Rh-catalyzed C-H Alkylation Enabling Modular Synthesis of CF₃-substituted Benzannulated Macrocyclic Inhibitors of B cell responses

Tao Sun, ^{[a]+} Shijun He,^{[b,c]+} Zhongliang Xu,^[b] Jianping Zuo,^[b,c] Yang Yu,^{*[a]} and Weibo Yang^{*[b,c,d]}

[a] Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China

[b] Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, China[c] University of Chinese Academy of Sciences, Beijing 100049, China

[d] School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.

Contents:

- Page 3: General comments
- Page 4: General procedure for the synthesis of β -trifluoromethyl- α , β -enones

Page 4: General procedure for C-H activation

- Page 4: Reaction in gram scale of 3aa
- Page 5: General procedure for the synthesis of construction of functional
- CF₃-supported benzannulated macrolactams
- Page 7: Plausible reaction mechanism

Page 7: Biological assay

Page 10: **Table S1**. Inhibitory activity on Con A-induced T and LPS-induced B cell proliferation.

Page 12: X-ray molecular structure and Crystallographic Data

Page 18: Characterization Data of Starting Materials

Page 22: Characterization Data of Desired Products

Page 92: References

General comments:

NMR spectra were recorded at room temperature on the following spectrometers: Bruker Avance III 400 Spectrometer (400 MHz) and Bruker Avance III 500 (Cryo) Spectrometer (500 MHz). Chemical shifts are given in ppm and coupling constants in Hz. 1H spectra were calibrated in relation to the reference measurement of TMS (0.00 ppm). ¹³C spectra were calibrated in relation to deuterated solvents. The following abbreviations were used for ¹H NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. For HRMS data, the ESI-positive method was applied on the Agilent G6520 Q-TOF. Chemicals were purchased from commercial suppliers. Unless stated otherwise, all the substrates and solvents were purified and dried according to standard methods prior to use. All the compounds as stock solution were dissolved with 100% dimethyl sulfoxide (DMSO, Sinopharm, China) and diluted with RPMI 1640 medium (Gibco, Grand Island, NY, USA) containing 10% fetal bovine serum (FBS) (Hyclone, South Logan, UT, USA). Thiazolyl Blue Tetrazolium Bromide (MTT) were obtained from Sigma-Aldrich (St.Louis.MO.USA); Concanavalin A (ConA) and lipopolysaccharide (LPS, Escherichia coli O55:B5) were purchased from Sigma (St. Louis, MO, USA), [³H] thymidine was purchased from Perkin-Elmer (Waltham, MA, USA).

General procedure for the synthesis of β -trifluoromethyl- α , β -enones

 β -trifluoromethyl- α , β -enones was synthesized according to literature procedure¹. For example, pyrrolidine (1.8 mL, 21 mmol), trifluoroacetaldehyde hemiacetal (3.9 mL, 30 mmol) and the corresponding acetophenone (30 mmol) were dissolved in toluene. The mixture was heated at 120 °C until starting material was completely reacted (TLC). Then, the solvent was removed under reduced pressure and the resulting product was chromatographed on silica gel eluting with petroleum ether-EtOAc to afford the desired β -trifluoromethyl- α , β -enones 2**a-l**.

General procedure for C-H activation

To the solution of the **1** (0.1 mmol, 1.0 equiv) in CH₃CN (0.6 mL), **2** (0.15 mmol, 1.5 equiv), $[Cp*RhCl_2]_2$ (5 mol %), AgSbF₆ (20 mol %), Cs₂CO₃ (0.5 equiv) was added. The solution was stirred at 60 °C for 12 hours. The reaction progress was monitored by TLC. When the starting material disappeared, the solvent was removed under reduced pressure, CH₃I (3.0 equiv), K₂CO₃ (1.0 equiv) and DMF were added. The solution was stirred at room temperature for 2 hours. The reaction was quenched with water, and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography silica gel afford the corresponding **3a**.

Reaction in gram scale of 3aa

To the solution of the **1a** (4 mmol, 1.0 equiv) in CH₃CN (24 mL), **2a** (6 mmol, 1.5 equiv), $[Cp*RhCl_2]_2$ (5 mol %), AgSbF₆ (20 mol %), Cs₂CO₃ (0.5 equiv) was added. The solution was stirred at 60 °C for 12 hours. The reaction progress was monitored by TLC. When the starting material disappeared, the solvent was removed under reduced pressure, CH₃I (3.0 equiv), K₂CO₃ (1.0 equiv) and DMF were added. The solution was stirred at room temperature for 2 hours. The reaction was quenched with water, and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography silica gel afford the 1.125 g (yield = 80%) **3aa**.

General procedure for the synthesis of construction of functional CF₃-supported benzannulated macrolactams

Reaction conditions: 1) **1** (0.1 mmol), **2** (0.15 mmol), $[Cp*RhCl_2]_2$ (5 mol %), AgSbF₆ (20 mol %), Cs₂CO₃ (0.5 equiv), CH₃CN (0.6 mL) at 60 °C under air for 12 h; 2) **3** (0.3 mmol), amino acid esters (0.45 mmol), EDCI (1.2 equiv), HOBt (1.5 equiv), NEt₃ (4.5 equiv), DMF (3 mL) at r.t. under air for 12 h; 3) CH₃OH/THF/H₂O (1 mL:1 mL:1 mL), LiOH (10 equiv); 4) hydrogen chloride-1,4-dioxane; 5) EDCI (1.2 equiv), HOBt (1.5 equiv), NEt₃ (4.5 equiv), DMF (60 mL) at 50 °C under air for 12 h.

To the solution of the **1** (0.1 mmol, 1.0 equiv) in CH₃CN (0.6 mL), **2** (0.15 mmol, 1.5 equiv), $[Cp*RhCl_2]_2$ (5 mol %), AgSbF₆ (20 mol %), Cs₂CO₃ (0.5 equiv) was added. The solution was stirred at 60 °C for 12 hours. The reaction progress was monitored by TLC or HPLC/MS (some reactions are difficult to be monitored by TLC, so MS was used instead of TLC). When the starting material disappeared, the reaction was quenched with water, and extracted with EtOAc. The combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified by flash chromatography silica gel afford the corresponding **3**.

3 (0.3 mmol, 1.0 equiv), amino acid (0.45 mmol, 1.5 equiv), EDCI (0.36 mmol, 1.2 equiv), HOBt (0.45 mmol, 1.5 equiv), NEt₃ (1.35 mmol, 4.5 equiv) were dissolved in DMF (3 mL). The mixture was stirred at r.t. under air for 12 h. The reaction progress was monitored by TLC, when the starting material disappeared, the reaction was quenched with water, and extracted with EtOAc. The combined organic layers were washed with water and brine solution in turns, dried over Na₂SO₄. After being filtered, the organic phase was concentrated and purified by flash chromatography silica gel afford the desired product **3-1**.

