexanes/ acetone
Yield: $61 \%(0.070 \mathrm{~g})$; white crystalline solid; $\mathrm{mp}=135.1^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			3.6
Water			0.9
2aa	0.45	151	
XPhosPd G2	0.045	52	
XPhos	0.09	43	
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	0.90	124	

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}$, $J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.90(\mathrm{~m}$,
$1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=17.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 2.46-$ $2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.50$ (dtd, $J=13.9,11.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,137.2,136.3,134.6,127.0,125.8,125.2$, 122.9, 116.8, 104.1, 79.9, 71.4, 55.43 29.5, 23.5, 20.9, 15.8; IR (KBr) $V_{\max } 3422,2938$, 2917, 2851, 1458, 1228, $1030 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%) 255.1 (10), 254.1 (90, M ${ }^{+}$), 226.1 (100), 211.1 (22), 198.1 (20), 183.1 (22), 168.1 (7), 155.1 (3); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2}$ 254.1307, found 254.1308.

9-Methoxy-6-methyl-2,3,3a,5-tetrahydro-1H-phenanthro[1,10-bc]furan (3ab)

General procedure 1; Reaction time: 2 h ; Column chromatography: (97/2) hexanes/acetone

Yield: 55\% (0.154 g); white crystalline solid; $m p=130.3^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			8.8
Water			2.2
$\mathbf{2 a b}$	1.10	354	
XPhosPd G2	0.11	87	
XPhos	0.22	105	
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	2.20	304	

${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.96-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, \mathrm{~J}=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.91(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=17.3$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}, 1 \mathrm{H})$, 1.99-1.85 (m, 1H), $1.52(\mathrm{dtd}, \mathrm{J}=13.9,11.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$) δ $157.4,139.0,134.4,133.2,128.4,126.0,124.7,124.2,116.7,103.1,80.0,71.3,55.4$, 29.4, 23.6, 20.9, 15.7; IR (KBr) $V_{\max } 3411,2947,2842,1616,1431,1234,1048,815$ cm^{-1}; MS (El) m / z (\%) 255.1 (8), 254.1 (55, M ${ }^{+\bullet}$), 236.1 (100), 226.1 (34), 223.1 (52), 211.1 (25), 193.1 (20), 178.1 (35), 165.1 (23), 152.1 (12); HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{2} 254.1307$, found 254.1308 .

6-Methyl-2,3,3a,5-tetrahydro-1H-phenanthro[1,10-bc]furan (3ad)

General procedure 1; Reaction time: 4 h ; Column chromatography: (97/2) hexanes/acetone
Yield: $70 \%(0.063 \mathrm{~g})$; yellow crystalline solid, $\mathrm{mp}=119.6^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			3.2
Water			0.8
2ad	0.40	122	
XPhosPd G2	0.04	31	
XPhos	0.08	38	
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	0.80	110	

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ס 8.05-7.99 (m, 1H), 7.93-7.87 (m, 1H), 7.56-7.48 (m, 2H), $5.13(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=$ $17.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.26(\mathrm{~m}$, 1 H), 1.99-1.85 (m, 1H), 1.52 (dtd, $J=13.9,11.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.3,136.6,133.3,131.9,125.8,125.3,125.2,124.5,124.2,123.7,80.0$, 71.4, 29.4, 23.47, 20.9, 15.7; IR (KBr) Vmax 2941, 2926, 2860, 2836, 1512, 1443, 1332, 1045, 964, $749 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 225.1 (10), 224.1 (93, M+•), 220.1 (20), 205.1 (25), 196.1 (100), 181.1 (22), 168.1 (17), 153.1 (15); HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}$ 224.1201, found 224.1203.

8-Fluoro-6-methyl-2,3,3a,5-tetrahydro-1 H-phenanthro[1,10-bc]furan (3af)

General procedure 1; Reaction time: 4 h ; Column chromatography: (97/2) hexanes/ acetone
Yield: $67 \%(0.074 \mathrm{~g})$; yellow crystalline solid, $m p=112.4{ }^{\circ} \mathrm{C}$ (recrystallized from CHCl_{3})

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			3.6

Water			0.9
2af	0.45	145	
XPhosPd G2	0.045	35	
XPhos	0.09	43	
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	0.90	124	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.87$ (dd, $J=9.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.60 (dd, $J=11.3,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27$ (ddd, $J=9.1,8.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (d, $J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06$ (d, $J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97-4.89(\mathrm{~m}, 1 \mathrm{H}), 3.15$ (dd, $J=17.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$, 2.47-2.39 (m, 1H), 2.34-2.25 (m, 1H), 1.98-1.84 (m, 1H), 1.51 (dtd, $J=14.0,11.1,3.0$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7$ (d, $J=244.2 \mathrm{~Hz}$), 137.9, 137.8 (d, $J=2.4$ $\mathrm{Hz}), 134.6$ (d, $J=8.1 \mathrm{~Hz}), 128.9(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 126.0(\mathrm{~d}, J=0.8 \mathrm{~Hz}), 125.9(\mathrm{~d}, J=9.1$ Hz), 123.7 (d, $J=5.4 \mathrm{~Hz}$), 115.0 ($\mathrm{d}, J=24.5 \mathrm{~Hz}$), 108.5 (d, $J=21.1 \mathrm{~Hz}$), 79.8, 71.3 , 29.3, 23.6, 20.8, 15.7; IR (KBr) $\mathrm{V}_{\max }$ 2965, 2935, 2878, 2839, 1619, 1530, 1446, 1329, 1222, 1186, 1039, $964 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 243.1 (15), 242.1 ($85, \mathrm{M}^{+}$), 224.1 (22), 214.1 (100), 209.1 (22), 199.1 (30), 183.1 (28), 171.1 (33); HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{OF}$ 242.1107, found 242.1104.

Methyl 6-methyl-2,3,3a,5-tetrahydro-1 H-phenanthro[1,10-bc]furan-9-carboxylate

 (3ai)

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			1.8
Water			0.18
2ai	0.20	74	
Pd_{2} (dba) $)_{3}$	0.02	9	
$\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	0.04	12	

$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.40	129	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=8.8,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 8.03 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.92$ (m, 1H), 3.99 (s, 3H), 3.26 (dd, $J=17.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.00-2.87$ (m, 1H), 2.55 (s, 3H), $2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.52$ (dtd, $\mathrm{J}=13.9,11.0$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,139.3,139.2,135.8,131.3,127.5$, 126.64, 126.63, 124.8, 124.7, 124.3, 79.9, 71.4, 52.3, 29.2, 23.5, 20.8, 15.7; IR (KBr) $V_{\text {max }}$ 2949, 2835, 1716, 1448, 1315, 1277, 1255, 1219, 1107, 1043, 1005, 964, 754 cm^{-1}; MS (APCI) m/z (\%) 284.1 (17), 283.1 (100, [$\left.\mathrm{M}+\mathrm{H}\right]^{+}$), 265.1 (6), 253.1 (5); HRMS (APCI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3} 283.1329$, found 283.1326.

