Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Novel synthesis of fused spiro piperidone-cyclopropanes from cyclopropyl amides and electron-deficient alkene

Xiao-Dan Han¹, Gao-Liang Peng², Hui-Bin Wang¹, Lei Wu¹, Jian-ping Fu¹, Zhong-Sheng Tang¹, Ju-Wu Hu^{1*}, Wei Xiong^{1*}

1) Department of Applied Chemistry, Jiang Xi Academic of Sciences, Nanchang, 330096, China

2) Jiangxi university of Applied Science, Nanchang, 330100, China

email: hjw19771985@163.com or xiongwei19821985@sina.com

I. Crystal data and ORTEP drawing of compound 3a and 5d

Crystal data for **3a**: C₁₈H₂₁NO₄, colorless crystal, *M* =315.36, orthorhombic, Pnma, *a* = 15.2387(4) Å, *b* = 10.3818 (4)Å, *c* = 9.6545 (3)Å, α = 90.0°, β = 90°, γ = 90.0°, *V* = 1527.39(9)Å³, *Z* = 4, *T* = 150K, *F*₀₀₀ = 672, *R*₁ = 0.0692(1315), *wR*₂ = 0.1658(1426). CCDC1948958.

Compound 3a

Crystal data for **5d:** C₁₆H₁₆N₂O, colorless crystal, M = 250.29, monoclinic, P21/c, a = 11.4303(7)Å, b = 23.1780(16)Å, c = 10.3616 (8)Å, a = 90.0°, $\beta = 91.780$ (6)°, $\gamma = 90.0$ °, V = 2743.8(3)Å³, Z = 8, T = 293, K, $F_{000} = 1056$, $R_I = 0.0728(3987)$, $wR_2 = 0.2095(4833)$. CCDC 1948938.

Compound **5d**

II. Copies of ¹H NMR and ¹³C NMR spectra of compounds 3, 4 and 5

Figure 1.¹H-(upper) and ¹³C-NMR (lower) spectra of compound **3a**.

Figure 2.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3b.

Figure 3.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3c.

Figure 4.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3d.

Figure 5.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3e.

Figure 6.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3f.

Figure 7.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3g.

Figure 8.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3h.

Figure 9.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3j.

Figure 10.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3k.

Figure 11.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3l.

Figure 12.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3m.

Figure 13.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 3n.

Figure 14.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4a.

Figure 15.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4b.

Figure 16.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4c.

Figure 17.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4d.

Figure 18.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4e.

Figure 19.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4f.

Figure 20.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4g.

Figure 21.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 4h.

Figure 22.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5a.

Figure 23.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5b.

Figure 24.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5c.

Figure 25.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5d.

Figure 26.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5e.

Figure 27.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5f.

Figure 28.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5g.

Figure 29.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5h.

Figure 30.¹H-(upper) and ¹³C-NMR (lower) spectra of compound 5i.

Figure 31. Noesy spectra of compound 4f