MeOH (0.7 mL) and THF (0.7 mL) was added to give a solution of **3-1**, then LiOH (10 equiv) in H₂O (0.7 mL) was added. The mixture was stirred at ambient temperature for 1 h. After removed solvent in vacuum, DCM was added and adjust pH = $3\sim4$ by HCl (1 M). Hereafter, the resulting solution was concentrated under reduced pressure to afford crude product **3-2** without further purification.

The product **3-2** was dissolved in hydrogen chloride-1,4-dioxane (3 mL), after stirred at ambient temperature for 1 h, the reaction was monitored by HPLC/MS,

when the starting material disappeared, the resulting solution was concentrated under reduced pressure to afford product **4** without further purification.

The resulting product **4** was dissolved in DMF (60 mL), then EDCI (1.2 equiv) and HOBt (1.5 equiv), NEt₃ (4.5 equiv) was added. After stirred overnight at 50 °C, the reaction progress was monitored by HPLC/MS, when the starting material disappeared, the reaction was quenched with water, and extracted with EtOAc. The combined organic layers were washed with water and brine solution in turns, dried over Na₂SO₄. After being filtered, the organic phase was concentrated and purified by flash chromatography silica gel afford the desired product **5**.

Plausible reaction mechanism

Biological assay

Animals

Inbred 6 to 8-week-old female BALB/c mice were purchased from Shanghai Jiesijie Experimental Animal Co., Ltd. (Certificate No. 2018-0004, China). The mice were housed under specific pathogen-free conditions with a controlled environment (12

hours of light/12 hours of dark cycle, 22±1 °C, 55±5% relative humidity). All mice were fed standard laboratory chow and water ad libitum and allowed to acclimatize in our facility for one week before any experiments started. All experiments were carried out according to the National Institutes of Health Guide for Care and Use of Laboratory Animals and were approved by the Bioethics Committee of the Shanghai Institute of Materia Medica (IACUC Protocol #2020-03-ZJP-120).

Splenocytes preparation

Mice were sacrificed and their spleens were isolated aseptically. The spleens were ground up, and a single cell suspension was prepared after cell debris and clumps were removed. Erythrocytes were depleted with ammonium chloride buffer solution. Cells were washed and suspended in RPMI 1640 media containing 10% FBS, penicillin (100 U/mL), and streptomycin (100 μ g/mL). Cells were counted by trypan blue exclusion.

Cell viability assay

Splenocytes (8×10^5 /well) were seeded in the 96-well plates in triplicate with 1640 media containing 10% FBS, penicillin (100 U/mL), and streptomycin (100 µg/mL) in presence or absence of indicated concentrations of compounds, then the cells were cultured in a humidified, 37°C, 5% CO₂-containing incubator for 48 hours. MTT solution was added to each well at a final concentration of 0.5mg/mL, and incubated for 4 hours before the end of culture. The quantity of formazan (presumably directly proportional to the number of viable cells) is measured at 570 nm with a microplate reader (Molecular Devices, Sunnyvale, CA, USA) and the cell viability was calculated.

Splenocytes proliferation assay

Splenocytes (5 \times 10⁵/well) were cultured in 96-well plates in triplicate with 1640 media containing 10% FBS, penicillin (100 U/mL), and streptomycin (100 µg/mL) in the presence or absence of indicated concentrations of compounds and stimulated

with 1 µg/mL of Con A or 10 µg/mL of LPS, respectively. Cells were maintained in a humidified, 37 °C, 5% CO₂-containing incubator for 48 hours and pulsed with 0.5 μ Ci/well of [³H] thymidine 8 h in advance of the end of culture. Cells were harvested onto glass fiber filters after freeze and thaw. The incorporated radioactivity was counted using a Beta Scintillation Counter (PerkinElmer Life Sciences, Boston, MA).

B cell purification and in vitro stimulation

After mononuclear cell suspension preparation, mouse splenic polyclonal CD19⁺ B cells were isolated using PE-conjugated anti-CD19 Ab (BD Pharmingen, San Diego, CA, USA), anti-PE MicroBeads (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany) and positively selected by a magnetic cell-sorting protocol (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). The purity of the resultant cell population was determined by flow cytometry analysis and was consistently 98%. Purified B cells were then cultured with medium alone or with the TLR4 ligand LPS (10 μ g/ml) or anti-mouse IgM (10 μ g/mL) plus anti-mouse CD40 (2.5 μ g/mL). After incubation, for activation assays, cells were cultured for 6 days and the supernatants were collected for further determination.

Flow cytometry analysis

Cells were washed with phosphatebuffered saline and then were blocked with anti-mouse CD16/CD32 Ab (eBioscience) and stained with PerCp-Cy5.5-conjugated anti-mouse CD69 and BV421-conjugated anti-mouse MHC-II. All immunofluorescent mAbs used in this research were obtained from BD Biosciences (Franklin Lakes, NJ, USA). The data were analyzed using FlowJo software (Tree Star, Ashland, OR, USA).

Detection of antibodies

Supernatants were analyzed using a Luminex multiplex assay based suspension bead array (SBA) by a ProcartaPlex mouse antibody isotyping panel 7plex assay kit (EPX070-20815-901 (Invitrogen). Assay plates were read by Luminex 200

Instruments (Luminex, Austin, TX). The concentrations were calculated by the xPONENT software (LUMINEX, Austin, TX, USA). Heat maps were generated using GraphPad Prism 8.0 software.

Statistical analysis

cell proliferation.

The data from this research study were analyzed using GraphPad Prism 8.0 software. Statistical analysis was performed using oneway ANOVA, and data are presented as the mean \pm SD. *P* < 0.05 was considered statistically significant.

Table S1. Inhibitory activity on Con A-induced T and LPS-induced B

Compound	Cytotoxicity CC50 (µM)	Con A stimulation IC50 (µM)	LPS stimulation IC ₅₀ (µM)
5a	>200	42.35	5.50
5b	>200	51.44	12.95
5c	>200	29.23	3.90
5f	>200	97.9	2.24
5h	183.9	35.75	4.82
CsA*	8.38	0.05	0.32

* CsA, cyclosporin A, positive control, with much higher cytotoxicity

Figure S1. Compounds 5c and 5f impeded the activation and the upregulation of antigen-presenting molecule of LPS and anti-IgM/CD40-primed CD19+ B cells. Primary murine CD19+ B cells were cultured with LPS or anti-mouse IgM and purified hamster anti-mouse CD40 Ab in the absence or presence of compounds 5 μ M in 96-well plates for 24 hours to determine B cell activation. Cells were collected and determined the expression of CD69 and MHC-II, and data were shown as the representative dot plots (A and B, left panel) or histograms displaying mean fluorescence intensity (MFI) (C and D, upper panel) and statistics analysis derived from 2 independent experiments with similar results (A and B, right panel for CD69; C and D, lower panel for MHC-II). Numbers inserted in C and D showing the MFI

value of MHCII molecule. Data were shown as mean \pm SD, ** *P* < 0.01, ****P* < 0.001 versus indicated stimuli-conditioned cells.