6-Methyl-1,2,3,3a-tetrahydro-5H-thieno[3',4':5,6]naphtho[1,8-bc]furan (3aj)

 hexanes/acetone

Yield: 30\% (0.031 g); pale brown amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			3.6
Water			0.9
2aj	0.45	139	
XPhosPd G2	0.045	35	
XPhos	0.09	43	
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	0.90	124	

${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.88$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (d, $\left.J=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.85$ (d, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.77 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.70-4.63 (m, 1H), 2.86 (dd, $J=17.9,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.17-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.86-$ 1.71 (m, 1H), 1.30 (dtd, $J=13.9,10.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6) δ 140.3, 138.1, 136.9, 134.1, 120.8, 119.3, 115.9, 114.6, 77.6, 69.0, 28.9, 23.2, 19.9, 15.4; IR (KBr) $V_{\text {max }} 3560,2929,2839,1715,1518,1458,1386,1329,1051,755 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%) 231.1 (15), 230.1 (100, M $^{+}$), 212.1 (30), 202.1 (65), 197.0 (27), 187.1
(28), 174.1 (30), 165.1 (5), 152.1 (8); HRMS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{OS} 230.0765$, found 230.0768.
(1S,4R,4aS)-9-Methoxy-7-methyl-1,2,4a,6-tetrahydro-4H-1,4-epoxybenzo[f]oxepi-no[3,4,5-cd]isobenzofuran (3ba)

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			3.6
Water			0.9
2ba	0.50	183	
XPhosPd G2	0.05	39	
XPhos	0.10	48	
$\mathrm{~K}_{2} \mathrm{CO}_{3}$	1.0	138	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19$ (dd, $J=9.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (ddd, $J=6.7,3.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (s, 3H), 3.62 ($\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ס 157.6, 138.0, 135.4, 132.1, 126.8, 125.8, 124.2, 123.3, 117.8, 104.6, 101.1, 81.1, 76.3, 72.6, 72.5, 55.5, 16.3; IR (KBr) $V_{\max } 3422,2968,2884,2842,1622,1431,1231,1048,934 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 308.1 (18), 307.1 (100, [M+Na] ${ }^{+}$), 285.1 (25, [M+H] ${ }^{+}$), 267.1 (8); HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na} 307.0941$, found 307.0939; Specific rotation $[\alpha]_{\mathrm{D}}=+119.7^{\circ}\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$.
(1S,4R,4aS)-10-Methoxy-7-methyl-1,2,4a,6-tetrahydro-4H-1,4-epoxybenzo[f]oxepi-no[3,4,5-cd]isobenzofuran (3bb)

General procedure 1; Reaction time: 3 h ; Column chromatography:
(97/3) dichloromethane/ acetone; Compound was additionally washed with n-pentane.

Yield: 36\% (0.092 g); pale brown amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			8.0
Water			2.0
2bb	1.0	365	
XPhosPd G2	0.10	79	
XPhos $_{\mathrm{K}_{2} \mathrm{CO}_{3}}$	0.20	95	

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{dd}, J=9.2,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 5.13$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (ddd, $J=6.7,3.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ ($\mathrm{s}, 3 \mathrm{H}$), 3.66 (d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9$, 135.2, 135.1, 129.4, 129.2, 127.4, 126.6, 125.6, 117.2, 102.2, 101.1, 81.3, 76.2, 72.6, 72.4, 55.5, 16.2; IR (KBr) $V_{\max }$ 3602, 3249, 1619, 1461, 1428, 1228, $1048 \mathrm{~cm}^{-1}$; MS (APCI) m / z (\%) 286.1 (17), 285.1 (100, $[\mathrm{M}+\mathrm{H}]^{+}$), 267.1 (47), 257.1 (6), 239.1 (40), 227.1 (27), 211.1 (16); HRMS (APCI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{4} 285.1121$, found 285.1118; Specific rotation $[\alpha] \mathrm{D}=+156.1^{\circ}$ (c 1, CHCl_{3}).

8-Methoxy-4-((4-methoxyphenyl)sulfonyl)-6-methyl-1,2,3,3a,4,5-hexahydro-naphtho[3,2,1-cd]indole (3ca)
General procedure 2; Reaction time: $6 \mathrm{~h} ; \quad$ Column
chromatography: $(85 / 15 \rightarrow 80 / 20 \rightarrow 70 / 30)$ hexanes/EtOAc
Yield: $62 \%(76 \mathrm{mg})$; brownish powder
(21\% of unreacted starting material was isolated)

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			2.6
Water			0.26
2ca	0.29	146	

$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	0.03	13	
$\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	0.06	17	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.58	188	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.15 (dd, $J=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=10.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, 3.08 (dd, $J=17.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.24(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 163.3, 157.4, 134.4, 133.0, 132.0, 130.6, 127. 5, 127.3, 127.1, 125.1, 124.1, 117.1, 114.5, 103.8, $62.4,55.8,55.4,53.9,30.1,23.4,21.5,15.5$; $\mathbf{I R}$ (KBr) $v_{\text {max }} 2931,2837,1595,1496$, 1456, 1346, 1259, 1230, 1159, 1095, 1032, 837, 804, 667, 596, $561 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 869.3 (12, $\left.[2 \mathrm{M}+\mathrm{Na}]^{+}\right), 446.1$ (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $424.2\left(6,\left[\mathrm{M}+\mathrm{H}^{+}\right)\right.$; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{NSNa} 446.1397$, found 446.1402.

9-Methoxy-4-((4-methoxyphenyl)sulfonyl)-6-methyl-1,2,3,3a,4,5-hexahydro-naphtho[3,2,1-cd]indole (3cb)

General procedure 2; Reaction time: 16 h ; Column chromatography: (95/5 \rightarrow 60/40) hexanes/EtOAc
Yield: 74% (25 mg); white foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			0.8
Water			0.08
2cb	0.08	40	
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	0.008	7.2	
$\mathrm{P}(\mathrm{o} \text {-tol })_{3}$	0.016	5.4	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.16	52	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23-4.16$ (m, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.05 (dd, $J=17.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-$ 2.76 (m, 2H), 2.47 (s, 3H), 2.36-2.26(m, 1H), 1.95-1.81 (m, 1H), 1.75-1.60(m, 1H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3,157.5,135.8,133.3,130.5,129.1,128.2,127.5$, 126.1, 126.0, 125.5, 117.2, 114.5, 102.8, 62.6, 55.8, 55.4, 53.8, 30.0, 23.5, 21.5, 15.4; IR (KBr) $\mathrm{V}_{\text {max }}$ 2949, 2925, 2843, 1597, 1495, 1460, 1425, 1344, 1265, 1232, 1153, 1095, 1028, 839, 669, 571, $559 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 446.1 (4, [M+Na]+), 425.2 (18), 424.2 (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right), 321.1$ (18), 237.1 (5); HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{NS}$ 424.1577, found 424.1576.