X-ray molecular structure and Crystallographic Data

Table S2. Crystal data and structure refinement for 3ai				
Identification code	mo_22020163_0m			
Empirical formula	$C_{17}H_{15}F_{3}O_{3}S$			
Formula weight	356.35			
Temperature/K	170.0			
Crystal system	triclinic			
Space group	P-1			
a/Å	9.9842(4)			
b/Å	10.3171(3)			
c/Å	17.4171(7)			
α'°	76.4580(10)			
β/°	89.8730(10)			
<i>γ</i> /°	70.4810(10)			
Volume/Å ³	1638.32(11)			
Z	4			
$ ho_{ m calcg}/ m cm^3$	1.445			
µ/mm ⁻¹	0.241			
F(000)	736.0			
Crystal size/mm ³	$0.16 \times 0.09 \times 0.04$			

Radiation	MoK α ($\lambda = 0.71073$)
2⊖ range for data collection/°	4.324 to 52.846
Index ranges	$-12 \le h \le 12, -12 \le k \le 12, -21 \le 1$
	≤ 21
Reflections collected	18884
Independent reflections	6673 [$R_{int} = 0.0465$, $R_{sigma} = 0.0586$]
Data/restraints/parameters	6673/0/437
Goodness-of-fit on F ²	1.049
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0508, wR_2 = 0.1388$
Final R indexes [all data]	$R_1 = 0.0899, wR_2 = 0.1778$
Largest diff. peak/hole / e Å ⁻³	0.22/-0.32

Table S3. Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic									
Displacement Pa	arameters (Ų×10	0 ³) for mo_22020	163_0m. U _{eq} is d	efined as 1/3 of					
of the trace of th	of the trace of the orthogonalised UIJ tensor.								
Atom	x	у	z	U(eq)					
S2	8527.3(8)	9832.8(8)	693.6(5)	42.9(2)					
S1	-721.1(8)	6287.9(9)	8366.1(5)	45.4(2)					
F6	5790.4(18)	5997.8(17)	3661.4(10)	44.5(4)					
F3	4840.6(18)	8342.5(17)	6866.7(10)	46.5(5)					
F4	5884.6(18)	6973.3(19)	4611.5(10)	46.8(5)					
F5	4362.1(16)	8109.4(18)	3610.6(10)	46.6(5)					
F1	6487.7(17)	6344.6(19)	6921.6(10)	50.8(5)					
F2	4625(2)	7025(2)	6115.4(10)	53.9(5)					
O3	7962(2)	3561.5(19)	7997.5(12)	38.2(5)					
O6	7963(2)	9562(2)	2381.6(12)	38.5(5)					
O2	2394(2)	5086.9(19)	8224.0(12)	39.3(5)					
01	6079(2)	2877(2)	8260.9(14)	48.4(6)					
O4	7727(3)	8582(2)	4984.8(13)	47.6(6)					
O5	8881(3)	9763(2)	4159.3(13)	52.6(6)					
C9	4967(3)	6096(3)	8302.2(15)	25.7(6)					
C14	6166(3)	4915(3)	8657.9(16)	27.8(6)					
C20	9169(3)	7358(3)	4148.3(15)	28.7(6)					
C16	6702(3)	3685(3)	8283.6(16)	30.1(6)					
C10	4400(3)	7140(3)	8710.4(16)	29.7(6)					

C11	5010(3)	7020(3)	9447.2(17)	32.8(6)
C21	8315(3)	6934(3)	3694.6(16)	28.3(6)
C12	6224(3)	5880(3)	9780.7(17)	33.3(6)
C7	4329(3)	6261(3)	7472.8(15)	28.4(6)
C25	10604(3)	6527(3)	4377.5(16)	34.4(6)
C30	7356(3)	8954(3)	2061.2(16)	28.3(6)
C13	6829(3)	4818(3)	9384.9(16)	30.0(6)
C5	1866(3)	6326(3)	7852.4(16)	29.7(6)
C27	6775(3)	7856(3)	3407.4(16)	29.3(6)
C29	6480(3)	8140(3)	2506.0(15)	30.6(6)
C6	2725(3)	7066(3)	7325.1(16)	29.4(6)
C31	7445(3)	9016(3)	1213.9(17)	33.4(6)
C28	5716(3)	7230(3)	3822.1(16)	34.2(6)
C19	8594(3)	8712(3)	4406.4(17)	35.1(7)
C4	360(3)	7134(3)	7864.5(16)	31.3(6)
C22	8917(3)	5667(3)	3471.3(17)	36.0(7)
C8	5069(3)	6989(3)	6849.0(17)	37.8(7)
C24	11149(3)	5258(3)	4155.1(17)	38.9(7)
C23	10329(3)	4829(3)	3703.1(18)	39.5(7)
C3	-399(3)	8526(3)	7504.2(19)	39.6(7)
C15	8142(3)	3579(3)	9764.8(18)	39.1(7)
C17	8556(3)	2405(3)	7627.6(19)	44.5(8)
C2	-1869(3)	8895(4)	7644(2)	49.0(8)
C26	11544(3)	6995(4)	4847(2)	51.7(9)
C1	-2162(3)	7777(4)	8097(2)	46.4(8)
C32	6742(4)	8550(4)	731(2)	63.2(11)
C34	8045(4)	9543(4)	-155(2)	56.3(9)
C18	7168(5)	9780(4)	5333(2)	69.5(12)
C33	7080(5)	8865(5)	-64(2)	79.6(14)

Table S4. Anisotropic Displacement Parameters (Å²×10³) for mo_22020163_0m. The Anisotropic displacement factor exponent takes the form: -2 π ²[h²a^{*2}U₁₁+2hka*b*U₁₂+···].

Atom	U11	U22	U33	U23	U13	U12
S2	46.8(5)	46.0(5)	39.9(5)	-3.4(3)	7.4(4)	-25.9(4)
S 1	43.6(5)	51.0(5)	46.9(5)	-5.0(4)	10.0(4)	-27.9(4)
F6	52.4(11)	42.1(10)	47.5(11)	-13.1(8)	12.6(9)	-25.9(8)
F3	47.2(10)	39.2(10)	52.1(12)	-4.2(8)	16.2(9)	-18.7(8)
F4	45.7(10)	64.7(12)	28.8(10)	-8.6(8)	8.4(8)	-19.6(9)
F5	29.7(9)	57.4(11)	44.8(11)	-8.0(8)	4.6(8)	-7.9(8)

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	F1	30.3(9)	64.6(12)	44.1(11)	-4.1(9)	13.7(8)	-5.5(8)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	F2	56.5(11)	73.4(13)	27.3(10)	-8.5(9)	8.1(9)	-19.2(10)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	03	34.8(11)	35.3(11)	45.2(13)	-13.0(9)	13.7(9)	-11.1(9)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	06	47.6(12)	34.4(10)	37.6(12)	-9.8(9)	-1.4(9)	-18.8(9)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O2	41.0(11)	30.2(10)	43.8(12)	0.0(9)	-0.8(10)	-14.8(9)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	01	40.5(12)	37.2(11)	77.5(17)	-25.2(11)	13.9(11)	-18.9(10)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O4	71.4(15)	35.1(11)	43.9(13)	-19.0(9)	21.1(11)	-21.9(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O5	81.7(17)	41.1(12)	47.8(14)	-11.0(10)	8.5(12)	-37.6(12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C9	25.3(13)	27.5(13)	26.4(14)	-5.3(11)	6.0(11)	-12.5(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C14	26.5(13)	27.2(13)	31.6(15)	-6.3(11)	7.9(11)	-12.1(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C20	34.9(14)	28.5(13)	23.8(14)	-1.9(11)	4.3(12)	-15.5(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C16	30.5(14)	24.4(13)	32.2(15)	-4.2(11)	2.1(12)	-7.4(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C10	29.8(14)	29.2(13)	32.1(16)	-9.5(11)	7.2(12)	-11.6(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C11	33.7(15)	33.5(14)	35.5(16)	-11.6(12)	7.4(13)	-15.2(12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C21	30.9(14)	29.1(13)	26.0(14)	-8.3(11)	7.6(11)	-10.7(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C12	37.8(15)	38.0(15)	29.1(15)	-5.0(12)	2.7(12)	-21.6(13)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C7	30.9(14)	28.8(13)	25.4(14)	-7.6(11)	4.7(11)	-9.6(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C25	34.7(15)	40.7(16)	28.7(16)	-2.7(12)	5.5(12)	-17.9(13)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C30	31.0(14)	19.6(12)	29.6(15)	-3.8(10)	-1.2(12)	-4.2(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C13	28.1(13)	30.6(14)	30.4(15)	-0.4(11)	3.1(12)	-13.9(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C5	36.7(15)	30.1(14)	27.4(14)	-8.3(11)	-0.7(12)	-17.0(12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C27	31.0(14)	27.9(13)	29.0(15)	-8.1(11)	2.9(12)	-9.5(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C29	30.8(14)	34.5(14)	25.9(15)	-5.8(11)	0.3(12)	-11.9(12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C6	27.3(13)	29.3(13)	29.6(15)	-4.1(11)	-0.8(12)	-9.3(11)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C31	38.4(15)	27.4(13)	35.7(16)	-5.4(11)	6.7(13)	-14.6(12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C28	32.6(15)	40.3(16)	24.0(15)	-8.2(12)	1.5(12)	-5.2(12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C19	45.8(17)	36.3(16)	26.4(15)	-7.6(12)	-1.9(13)	-18.0(13)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C4	33.4(15)	36.1(15)	29.6(15)	-7.5(12)	4.3(12)	-19.0(12)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C22	38.0(16)	36.0(15)	36.5(17)	-14.2(13)	4.6(13)	-12.3(13)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C8	32.3(15)	44.2(17)	30.2(16)	-5.2(13)	6.1(13)	-7.3(13)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C24	28.5(14)	44.5(17)	35.4(17)	-0.3(13)	3.6(13)	-8.3(13)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C23	38.7(16)	33.0(15)	40.2(18)	-8.9(13)	8.8(14)	-4.2(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C3	31.3(15)	38.6(16)	47.0(19)	-4.3(13)	5.6(14)	-13.9(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C15	38.6(16)	36.2(15)	38.2(17)	-0.6(13)	-3.3(13)	-13.2(13)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C17	47.9(18)	35.8(16)	41.8(19)	-12.4(13)	12.0(15)	-2.2(14)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C2	33.5(16)	50.3(19)	58(2)	-7.8(16)	3.7(15)	-12.2(14)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C26	47.3(19)	56(2)	53(2)	-1.4(16)	-9.8(16)	-26.4(16)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C1	32.2(16)	68(2)	48(2)	-19.8(17)	12.0(14)	-25.2(15)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C32	104(3)	85(3)	39(2)	-23.0(18)	24(2)	-76(3)
C18 113(3) 43.4(19) 58(2) -28.7(18) 26(2) -23(2) C33 134(4) 119(4) 39(2) -33(2) 28(2) -102(3)	C34	79(3)	67(2)	36.7(19)	-10.3(16)	20.3(18)	-44(2)
C33 134(4) 119(4) 39(2) -33(2) 28(2) -102(3)	C18	113(3)	43.4(19)	58(2)	-28.7(18)	26(2)	-23(2)
	C33	134(4)	119(4)	39(2)	-33(2)	28(2)	-102(3)

Table S5. Bond Lengths for mo_22020163_0m.							
Atom	Atom	Length/Å	Atom	Atom	Length/Å		
S2	C31	1.717(3)	C20	C19	1.497(4)		
S2	C34	1.677(4)	C10	C11	1.383(4)		
S1	C4	1.720(3)	C11	C12	1.386(4)		
S1	C1	1.685(3)	C21	C27	1.525(4)		
F6	C28	1.343(3)	C21	C22	1.391(4)		
F3	C8	1.346(3)	C12	C13	1.396(4)		
F4	C28	1.338(3)	C7	C6	1.527(4)		
F5	C28	1.346(3)	C7	C8	1.509(4)		
F1	C8	1.340(3)	C25	C24	1.386(4)		
F2	C8	1.341(3)	C25	C26	1.508(4)		
03	C16	1.329(3)	C30	C29	1.502(4)		
03	C17	1.441(3)	C30	C31	1.466(4)		
06	C30	1.222(3)	C13	C15	1.510(4)		
O2	C5	1.223(3)	C5	C6	1.506(4)		
01	C16	1.202(3)	C5	C4	1.458(4)		
O4	C19	1.339(4)	C27	C29	1.538(4)		
O4	C18	1.447(4)	C27	C28	1.513(4)		
05	C19	1.196(3)	C31	C32	1.359(4)		
C9	C14	1.406(4)	C4	C3	1.372(4)		
C9	C10	1.391(4)	C22	C23	1.386(4)		
C9	C7	1.529(4)	C24	C23	1.377(4)		
C14	C16	1.502(4)	C3	C2	1.424(4)		
C14	C13	1.397(4)	C2	C1	1.355(5)		
C20	C21	1.398(4)	C32	C33	1.414(5)		
C20	C25	1.403(4)	C34	C33	1.357(5)		

Table S6. Bond Angles for mo_22020163_0m.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C34	S2	C31	91.83(15)		C4	C5	C6	116.8(2)
C1	S 1	C4	91.50(14)		C21	C27	C29	112.4(2)
C16	O3	C17	116.3(2)		C28	C27	C21	112.5(2)
C19	O4	C18	116.5(2)		C28	C27	C29	109.1(2)
C14	C9	C7	120.9(2)		C30	C29	C27	111.4(2)
C10	C9	C14	118.5(2)		C5	C6	C7	112.9(2)
C10	C9	C7	120.5(2)		C30	C31	S2	119.2(2)
C9	C14	C16	120.1(2)		C32	C31	S2	111.0(2)
C13	C14	C9	121.2(2)		C32	C31	C30	129.8(3)
C13	C14	C16	118.6(2)		F6	C28	F5	106.1(2)
C21	C20	C25	121.1(2)		F6	C28	C27	113.3(2)
C21	C20	C19	121.5(2)		F4	C28	F6	106.4(2)