8-Fluoro-4-((4-methoxyphenyl)sulfonyl)-6-methyl-1,2,3,3a,4,5-hexahydro-naphtho[3,2,1-col]indole (3cf)

$\mathrm{Mbs}_{\mathrm{N}}$ General procedure 2; Reaction time: 15 h ; Column chromatography: (95/5 $\rightarrow 83 / 17$) hexanes/EtOAc
Yield: $85 \%(25 \mathrm{mg})$; brownish foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			0.65
Water			0.06
2cf	0.07	35	
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	0.007	6.5	
$\mathrm{P}(\mathrm{o} \text {-tol })_{3}$	0.014	4.3	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.14	47	

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.55(\mathrm{dd}, \mathrm{J}=11.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ (m, 1H), $7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (dd, $J=11.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=17.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.76(\mathrm{~m}$, 2H), 2.44 (s, 3H), $2.35-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (tddd, $J=13.9,10.4,7.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-$ $1.60(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.4,160.78(\mathrm{~d}, \mathrm{~J}=244.9 \mathrm{~Hz}), 134.6(\mathrm{~d}, \mathrm{~J}$ $=2.4 \mathrm{~Hz}), 134.3(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 132.6,130.5,128.9,127.5,127.3,125.9(\mathrm{~d}, J=9.0 \mathrm{~Hz})$,

$$
\text { SI- } 42
$$

$124.9(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 115.3(\mathrm{~d}, J=24.6 \mathrm{~Hz}), 114.5,108.3(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 62.3,55.8$, 53.8, 30.0, 23.4, 21.4, 15.4; IR (KBr) $V_{\max }$ 2962, 2972, 2898, 2843, 1597, 1523, 1496, 1444, 1344, 1267, 1178, 1155, 1093, 1051, 841, 804, 667, 592, $561 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) $845.2\left(8,[2 \mathrm{M}+\mathrm{Na}]^{+}\right), 823.3\left(7,[2 \mathrm{M}+\mathrm{H}]^{+}\right), 434.1\left(6,[\mathrm{M}+\mathrm{Na}]^{+}\right), 413.1(21), 412.1$ (100, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NFS} 412.1377$, found 412.1378.

8-Methoxy-4-((4-methoxyphenyl)sulfonyl)-6-phenyl-1,2,3,3a,4,5-hexahydro-naphtho[3,2,1-cd]indole (3da)

General procedure 2; Reaction time: 7 h ; Column chromatography: $(85 / 15)$ hexanes/EtOAc

Yield: 91\% (51 mg); brownish foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			1.0
Water			0.1
2da	0.12	65	
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	0.01	5	
$\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	0.02	7	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.23	74	

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.39$ (m, 3H), $7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, \mathrm{J}=9.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}$, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 1 \mathrm{H})$, 3.87 (s, 3H), $3.70(\mathrm{~s}, 3 \mathrm{H}), 3.17$ (dd, $J=17.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.98-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.85-$ $2.77(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.3,157.6,138.1,134.0,133.1,132.2,131.0,130.4,129.9$, 129.7, 129.0, 128.9, 128.8, 127.8, 127.4, $127.3124 .7,117.5,114.4,106.0,62.3,55.7$, 55.2, 54.1, 23.0, 23.6, 21.5; IR (KBr) $V_{\max }$ 2937, 2835, 1595, 1496, 1458, 1343, 1259, 1228, 1159, 1095, 1055, 1024, 806, 667, 584, $561 \mathrm{~cm}^{-1}$; MS (ESI) m / z (\%) 993.3 (21, $\left.[2 \mathrm{M}+\mathrm{Na}]^{+}\right), 509.2(8), 508.2\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right), 486.2\left(7,[\mathrm{M}+\mathrm{H}]^{+}\right)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NS} 486.1734$, found 486.1738.

9-Methoxy-4-((4-methoxyphenyl)sulfonyl)-6-phenyl-1,2,3,3a,4,5-hexahydro-naphtho[3,2,1-cd]indole (3db)

General procedure 2; Reaction time: 6 h ; Column chromatography: (85/15) hexanes/EtOAc

Yield: 63\% (27 mg); brownish foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			0.8
Water			0.8
$\mathbf{2 d b}$	0.09	50	
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	0.009	8	
$\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	0.018	5.4	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.18	58	

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.85-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.40$ (m, 3H), $7.30-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, ~ J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 3 \mathrm{H}), 4.38(\mathrm{~d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.13(\mathrm{dd}, J=17.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.85(\mathrm{~m}$, 1 H), $1.78-1.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.3,157.7,138.1,135.9$, 133.3, 132.2, 130.4, 130.1, 129.7, 129.2, 128.73, 128.66, 128.32, 127.80, 127.76, 127.66, 127.4, 117.5, 114.5, 102.3, 62.5, 55.8, 55.4, 54.0, 29.9, 23.7, 21.5; IR (KBr) $\mathrm{V}_{\max }$ 2949, 2929, 2841, 1616, 1595, 1496, 1458, 1425, 1348, 1303, 1261, 1227, 1161, 1151, 1093, 1057, 1034, 833, 764, 673, 619, 580, $550 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 1010.3 (5, $\left.[2 \mathrm{M}+\mathrm{K}]^{+}\right), 993.3\left(26,[2 \mathrm{M}+\mathrm{Na}]^{+}\right), 524.1\left(18,[\mathrm{M}+\mathrm{K}]^{+}\right), 509.2(31), 508.2\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right)$, $486.2\left(23,[\mathrm{M}+\mathrm{H}]^{+}\right), 343.1$ (12); HRMS (ESI) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{NS} 486.1734$, found 486.1734 .

8-Fluoro-4-((4-methoxyphenyl)sulfonyl)-6-phenyl-1,2,3,3a,4,5-hexahydro-naphtho[3,2,1-cd]indole (3df)

General procedure 2; Reaction time: 5 h ; Column chromatography: (95/15 $\rightarrow 80 / 20$) hexanes/EtOAc
Yield: 77\% (18 mg); brownish foam

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
DMF			0.45
Water			0.05
2df	0.05	27	
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	0.005	4.9	
$\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	0.01	3.3	
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	0.1	35	

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90$ (ddd, $\left.J=8.6,5.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.86-7.80(\mathrm{~m}, 2 \mathrm{H})$, $7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{dd}, J=17.8,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.99-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.84(\mathrm{dtd}, J=11.9,4.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 1 \mathrm{H}), 1.98$ - $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.4,160.9(\mathrm{~d}, \mathrm{~J}=$ 245.1 Hz), 137.4, $134.7(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 132.9,131.6(\mathrm{~d}, J=5.3$ $H z), 130.4,129.9,129.6,129.2,129.0,128.94,128.90,128.1,127.3,125.5(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}), 115.7(\mathrm{~d}, J=24.9 \mathrm{~Hz}), 114.5,110.4(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 62.3,55.8,54.0,29.9$, 23.7, 21.4; IR (KBr) $V_{\max }$ 2966, 2939, 2839, 1712, 1595, 1496, 1456, 1350, 1309, 1261, 1163, 1093, 1053, 1026, 806, 737, 667, 582, $558 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 947.3 (5, [2M+H] ${ }^{+}$), $496.1\left(4,[\mathrm{M}+\mathrm{Na}]^{+}\right), 475.2(27), 474.2\left(100,[\mathrm{M}+\mathrm{H}]^{+}\right)$, 287.1 (6); HRMS (ESI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{O}_{3} \mathrm{NFS} 474.1534$, found 474.1533 .

5. Optimisation of the one-pot procedure

Table S2. Optimisation of the one-pot cyclisation/Suzuki/Heck reaction of 1a (additional experiments, see Table 2 for the best results)

	 1a		 (1.5 equiv.	$\begin{array}{cc}\text { OMe } & \begin{array}{c}\text { Catalyst (10 mo } \\ \text { Ligand (20 mo }\end{array} \\ & \begin{array}{r}\text { Base }(6 \text { equ }) \\ 70 \text { to } 110^{\circ}\end{array} \\ & \end{array}$	$\xrightarrow[\text { uiv.), }]{\substack{\text { ol } \mathrm{Col} \\ \mathrm{ol} \%)}}$			
Entry	Catalyst	Ligand	Base	Solvent	Time at $70^{\circ} \mathrm{C}$ [h]	Time at $110^{\circ} \mathrm{C}$ [h]	Yield ${ }^{[a]}$ of 2aa [\%]	Yield ${ }^{[a]}$ of 3aa [\%]
1	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	dioxane/ $/ \mathrm{H}_{2} \mathrm{O}(10: 1)$	3.5	2	17	20
2	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	dioxane $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{HMPA}$ (10:1:2)	3.5	2	13	24
3	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	dioxane/ $\mathrm{H}_{2} \mathrm{O}(10: 1)$	2.3	3	12	16
4	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	XPhos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	dioxane/ $\mathrm{H}_{2} \mathrm{O}(10: 1)$	2.3	3	14	14
5	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	XPhos	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (10:1)	2	3	0	26
6	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	2	$3^{[b]}$	19	15
7	XPhosPd G2	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	2	$3{ }^{[b]}$	traces	traces
8	XPhosPd G2	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	2	$3{ }^{[b]}$	traces	traces
9	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF/ $\mathrm{H}_{2} \mathrm{O}(10: 1)$	2	$3^{[b]}$	17	16
10	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	SPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF/ $\mathrm{H}_{2} \mathrm{O}(10: 1)$	2	$3^{[b]}$	16	14
11	XPhosPd G2	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF/ $\mathrm{H}_{2} \mathrm{O}$ (10:1)	2	$3{ }^{[b]}$	11	7
12	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	1.5	$5^{[b]}$	20	18
13	$\mathrm{Pd}(\mathrm{OAc})_{2}$	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF	1.5	$5^{[b]}$	0	3
14	$\mathrm{Pd}(\mathrm{dba})_{2}$	XPhos	$\mathrm{K}_{3} \mathrm{PO}_{4}$	DMF	1.5	$5^{[b]}$	0	6
15	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	dioxane/ $\mathrm{H}_{2} \mathrm{O}(15: 1)$	2	$16^{[b]}$	54	5
16	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	dioxane/ $/ \mathrm{H}_{2} \mathrm{O}(15: 1)$	2	$16^{[b]}$	10	22
17	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF/ $\mathrm{H}_{2} \mathrm{O}(15: 1)$	1.6	$3^{[b]}$	24	13

18	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	DMF/ $\mathrm{H}_{2} \mathrm{O}(15: 1)^{[\mathrm{c]}}$	1.6	$3^{[b]}$	70	1
19	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	dioxane/ $/ \mathrm{H}_{2} \mathrm{O}$ (15:1)	1.6	$24^{[b]}$	19	16
20	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	$\mathrm{K}_{2} \mathrm{CO}_{3}$	$\underset{(15: 1)^{[c]}}{\text { dioxane } / \mathrm{H}_{2} \mathrm{O}}$	1.6	$24^{[b]}$	61	traces
21	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	XPhos	$\mathrm{K}_{2} \mathrm{CO}_{3}$	toluene/ $\mathrm{H}_{2} \mathrm{O}(10: 1)$	2	3	30	4
22	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	-	AcOK	DMF- $d_{7} / \mathrm{D}_{2} \mathrm{O}(10: 1)$	1.5	3	30	18
23	SPhosPd G3	-	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF- $d_{7} / \mathrm{D}_{2} \mathrm{O}$ (10:1)	1.5	3	traces	20
24	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	toluene/ $\mathrm{H}_{2} \mathrm{O}(10: 1)$	2	4	15	1
25	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	PCy_{3}	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	toluene/ $\mathrm{H}_{2} \mathrm{O}(10: 1)$	2	4	9	36
26	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{P}(\mathrm{o} \text {-tol })_{3}$	$\mathrm{AcOK}^{[d]}$	toluene $/ \mathrm{H}_{2} \mathrm{O}(10: 1)$	2	4	traces	traces
27	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	TFP ${ }^{[e]}$	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	DMF- $d_{7} / \mathrm{D}_{2} \mathrm{O}$ (10:1)	1.5	4	62	traces
28	$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	$\mathrm{P}(\mathrm{o}-\mathrm{tol})_{3}$	$\mathrm{Et}_{3} \mathrm{~N}$	DMF- $d_{7} / \mathrm{D}_{2} \mathrm{O}(10: 1)$	1.5	4	0	0

${ }^{[a]}{ }^{1} \mathrm{H}$ NMR yield; 3,4,5-trichloropyridine was used as internal standard. ${ }^{[b]}$ At $100{ }^{\circ} \mathrm{C} .{ }^{[c]}$ Reaction was conducted without inert atmosphere and without degassing the solvents. ${ }^{[d]} 0.5$ equiv. of CsOPiv was added. ${ }^{[e]}$ Tri(2-furyl)phosphine.