C25	C20	C19	117.4(2)	F4	C28	F5	105.9(2)
03	C16	C14	112.7(2)	F4	C28	C27	112.9(2)
01	C16	03	123.5(3)	F5	C28	C27	111.8(2)
01	C16	C14	123.8(2)	O4	C19	C20	110.4(2)
C11	C10	C9	120.6(2)	05	C19	O4	123.4(3)
C10	C11	C12	120.6(3)	05	C19	C20	126.2(3)
C20	C21	C27	121.8(2)	C5	C4	S1	119.0(2)
C22	C21	C20	118.7(2)	C3	C4	S1	111.3(2)
C22	C21	C27	119.5(2)	C3	C4	C5	129.7(2)
C11	C12	C13	120.4(3)	C23	C22	C21	120.7(3)
C6	C7	C9	114.8(2)	F3	C8	C7	112.7(2)
C8	C7	C9	110.6(2)	F1	C8	F3	106.1(2)
C8	C7	C6	108.5(2)	F1	C8	F2	106.2(2)
C20	C25	C26	121.5(3)	F1	C8	C7	113.0(2)
C24	C25	C20	118.2(3)	F2	C8	F3	106.5(2)
C24	C25	C26	120.3(3)	F2	C8	C7	111.8(2)
06	C30	C29	122.1(2)	C23	C24	C25	121.5(3)
06	C30	C31	120.5(2)	C24	C23	C22	119.8(3)
C31	C30	C29	117.4(2)	C4	C3	C2	112.0(3)
C14	C13	C15	122.0(2)	C1	C2	C3	111.6(3)
C12	C13	C14	118.6(2)	C2	C1	S1	113.5(2)
C12	C13	C15	119.4(3)	C31	C32	C33	112.5(3)
O2	C5	C6	121.4(2)	C33	C34	S2	112.8(3)
O2	C5	C4	121.7(2)	C34	C33	C32	111.8(3)

Table S7. Hydrogen Atom Coordinates (${\rm \AA} \times 10^4$) and Isotropic Displacement Parameters (Å²×10³) for mo_22020163_0m.

Atom	x	у	z	U(eq)
H10	3585.85	7942.94	8480.81	36
H11	4593.22	7724.68	9727.17	39
H12	6647.43	5820.21	10281.54	40
H7	4504.91	5287.16	7398.57	34
H27	6600.62	8793.02	3533.86	35
H29A	6703.91	7224.12	2358.72	37
H29B	5454.97	8685.12	2354.15	37
H6A	2521.38	8024.48	7413.76	35
H6B	2423.45	7182.54	6764.72	35
H22	8354.76	5371.93	3156.34	43
H24	12111.57	4670.23	4318.31	47
H23	10728.33	3961.55	3550.63	47
H3	8.77	9167.51	7197.74	48

H15A	7990.07	2689.37	9760.66	59
H15B	8324.67	3602.71	10312.94	59
H15C	8962.2	3638.76	9467.45	59
H17A	7888.72	2490.31	7191.57	67
H17B	8723.02	1501.85	8019.22	67
H17C	9461.3	2436.29	7420.42	67
H2	-2560.22	9811.85	7444.17	59
H26A	11851.94	7712.31	4492.28	78
H26B	12382.51	6176.01	5096.68	78
H26C	11009.81	7401.27	5257.45	78
H1	-3089.15	7827.94	8247.96	56
H32	6095.65	8067.11	908.68	76
H34	8408.46	9823.73	-646.87	68
H18A	6562.92	10604.71	4930.08	104
H18B	7960.18	10001.52	5534.44	104
H18C	6603	9544.43	5770.28	104
H33	6679.62	8629.65	-484.46	95

Characterization Data of Starting Materials

Note: All starting materials have been prepared according to the previously published procedure.¹

(E)-4,4,4-trifluoro-1-(p-tolyl)but-2-en-1-one (2a).¹

CF₃

According to the general procedure, the product was isolated with 65%, 4.21 g. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93-7.81 (m, 2 H), 7.53 (dq, *J* = 15.5, 2.0 Hz, 1 H), 7.36-7.29 (m, 2 H), 6.80 (dq, *J* = 15.5, 6.7 Hz, 1 H), 2.45 (s, 3 H).

(*E*)-4,4,4-trifluoro-1-(*o*-tolyl)but-2-en-1-one (2b).¹

According to the general procedure, the product was isolated with 33%, 142 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (dd, J = 8.0, 1.5 Hz, 1 H), 7.45 (td, J = 7.5, 1.4 Hz, 1 H), 7.31 (t, J = 7.1 Hz, 2 H), 7.25 (dq, J = 15.8, 2.0 Hz, 1 H), 6.63 (dq, J = 15.8, 6.6 Hz, 1 H), 2.50 (s, 3 H).

(E)-4,4,4-trifluoro-1-(3-methoxyphenyl)but-2-en-1-one (2c).²

According to the general procedure, the product was isolated with 49%, 226 mg. **¹H NMR** (400 MHz, CDCl₃) δ 7.57-7.48 (m, 3 H), 7.43 (t, *J* = 7.9 Hz, 1 H), 7.21-7.17 (m, 1 H), 6.82 (dq, *J* = 15.5, 6.6 Hz, 1 H), 3.88 (s, 3 H).

(E)-4,4,4-trifluoro-1-(4-methoxyphenyl)but-2-en-1-one (2d).¹

According to the general procedure, the product was isolated with 39%, 360 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 8.02-7.95 (m, 2 H), 7.53 (dq, *J* = 15.5, 2.0 Hz, 1 H), 7.03-6.97 (m, 2 H), 6.80 (dq, *J* = 15.5, 6.7 Hz, 1 H), 3.90 (s, 3 H).

(E)-4,4,4-trifluoro-1-(naphthalen-2-yl)but-2-en-1-one (2e).¹

According to the general procedure, the product was isolated with 64%, 322 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.50-8.46 (m, 1 H), 8.05 (dd, *J* = 8.7, 1.8 Hz, 1 H), 8.03-8.00 (m, 1 H), 7.96 (d, *J* = 8.7 Hz, 1 H), 7.91 (d, *J* = 8.1 Hz, 1 H), 7.72 (dq, *J* = 15.5, 2.1 Hz, 1 H), 7.66 (ddd, *J* = 8.3, 7.0, 1.4 Hz, 1 H), 7.60 (ddd, *J* = 8.2, 6.9, 1.4 Hz, 1 H), 6.89 (dq, *J* = 15.5, 6.6 Hz, 1 H).