Optimised procedure for the one-pot reaction: Compound 1 (0.2 mmol), arylboronic acid (0.3 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.2 \mathrm{mmol})$ were dissolved in DMF $(1.8 \mathrm{~mL})$ and water $(0.18 \mathrm{~mL})$. The reaction mixture was degassed and backfilled with argon ($3 \times$), or degassed by bubbling Ar through the mixture for 5 minutes. Then $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.02 \mathrm{mmol})$ and $\mathrm{P}(o-t o l)_{3}(0.04 \mathrm{mmol})$ were added, the mixture was degassed again and stirred for an indicated time at 70 or $80^{\circ} \mathrm{C}$, and then at 110 or $130{ }^{\circ} \mathrm{C}$. Upon completion, it was cooled down, diluted with toluene and concentrated under reduced pressure. The crude mixture was subjected to column chromatography on silica gel providing desired naphthalene product 3.

6. Reactions with boronic acid derivatives

Table S3. Cyclisation/Suzuki cross-coupling reaction of 1a with boronic acid derivatives
Entry
${ }^{[a]}$ Isolated yield. ${ }^{[b] 1} \mathrm{H}$ NMR yield; 3,4,5-trichloropyridine was used as internal standard.

Table S4. One-pot cyclisation/Suzuki/Heck reaction of 1 a with boronic acid derivatives

[^0]Table S5. One-pot cyclisation/Suzuki/Heck reaction of 1c with boronic acid derivatives

${ }^{[a]}$ Isolated yield. ${ }^{[b] 1} \mathrm{H}$ NMR yield; 3,4,5-trichloropyridine was used as internal standard.

2-(2-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

The pinacol ester was synthesised from 2-bromophenylboronic acid using a literature procedure. ${ }^{[12]}$ The recorded spectral data were in agreement with previously reported values. ${ }^{[13]}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3) $\delta 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.51$ (m, 1H), $7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 136.5,132.7,132.0$, 128.1, 126.4, 84.4, 24.9, signal of a boron-bonded carbon was not found; ${ }^{11}$ B NMR (128 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathbf{\delta} 30.86$.

Potassium (2-bromophenyl)trifluoroborate

The trifluoroborate salt was synthesised from 2-bromophenylboronic acid using a literature procedure. ${ }^{[14]}$ The recorded spectral data were in agreement with previously reported values. ${ }^{[15]}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) ~ \delta 7.59-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.10(\mathrm{~m}$, 1H), $7.04-6.96(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 135.2$ (q, $J=3.2 \mathrm{~Hz}$), 132.9,
129.0, 128.8, 126.6, signal of a boron-bonded carbon was not found; ${ }^{11} \mathrm{~B}$ NMR (128 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.03$ ($\mathrm{q}, \mathrm{J}=52.5 \mathrm{~Hz}$); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-142.68--143.43 (m).

2-(2-Bromo-5-methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

The pinacol ester was synthesised from 2-bromophenylboronic acid using a literature procedure. ${ }^{[12]}$ The recorded spectral data were in agreement with previously reported values. ${ }^{[16]}$
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.80 (dd, $J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3H), 1.37 (s, 12H); ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,133.7,121.2,118.5,118.2,84.5,55.6,24.9$, signal of a boronbonded carbon was not found; ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.72; MS (APCI) m/z (\%) 314.1 (96, M+), 313.1 (24), 312.1 (100, M^{+}), 311.1 (15), 233.1 (36); HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{BBr} 312.0527$, found 312.0528 .

Potassium (2-bromo-5-methoxyphenyl)trifluoroborate

$\stackrel{\ominus}{\mathrm{BF}_{3} \mathrm{~K}^{\oplus}}{ }^{\oplus}$ The trifluoroborate salt was synthesised from 2-bromophenylboronic acid using a modified literature procedure, ${ }^{[17]}$ using dry THF instead of $\mathrm{Et}_{2} \mathrm{O}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (dd, $J=8.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 159.4,133.6$, $120.4(q, J=3.2 \mathrm{~Hz}), 119.3,114.7,55.6$, signal of a boron-bonded carbon was not found; ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 3.03$ (q, $J=52.8,52.1 \mathrm{~Hz}$); MS (ESI) m/z (\%) 255.0 (99, M $^{-}$), 254.0 (29), 253.0 ($100, M^{-}$), 252.0 (23), 80.9 (11); HRMS (ESI) m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{OBBrF}_{3} 252.9653$, found 252.9656 .

7. Synthesis of 1,2-naphthoquinones

Table S6. Optimisation of the oxidation reaction of 3aa (additional experiments, see Table 3 for the best results)

Entry	Starting material	Oxidant (equiv.)	Additive (equiv.)	Solvent	Temp. [${ }^{\circ} \mathrm{C}$]	Time [min]	Yield ${ }^{[a]}$ of product 4a [\%]
1	3 a	CAN ${ }^{[b]}$ (3)	$\mathrm{KH}_{2} \mathrm{PO}_{4}(0.62)$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(4: 1)$	0 to rt	240	10
2	3 a	CAN (3)		Acetone	0	240	8
3	3 aa	$1 \mathrm{IBX}^{[]^{[]}}$(2)	-	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	r.t.	1440	$0^{[d]}$
4	3 aa	PIFA ${ }^{[\mathrm{ej}]}$ (2)	-	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	1080	12
5	3 a	PIFA (2)	$\mathrm{NaHCO}_{3}(2)$	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	120	22
6	3 aa	PIFA (4)	$\mathrm{NaHCO}_{3}(4)$	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	120	15
7	3aa	$\mathrm{PIDA}^{[f]}$ (2)	$\mathrm{NaHCO}_{3}(2)$	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	60	$0^{[9]}$
8	3 a	PIFA (2)	$\mathrm{NaHCO}_{3}(2)$	HFIP/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	15	15
9	3 a	CAN (2)	$\mathrm{NaHCO}_{3}(2)$	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	40	4
10	3aa	$\mathrm{HTIB}^{[n]}$ (2)	$\mathrm{NaHCO}_{3}(2)$	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	180	$0^{[1]}$
11	3 aa	AgO (10)	HNO_{3} (excess)	Dioxane	rt	150	$23^{[1]}$
12	3aa	PIFA (2)	$\mathrm{NaHCO}_{3}(2)$	$\mathrm{MeNO}_{2} / \mathrm{H}_{2} \mathrm{O}(2: 1)$	0 to rt	270	12
13	3 a	PIFA (2)	$\mathrm{NaHCO}_{3}(2)$	$\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)$	0 to rt	150	$0^{[9]}$
14	3 aa	PIFA (2)	TFA (1)	TFE/ $\mathrm{H}_{2} \mathrm{O}$ (1:1)	0	20	17
15	3aa	PIFA (2)	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (2)	TFE/ $\mathrm{H}_{2} \mathrm{O}(5: 1)$	0	30	18
16	3 a	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3)$	TFE/ $\mathrm{H}_{2} \mathrm{O}(3: 1)$	0	5	36
17	3 a	PIDA (2)	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (3)	TFE/ $\mathrm{H}_{2} \mathrm{O}(3: 1)$	0	5	34
18	3 a	HTIB (2)	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3)$	TFE/ $\mathrm{H}_{2} \mathrm{O}(3 / 1$	0	5	21
19	3 aa	IBX (2)	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (3)	TFE/ $\mathrm{H}_{2} \mathrm{O}(3: 1)$	0	90	$0^{[9]}$
20	3 aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(6)$	TFE/ $\mathrm{H}_{2} \mathrm{O}(3: 1)$	0	5	38