(E)-4,4,4-trifluoro-1-(4-fluorophenyl)but-2-en-1-one (2f).³

According to the general procedure, the product was isolated with 50%, 219 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 8.06-7.99 (m, 2 H), 7.51 (dq, *J* = 15.5, 2.0 Hz, 1 H), 7.24-7.17 (m, 2 H), 6.83 (dq, *J* = 15.5, 6.6 Hz, 1 H).

(*E*)-1-(3-bromophenyl)-4,4,4-trifluorobut-2-en-1-one (2g).³

According to the general procedure, the product was isolated with 42%, 235 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 8.11 (t, *J* = 1.8 Hz, 1 H), 7.89 (ddd, *J* = 7.8, 1.7, 1.1 Hz, 1 H), 7.77 (ddd, *J* = 8.0, 2.0, 1.0 Hz, 1 H), 7.48 (dq, *J* = 15.5, 2.0 Hz, 1 H), 7.42 (t, *J* = 7.9 Hz, 1 H), 6.84 (dq, *J* = 15.5, 6.6 Hz, 1 H).

(E)-4,4,4-trifluoro-1-(furan-2-yl)but-2-en-1-one (2h).³

CF3

According to the general procedure, the product was isolated with 41%, 156 mg.

¹**H** NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 1.7, 0.7 Hz, 1 H), 7.44 (q, J = 15.6, 2.0 Hz, 1 H), 7.39-7.37 (m, 1 H), 6.90 (dq, J = 15.6, 6.7 Hz, 1 H), 6.64 (dd, J = 3.7, 1.7 Hz, 1 H).

(E)-4,4,4-trifluoro-1-(thiophen-2-yl)but-2-en-1-one (2i).¹

According to the general procedure, the product was isolated with 39%, 160 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.84 (dd, J = 3.9, 1.1 Hz, 1 H), 7.79 (dd, J = 4.9, 1.1 Hz, 1 H), 7.40 (dq, J = 15.5, 2.0 Hz, 1 H), 7.22 (dd, J = 5.0, 3.9 Hz, 1 H), 6.87 (dq, J= 15.5, 6.7 Hz, 1 H).

(E)-1-(cyclohex-1-en-1-yl)-4,4,4-trifluorobut-2-en-1-one (2j).

According to the general procedure, the product was isolated with 46%, 190 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (dq, J = 15.9, 2.2 Hz, 1 H), 7.02 (td, J = 3.9, 1.9 Hz, 1 H), 6.61 (dq, J = 15.5, 6.7 Hz, 1 H), 2.32 (dtp, J = 10.5, 4.4, 2.3 Hz, 4 H), 1.66 (dtdd, J = 11.2, 7.0, 4.9, 2.8 Hz, 4 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 188.40, 144.00, 139.89, 130.59 (q, J = 5.7 Hz), 128.34 (q, J = 34.7 Hz), 122.76 (q, J = 268.56 Hz), 26.45, 23.07, 21.65, 21.38; **HRMS** [ESI] Calcd for [M+H]⁺ C₁₀H₁₂F₃O: 205.0835, Found: 205.0839.

tert-butyl (E)-(3-(4,4,4-trifluorobut-2-enoyl)phenyl)carbamate (2k).

According to the general procedure, the product was isolated with 43%, 2.05 g.

¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (t, *J* = 2.0 Hz, 1 H), 7.74 (d, *J* = 8.1 Hz, 1 H), 7.61 (dt, *J* = 7.7, 1.3 Hz, 1 H), 7.50 (dq, *J* = 15.5, 2.0 Hz, 1 H), 7.44 (t, *J* = 7.9 Hz, 1 H), 6.81 (dq, *J* = 15.7, 6.7 Hz, 1 H), 6.77 (s, 1 H), 1.53(s, 9 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 187.79, 152.62, 139.45, 136.88, 130.99 (q, *J* = 5.5 Hz), 130.42 (q, *J* = 35.2 Hz), 129.68, 124.04, 123.30, 122.55 (d, *J* = 268.53 Hz), 118.34, 81.23, 28.30; **HRMS** [ESI] Calcd for [M+H]⁺ C₁₅H₁₇F₃NO₃: 316.1155, Found: 316.1158.

tert-butyl (E)-(4'-(4,4,4-trifluorobut-2-enoyl)-[1,1'-biphenyl]-3-yl)carbamate (2l).

According to the general procedure, the product was isolated with 40%, 790 mg.

¹**H NMR** (500 MHz, CDCl₃) δ 8.08-7.98 (m, 2 H), 7.78 (t, J = 2.0 Hz, 1 H), 7.76-7.72 (m, 2 H), 7.57 (dq, J = 15.6, 2.0 Hz, 1 H), 7.39 (t, J = 7.8 Hz, 1 H), 7.31 (ddt, J = 12.4, 7.6, 1.3 Hz, 2 H), 6.85 (dq, J = 15.5, 6.6 Hz, 1 H), 6.63 (s, 1 H), 1.54 (s, 9 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 187.49, 152.72, 146.64, 140.43, 139.14, 134.97, 131.04 (q, J = 5.6 Hz), 130.23 (q, J = 35.3 Hz), 129.63, 129.40, 127.71, 122.60 (q, J = 268.55 Hz), 121.98, 118.54, 117.33, 80.84, 28.35; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₁H₂₁F₃NO₃: 392.1468, Found: 392.1470.

Characterization Data of Desired Products

Methyl-2-methyl-6-(1,1,1-trifluoro-4-oxo-4-(p-tolyl)butan-2-yl)benzoate (3aa).

According to the general procedure, the product was isolated with 82%, 28.7 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.81 (m, 2 H,), 7.29-7.28 (m, 2 H,), 7.24 (d, J = 8.0 Hz, 1H), 7.16 (dd, J = 5.8, 2.7 Hz, 1 H), 4.52 (qdd, J = 9.3, 7.8, 5.0 Hz, 1 H), 3.98 (s, 3 H), 3.63 (dd, J = 17.7, 5.1 Hz, 1 H), 3.56 (dd, J = 17.7, 7.9 Hz, 1 H), 2.39 (s, 3 H), 2.35 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.40, 169.34, 144.38, 136.02, 135.39, 133.70, 132.41, 130.26, 129.72, 129.35, 128.25, 126.78 (q, J = 278.31 Hz), 124.84, 52.24, 41.09 (q, J = 27.8 Hz), 38.97, 21.65, 20.26; HRMS [ESI] Calcd for [M+H]⁺ C₂₀H₂₀F₃O₃: 365.1359, Found: 365.1356.

Methyl-5-methyl-2-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl) benzoate (3ba).