21	3aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(6)$	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	-35 to -15	15	33
22	3aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(6)$	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	-15	15	9
23	3aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{PTSA}^{[k]}(6)$	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	-15	5	19
24	3aa	$\mathrm{Phl}\left(\mathrm{OPiv}_{2}(2)\right.$	$\mathrm{TFA}^{[l]}(6)$ $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(6)$	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	-15 to 10	5	16
25	3aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{H}_{2} \mathrm{SO}_{4}(10)$	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	-15	5	82
26	3aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{H}_{2} \mathrm{SO}_{4}(6)$	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(4: 1)$	-15 to 0	30	82
27	3aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(1.2)$	$\mathrm{H}_{2} \mathrm{SO}_{4}(6)$	$\mathrm{TFE} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	-15	5	44
28	3aa	$\mathrm{Phl}(\mathrm{OPiv})_{2}(2)$	$\mathrm{H}_{2} \mathrm{SO}_{4}(6)$	$\mathrm{Acetone} / \mathrm{H}_{2} \mathrm{O}(6: 1)$	-15 to 0	30	18
29	3aa	$\mathrm{PIDA} \mathrm{(2)}$	$\mathrm{H}_{2} \mathrm{SO}_{4}(6)$	$\mathrm{HFIP} / \mathrm{H}_{2} \mathrm{O}(3: 1)$	-15	30	41

[a] ${ }^{1} \mathrm{H}$ NMR yield; 3,4,5-trimethoxybenzaldehyde was used as internal standard. ${ }^{[b]}$ CAN = ammonium cerium(IV) nitrate. ${ }^{[c]}$ IBX $=2$-iodoxybenzoic acid. ${ }^{[d]} 92 \%$ of starting material remained unreacted. ${ }^{[\mathrm{e]}}$ PIFA $=$ [bis(trifluoroacetoxy)iodo]benzene. ${ }^{[f]}$ PIDA $=$ (diacetoxyiodo)benzene. ${ }^{[g]}$ Starting material remained unreacted. ${ }^{[\mathrm{h}]}$ HTIB = [hydroxy(tosyloxy)iodo]benzene. ${ }^{[\mathrm{ij}]}$ Starting material decomposed. ${ }^{[j]}$ Product of nitration was formed. ${ }^{[k]}$ PTSA $=p$-toluenesulfonic acid. ${ }^{[l]}$ TFA $=$ Trifluoroacetic acid.

3

4

5

General procedure for the oxidation: Naphthalene 3 (0.3 mmol), bearing methoxy group was suspended in of 2,2,2-trifluoroethanol (TFE) or MeCN (1.8 mL) under argon atmosphere and cooled down to an indicated temperature. Sulphuric acid (1.8 mmol) preliminary mixed with water (0.6 mL) followed by of (diacetoxyiodo)benzene (PIDA) or (bis(trifluoroacetoxy)iodo)benzene (PIFA) (0.6 mmol) were added to a mixture and kept with a vigorous stirring at indicated time and temperature. Upon completion, the reaction was quenched at $0{ }^{\circ} \mathrm{C}$ by the slow addition of saturated aqueous NaHCO_{3} and the mixture extracted between water (15 mL) and EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic
layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography yielding desired 1,2naphthoquinone $\mathbf{4}$ or 5 . Reaction and purification details are specified for the each substrate below.

6-Methyl-2,3,3a,5-tetrahydro-1 H-phenanthro[1,10-bc]furan-7,8-dione (4a)

Reaction time: 5 min ; Reaction temperature: $-15^{\circ} \mathrm{C}$;
Column chromatography: (70/30) hexanes/EtOAc;
Yield: 84\% (0.065 g); purple amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
TFE			1.8
Water			0.6
3aa	0.3	76	
PIDA	0.6	193	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.8	176	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-$ 4.97 (m, 2H), 4.92-4.85 (m, 1H), 3.00 (dd, $J=17.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68 (ddd, $J=17.8$, $11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.54(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.75(\mathrm{~m}$, 1 H), 1.48 (dtd, $J=14.2,11.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.7$, 181.5 , 147.6, 143.3, 141.7, 137.0, 133.3, 130.9, 130.5, 126.5, 80.7 71.8, 28.6, 23.5, 20.6, 19.2; IR (KBr) $\mathrm{V}_{\text {max }}$ 2941, 2872, 2815, 1718, 1682, 1658, 1452, 1296, $1045 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 278.1 (18), 277.1 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 255.1\left(28,[\mathrm{M}+\mathrm{H}]^{+}\right), 227.1$ (3); HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 277.0835$, found 277.0833 .

6-Methyl-2,3,3a,5-tetrahydro-1 H-phenanthro[1,10-bc]furan-9,10-dione (5a)

Reaction time: 40 min ; Reaction temperature: $-35^{\circ} \mathrm{C} \rightarrow$ r.t (slowly warmed up);
Column chromatography: (97/3) dichloromethane/diethyl ether;
Yield: $71 \%(0.055 \mathrm{~g})$; bright orange amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
MeCN			1.8
Water			0.6
3ab	0.3	76	
PIDA	0.6	193	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.8	176	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (d, $\left.J=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.39(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.06-$ 4.94 (m, 2H), 4.92-4.83 (m, 1H), 3.37 (dd, $J=20.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92 (ddd, $J=19.5$, $11.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.66(\mathrm{~m}$, 1 H), 1.44 (dtd, $J=14.1,11.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.2,181.0$, 146.6, 144.4, 142.2, 138.9, 134.2, 129.3, 129.0, 126.3, 80.8, 71.8, 28.7, 27.3, 20.7, 15.5; IR (KBr) $\mathrm{V}_{\max } 3554,3479,3419,2956,2935,2845,1682,1658,1622,1577,1287$ cm^{-1}; MS (ESI) m/z (\%) 278.1 (17), 277.1 (100, [M+Na] ${ }^{+}$), 255.1 (16, [M+H] ${ }^{+}$); HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na} 277.0835$, found 277.0836 .
(1S,4R,4aS)-7-Methyl-1,2,4a,6-tetrahydro-4H-1,4-epoxybenzo[f]oxepino[3,4,5-cd]-isobenzofuran-8,9-dione (4b)