According to the general procedure, the product was isolated with 77%, 28.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 1.9 Hz, 1 H), 7.82 (d, J = 1.7 Hz, 1 H), 7.76 (d, J = 2.0 Hz, 1 H), 7.40 (d, J = 8.1 Hz, 1 H), 7.31–7.28 (m, 1 H), 7.26 (d, J = 8.0 Hz, 2 H), 5.66 (pd, J = 9.6, 4.7 Hz, 1 H), 3.98 (s, 3 H), 3.69 (dd, J = 17.7, 9.3 Hz, 1 H), 3.62 (dd, J = 17.7, 4.7 Hz, 1 H), 2.42 (s, 3 H), 2.36 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 194.85, 167.98, 144.29, 137.73, 133.83, 132.73, 132.73, 131.71, 131.47, 129.32, 127.10 (q, J = 278.02 Hz), 128.17, 127.83, 52.34, 38.69 (q, J = 27.8Hz), 38.67, 21.64, 20.90; HRMS [ESI] Calcd for [M+H]⁺ C₂₀H₂₀F₃O₃: 365.1359, Found: 365.1359.

Methyl-2-methoxy-6-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)benzoate (3ca).

According to the general procedure, the product was isolated with 74%, 28.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.77 (m, 2 H), 7.35 (t, J = 8.2 Hz, 1 H), 7.26 (d, J = 2.8 Hz, 2 H), 7.05 (dt, J = 8.1, 1.2 Hz, 1 H), 6.89 (dd, J = 8.4, 0.8 Hz, 1 H), 4.48–4.33 (m, 1 H), 3.97 (s, 3 H), 3.82 (s, 3 H), 3.61 (dd, J = 17.6, 5.2 Hz, 1 H), 3.54 (dd, J = 17.5, 7.8 Hz, 1 H), 2.40 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.23, 167.65, 156.75, 144.37, 133.70, 130.86, 129.36, 128.26, 126.63 (q, J = 278.51 Hz), 125.45, 119.46, 119.45, 110.98, 55.96, 52.52, 41.19 (q, J = 27.8 Hz), 38.78, 21.66; HRMS [ESI] Calcd for [M+H]⁺ C₂₀H₂₀F₃O₄: 381.1308, Found: 381.1312.

Methyl-3-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)-[1,1'-biphenyl]-2-carboxyla te (3da).

According to the general procedure, the product was isolated with 58%, 24.5 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.79 (m, 2 H), 7.50–7.43 (m, 2 H), 7.41–7.32 (m, 6 H), 7.28–7.22 (m, 2 H), 4.78–4.64 (m, 1H), 3.68 (dd, J = 17.7, 5.2 Hz, 1 H), 3.62 (dd, J = 17.9, 8.0 Hz, 1 H), 3.57 (s, 3 H), 2.40 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 194.33, 169.27, 144.39, 141.29, 140.75, 134.72, 133.71, 133.04, 129.82, 129.37, 128.30, 128.27, 127.54, 126.78 (q, J = 278.65 Hz), 126.40, 52.13, 40.74 (q, J = 27.8Hz)., 39.01, 21.67; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₅H₂₂F₃O₃: 427.1516, Found: 427.1527.

Methyl-2-(1,1,1-trifluoro-4-oxo-4-(p-tolyl)butan-2-yl)-1-naphthoate (3ea).

According to the general procedure, the product was isolated with 75%, 35.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, J = 9.0 Hz, 1 H), 7.90–7.86 (m, 1 H), 7.83 (td, J = 6.6, 1.7 Hz, 3 H), 7.60–7.56 (m, 1 H), 7.55–7.48 (m, 2 H), 7.23 (d, J = 8.0 Hz, 2 H), 4.77 (qdd, J = 9.3, 7.8, 4.9 Hz, 1 H), 4.12 (s, 3 H), 3.73 (dd, J = 17.6, 5.0 Hz, 1 H), 3.64 (dd, J = 17.6, 7.8 Hz, 1 H), 2.39 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 194.28, 169.00, 144.47, 133.65, 133.09, 132.73, 130.61, 130.06, 129.98, 129.39, 128.26, 128.00, 127.50, 126.91, 126.83 (q, J = 278.59 Hz), 125.66, 123.90, 52.64, 41.61 (q, J = 27.6 Hz), 38.68, 21.65; ¹⁹F NMR (476 MHz, CDCl₃) δ -68.31 (CF₃); HRMS [ESI] Calcd for [M+H]⁺ C₂₃H₂₀F₃O₃: 401.1359, Found: 401.1370.

Methyl-2-(phenylamino)-6-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)benzoate (3fa).

According to the general procedure, the product was isolated with 64%, 28.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87–7.77 (m, 2 H), 7.67 (s, 1 H), 7.31–7.25 (m, 3 H), 7.24–7.18 (m, 3 H), 7.12–7.04 (m, 2 H), 7.02–6.97 (m, 1 H), 6.94 (dt, J = 7.4, 1.3 Hz, 1 H), 5.1–4.82 (m, 1 H), 4.00 (s, 3 H), 3.71–3.53 (m, 2 H), 2.40 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 194.82, 168.75, 144.45, 141.53, 135.68, 133.75, 131.42, 129.38, 128.24, 127.04 (q, J = 278.98 Hz), 122.53, 120.62, 120.51, 118.77, 115.90, 52.44, 40.69 (q, *J* = 27.2 Hz), 39.29, 21.67; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₅H₂₃F₃NO₃: 442.1625, Found: 442.1635.

Methyl-2-acetyl-6-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)benzoate (3ga).

According to the general procedure, the product was isolated with 98%, 38.5 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87–7.81 (m, 2 H), 7.76 (dd, J = 7.8, 1.1 Hz, 1 H), 7.69 (dt, J = 8.0, 1.2 Hz, 1 H), 7.53 (t, J = 7.9 Hz, 1 H), 7.27 (d, J = 8.0 Hz, 2 H), 4.63 (pd, J = 8.9, 5.0 Hz, 1 H), 3.96 (s, 3 H), 3.70 (dd, J = 17.6, 5.0 Hz, 1 H), 3.55 (dd, J =17.5, 8.1 Hz, 1 H), 2.59 (s, 3 H), 2.42 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 198.44, 194.00, 168.79, 144.56, 137.55, 134.60, 133.86, 133.49, 131.33, 129.88, 129.41, 128.65, 128.25, 126.49 (q, J = 278.66 Hz), 52.84, 40.63 (q, J = 27.9 Hz), 38.85, 27.72, 21.66; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₁H₂₀F₃O₄: 393.1308, Found: 393.1314.

Methyl-5-acetyl-2-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)benzoate (3ha).

According to the general procedure, the product was isolated with 70%, 27.6 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.51 (d, J = 2.0 Hz, 1 H), 8.03 (dd, J = 8.3, 2.0 Hz, 1 H), 7.82–7.75 (m, 2 H), 7.62–7.52 (m, 1 H), 7.26–7.21 (m, 2 H), 5.76 (pd, J = 9.6, 4.4 Hz, 1 H), 4.02 (s, 3 H), 3.74 (dd, J = 17.9, 9.8 Hz, 1 H), 3.67 (dd, J = 18.0, 4.4 Hz, 1 H), 2.61 (s, 3 H), 2.39 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 196.66, 194.49, 167.07, 144.63, 140.84, 136.31, 133.52, 132.44, 131.23, 130.88, 129.41, 128.39,

128.15, 126.71 (q, *J* = 278.46 Hz), 52.72, 39.12 (q, *J* = 27.7 Hz), 38.57, 26.60, 21.66; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₁H₂₀F₃O₄: 393.1308, Found: 393.1317.