Reaction time: 20 min ; Reaction temperature: $-15^{\circ} \mathrm{C} \rightarrow$ r.t. (placed at r.t. after 5 minutes);
Column chromatography: (96/4) dichloromethane/diethyl ether;
Yield: 52\% (0.033 g); bright orange amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
TFE			1.35
Water			0.45
3ba	0.22	62	
PIFA	0.44	190	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	1.32	130	

${ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49$ ($\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 6.47 ($\left.\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.97-$ $5.95(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{dd}, J=13.0,3.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.03(\mathrm{dd}, J=13.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=6.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 1H), 2.57 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 181.0,181.0,145.1,144.1,140.0$, 139.7, 131.9, 130.9, 129.4, 127.8, 101.2, 82.0, 76.5, 72.8, 71.9, 19.6; IR (KBr) $V_{\max }$ 2920, 2860, 1670, 1293, 1141, 1060, $964 \mathrm{~cm}^{-1}$; MS (ESI) m/z (\%) 308.0 (20), 307.0 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right), 285.0\left(22,[\mathrm{M}+\mathrm{H}]^{+}\right), 239.0(5)$; HRMS (ESI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}$ 307.0577 , found 307.0576 ; Specific rotation $[\alpha] \mathrm{D}=-241.5^{\circ}\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$.
(1S,4R,4aS)-7-Methyl-1,2,4a,6-tetrahydro-4H-1,4-epoxybenzo[f]oxepino[3,4,5-cd]-isobenzofuran-10,11-dione (5b)

Reaction time: 40 min ; Reaction temperature: $-15^{\circ} \mathrm{C} \rightarrow 5^{\circ} \mathrm{C}$ (slowly warmed up);
Column chromatography: (40/60) hexanes/EtOAc;
Yield - 24\% (0.011 g); bright orange amorphous solid

Reagent	$\mathrm{n}[\mathrm{mmol}]$	$\mathrm{m}[\mathrm{mg}]$	$\mathrm{V}[\mathrm{mL}]$
TFE			1.0
Water			0.2
3bb	0.161	46	
PIFA	0.323	139	
$\mathrm{H}_{2} \mathrm{SO}_{4}$	0.966	95	

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ (d, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$), $5.93-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.14(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=13.5,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.99(\mathrm{dd}, J=13.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=7.3,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 1H), 2.37 (s, 3H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 181.5,180.6,148.7,141.7,140.8$, 138.1, 134.3, 131.7, 126.7, 126.2, 100.5, 81.8, 76.7, 73.9, 72.8, 15.7; IR (KBr) $\mathrm{V}_{\max }$ 2950, 2920, 2890, 2842, 1667, 1302, 1272, 1165, 1132, 1087, 1051, 1006, $964 \mathrm{~cm}^{-1}$; MS (ESI) m / z (\%) 308.1 (18), 307.1 (100, $[\mathrm{M}+\mathrm{Na}]^{+}$), 285.1 (19, [M+H] ${ }^{+}$); HRMS (APCI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{5}$ 285.0758, found 285.0755; Specific rotation [$\left.\alpha\right]_{\mathrm{D}}=+916.7^{\circ}$ (c $\left.0.4, \mathrm{CHCl}_{3}\right)$.

8. UV/Vis spectroscopy data

UV/Vis spectroscopy data for 1,2-naphthoquinones $\mathbf{4 a}, \mathbf{5 a}, \mathbf{4 b}, \mathbf{5 b}$

Concentration: $1 \times 10^{-5} \mathrm{M}$ in CHCl_{3}

4a: $\lambda_{\max }=265.5 \mathrm{~nm}$
5a: $\lambda_{\max }=266.5 \mathrm{~nm}$
4b: $\lambda_{\text {max }}=262.5 \mathrm{~nm}$
5b: $\lambda_{\max }=269.5 \mathrm{~nm}$

9. X-ray structure data for compound 5a

Crystallographic data for naphthoquinone 5a (Figure 1) were collected on Bruker D8 VENTURE Kappa Duo PHOTONIII by I $\mu \mathrm{S}$ micro-focus sealed tube CuKa radiation ($\lambda=$ $1.54178 \AA$). The measurement was performed at low temperature at 150 K . The structure was solved by direct methods (SHELXT 2014/5) ${ }^{[18]}$ and refined by full matrix least squares based on F^{2} (SHELXL2018/1). ${ }^{[19]}$ The hydrogen atoms on carbon were fixed into idealised positions (riding model) and assigned temperature factors either $\mathrm{H}_{\text {iso }}(\mathrm{H})=1.2$ $U_{\text {eq }}\left(\right.$ pivot atom) or $\mathrm{H}_{\text {iso }}(\mathrm{H})=1.5 \mathrm{U}_{\text {eq }}$ (pivot atom) for methyl moiety. The position of molecule 5a on the mirror of space group Pnma is causing a disorder of several atoms.

Crystal data for 5a: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{O}_{3}, M_{r}=372.63$; Orthorhombic, Pnma (No.62), $a=$ 21.5473 (6) $\AA, b=6.9275$ (2) $\AA, c=10.8993$ (3) $\AA, V=1626.93$ (8) $\AA^{3}, Z=4, D_{x}=$ $1.521 \mathrm{Mg} \mathrm{m}^{-3}$, orange-red bar of dimensions $0.39 \times 0.17 \times 0.15 \mathrm{~mm}$, multi-scan absorption correction $\left(\mu=5.21 \mathrm{~mm}^{-1}\right), T_{\min }=0.32, T_{\text {max }}=0.51$; a 26286 total of measured reflections ($\theta_{\max }=72.3^{\circ}$), from which 1738 were unique ($R_{\text {int }}=0.029$) and 1696 observed according to the $I>2 \sigma(I)$ criterion. The refinement converged $\left(\Delta / \sigma_{\max }=\right.$ 0.001) to $R=0.049$ for observed reflections and $w R\left(F^{2}\right)=0.135$, GOF $=1.17$ for 149 parameters and all 1738 reflections. The final difference Fourier map displayed no peaks of chemical significance $\left(\Delta \rho_{\max }=0.37, \Delta \rho_{\text {min }}=-0.31\right.$ e. $\left.\AA^{-3}\right)$.

Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: CCDC number: 1985309. Copies of the data can be obtained free of harge via https://www.ccdc.cam.ac.uk/structures/ (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Figure 1. Platon plot of the molecular structure of 5a showing the atom-labelling scheme, the displacement ellipsoids are drawn at 30\% probability level. Symmetry code: (i) $x,-y+1 / 2, z$. The disordered atoms are omitted for clarity.

10. Cytotoxicity screening

Cell lines:

CCRF-CEM - human T-lymhpoblastic leukemia (suspension)
HL-60 - human promyelocytic leukemia (suspension)
HeLa - human cervical carcinoma (adherent)
HepG2 - human hepatocellular carcinoma (adherent)
NHDF - human normal dermal fibroblasts (adherent)

Results:

	CEM				HL60				HeLa			
	\% of ctr\|*	SD	C $_{50^{* *}}$	SD	\% of ctrl	SD	IC $_{50}$	SD	\% of ctrl	SD	IC $_{50}$	SD
3ba	97	1	n.d.		96	8	n.d.		89	5	n.d.	
4b	4	0	1.80	0.09	14	3	4.65	0.06	24	5	4.32	0.15
5a	4	1	1.54	0.04	2	1	3.79	0.02	11	4	5.33	0.09
4a	3	1	1.66	0.03	4	2	4.38	0.11	39	7	6.28	0.24

	HepG2				NHDF			
	\% of ctrl	SD	IC $_{50}$	SD	\% of ctrl	SD	IC 50	SD
3ba	96	7	n.d.		91	7	n.d.	
4b	61	9	n.d.		6	2	1.97	0.08
5a	64	4	n.d.		15	3	2.82	0.28
4a	82	4	n.d.		7	2	3.06	0.49

*percentage of viability of compound-treated cells ($10 \mu \mathrm{M}$) vs. untreated cells
**only compounds with $>50 \%$ decrease in cell viability in the $10 \mu \mathrm{M}$ screening test were subjected to IC50 determination, values are in $\mu \mathrm{mol} / \mathrm{L}$

Method:

Cytotoxicity of compounds $\mathbf{3 b a}, \mathbf{4 a}$, 4b and $\mathbf{5 a}$ was evaluated in four cancer cell lines (CCRF-CEM, HepG2, Hela S3, HL-60) and non-tumour human dermal fibroblasts (NHDF). All cell lines were from ATCC (Manassas, VA, USA). The cells were maintained in RPMI-1640 or DMEM culture medium containing 10% FBS and 1% GlutaMax without antibiotics. Cells were seeded in 384-well white plates (Thermo Fisher Scientific, Waltham, USA) at a concentration between 2,000-50,000 cells per well and left to rest overnight. The next day, indicated concentrations of the test compounds were added, the cells were incubated at $37{ }^{\circ} \mathrm{C}, 5 \% \mathrm{CO}_{2}$ for 72 h after which CellTiter-Glo® 2.0 detection reagent (Promega, Madison, USA) was added. The plate was left on a shaker (350 rpm) for 20 min at room temperature. Luminescence was measured by a multimode plate reader. The signal of the compound-treated cells was related to the value of untreated control which was arbitrarily set to 100% viability. IC 50 values were calculated from dose-response curves using non-linear regression method using GraphPad Prism software.

11. References

[1] M. E. Krafft, J. W. Cran, Synlett 2005, 8, 1263-1266.
[2] Q. Yan, E. Gin, M. Wasinska-Kalwa, M. G. Banwell, P. D. Carr, J. Org. Chem. 2017, 82, 4148-4159.
[3] J. L. Luche, J. Am. Chem. Soc. 1978, 100, 2226-2227.
[4] B. S. Chinta, A. Siraswar, B. Baire, Tetrahedron 2017, 73, 4178-4185.
[5] K. P. Stockton, C. J. Merritt, C. J. Sumby, B. W. Greatrex, Eur. J. Org. Chem. 2015, 32, 6999-7008.
[6] M. Bamba, T. Nishikawa, M. Isobe, Tetrahedron 1998, 54, 6639-6650.
[7] F. Ziyanak, M. Kuş, L. Artok, Adv. Synth. Catal. 2011, 353, 897-902.
[8] H. Kusama, Y. Karibe, R. Imai, Y. Onizawa, H. Yamabe, N. Iwasawa, Chem. - Eur. J. 2011, 17, 4839-4848.
[9] J. Mikušek, P. Jansa, P. R. Jagtap, T. Vašiček, I. Císařová, E. Matoušová, Chem. Eur. J. 2018, 24, 10069-10072.
[10] S. Debnath, S. Mondal, Synthesis 2016, 48, 710-722.
[11] J.-A. García-López, M. F. Greaney, Org. Lett. 2014, 16, 2338-2341.
[12] I. Kalvet, T. Sperger, T. Scattolin, G. Magnin and F. Schoenebeck, Angew. Chem. Int. Ed., 2017, 56, 7078-7082.
[13] M. Retbøll, A. J. Edwards, A. D. Rae, A. C. Willis, M. A. Bennett and E. Wenger, J. Am. Chem. Soc., 2002, 124, 8348-8360.
[14] R. Robidas, V. Guérin, L. Provençal, M. Echeverria and C. Y. Legault, Org. Lett., 2017, 19, 6420-6423.
[15] A. J. Varni, M. V. Bautista and K. J. T. Noonan, J. Org. Chem., 2020, 85, 67706777.
[16] D. Qiu, Z. Zheng, F. Mo, Y. Zhang and J. Wang, Can. J. Chem., 2012, 90, 71-74.
[17] J.-L. Shih, T. S. Nguyen and J. A. May, Angew. Chem. Int. Ed., 2015, 54, 99319935.
[18] G. M. Sheldrick, Acta Crystallogr. A 2015, 71, 3-8.
[19] G. M. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
12. Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

SI-62

SI-65

SI-66

SI - 70

SI-71

SI-73

SI-74

	1		1		1	1	1	,			1	1	1	,			1	
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

SI-75

SI-76

SI-77

SI-78

SI - 80

SI-82

SI-84

SI-86

SI-88

SI-90

SI-92

SI-96

SI-98

SI-102

| | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 1 | |

SI-111

T	1	1	1	1	1	T	1	T		1	T	1	1	1	I	1	T	T
180	170	160	150	140	130	120	110	100	$\begin{gathered} 90 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	80	70	60	50	40	30	20	10	0

SI-121

SI-128

			1		1	1	1	1	1	1	1	1	1		1	1	1	1		
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

SI-137

[^0]: ${ }^{[a]}$ Isolated yield. ${ }^{[b] 1} \mathrm{H}$ NMR yield; 3,4,5-trichloropyridine was used as internal standard.