Methyl-2-benzoyl-6-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)benzoate (3ia).

According to the general procedure, the product was isolated with 83%, 37.5 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.80 (m, 2 H), 7.79–7.74 (m, 2 H), 7.67 (dd, J =7.8, 1.6 Hz, 1 H), 7.61–7.56 (m, 1 H), 7.53 (t, J = 7.7 Hz, 1 H), 7.46 (ddd, J = 7.6, 4.6, 3.3 Hz, 3 H), 7.25 (d, J = 8.1 Hz, 2 H), 5.15–5.00 (m, 1 H), 3.71–3.60 (m, 2 H), 3.58 (s, 3 H), 2.40 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 196.06, 194.23, 167.41, 144.51, 140.06, 136.71, 134.73, 133.91, 133.61, 133.22, 130.31, 130.04, 129.78, 129.40, 128.86, 128.52, 128.22, 126.74 (q, J = 278.34 Hz),52.45, 39.88 (q, J = 27.8 Hz), 38.89, 21.67; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₆H₂₂F₃O₄: 455.1465, Found: 455.1477.

Methyl-2-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)-6-(trifluoromethyl)benzoat e (3ja).

According to the general procedure, the product was isolated with 25%, 10.4 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.87–7.82 (m, 2 H), 7.71 (t, *J* = 7.8 Hz, 2 H), 7.58 (t, *J* = 7.9 Hz, 1 H), 7.28 (d, *J* = 7.9 Hz, 2 H), 4.60 (pd, *J* = 8.9, 4.8 Hz, 1 H), 4.03 (s, 3 H), 3.72 (dd, *J* = 17.7, 4.9 Hz, 1 H), 3.57 (dd, *J* = 17.7, 8.0 Hz, 1 H), 2.43 (s, 3 H).; ¹³**C** **NMR** (126 MHz, CDCl₃) δ 193.77, 167.02, 144.68, 133.95 (q, J = 2.2 Hz), 133.45 (q, J = 2.2 Hz), 133.37, 131.08, 130.06, 129.44, 128.67(q, J = 32.1 Hz), 128.22, 126.35 (q, J = 4.7 Hz), 126.34 (q, J = 278.51 Hz), 123.24 (q, J = 272.20 Hz), 53.11, 40.75 (q, J = 27.8 Hz), 38.81, 21.70; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₀H₁₇F₆O₃: 419.1076, Found: 419.1089.

Methyl-2-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)cyclohex-1-ene-1-carboxylat e (3ka).

According to the general procedure, the product was isolated with 68%, 24.2 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.74 (m, 2 H), 7.32–7.24 (m, 2 H), 5.07 (qdd, J = 10.1, 7.8, 5.9 Hz, 1 H), 3.71 (s, 3 H), 3.37–3.26 (m, 2 H), 2.42 (s, 3 H), 2.33 (dh, J = 8.4, 2.6 Hz, 2 H), 2.19 (m, 1 H), 2.12–2.03 (m, 1 H), 1.59 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 195.20, 168.96, 144.32, 137.42, 133.83, 132.25, 129.40, 128.24, 126.80 (q, J = 278.4 Hz), 51.63, 41.29 (q, J = 27.8 Hz), 35.18, 27.37, 25.81, 21.82, 21.67, 21.64. ; HRMS [ESI] Calcd for [M+H]⁺ C₁₉H₂₂F₃O₃: 355.1516, Found: 355.1522.

Methyl-2-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)cyclopent-1-ene-1-carboxyla te (3la).

According to the general procedure, the product was isolated with 59%, 19.8 mg. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90–7.83 (m, 2 H), 7.30 (d, *J* = 8.3 Hz, 2 H), 5.26 (pd, J = 9.8, 4.3 Hz, 1 H), 3.74 (s, 3 H), 3.41 (dd, J = 16.9, 4.4 Hz, 1 H), 3.32 (dd, J = 16.9, 9.8 Hz, 1 H), 2.66 (td, J = 7.6, 3.9 Hz, 2 H), 2.63–2.54 (m, 1 H), 2.52–2.46 (m, 1 H), 2.44 (s, 3 H), 1.9–1.77 (m, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 195.07, 165.59, 148.07, 144.45, 134.39, 133.65, 129.44, 128.21, 126.47 (q, J = 280.7 Hz), 51.38, 38.79 (q, J = 27.6 Hz), 35.70, 34.28, 33.61, 21.69, 21.39; HRMS [ESI] Calcd for [M+H]⁺ C₁₈H₂₀F₃O₃: 341.1359, Found: 341.1366.

Methyl-(*Z*)-2-methyl-6-oxo-6-(*p*-tolyl)-4-(trifluoromethyl)hex-2-enoate (3ma).

According to the general procedure, the product was isolated with 95%, 29.8 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.01–7.61 (m, 2 H), 7.26 (d, J = 8.0 Hz, 2 H), 5.77 (dq, J = 10.0, 1.6 Hz, 1 H), 4.84 (ddt, J = 13.5, 9.0, 4.6 Hz, 1 H), 3.75 (s, 3 H), 3.40 (dd, J = 17.1, 4.6 Hz, 1 H), 3.10 (dd, J = 17.1, 8.1 Hz, 1 H), 2.41 (s, 3 H), 1.95 (d, J = 1.6 Hz, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 194.83, 167.24, 144.34, 133.85, 133.39, 132.52, 132.50, 132.47, 129.38, 128.22, 126.70 (q, J = 278.07 Hz), 51.76, 39.01 (q, J = 27.6 Hz), 37.85, 21.63, 20.90; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -70.71 (CF₃); **HRMS** [ESI] Calcd for [M+H]⁺ C₁₆H₁₈F₃O₃: 315.1203, Found: 315.1209.

Methyl-(Z)-6-oxo-2-phenyl-6-(p-tolyl)-4-(trifluoromethyl)hex-2-enoate (3na).

According to the general procedure, the product was isolated with 91%, 34.4 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88–7.82 (m, 2 H), 7.35–7.22 (m, 7 H), 6.02 (d, J = 10.3 Hz, 1 H), 4.63 (ddd, J = 8.4, 4.8, 1.9 Hz, 1 H), 3.81 (s, 3 H), 3.47 (dd, J = 17.1, 4.7 Hz, 1 H), 3.22 (dd, J = 17.1, 7.9 Hz, 1 H), 2.41 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 194.58, 167.21, 144.48, 139.72, 136.96, 133.81, 131.16, 131.14, 129.45, 128.46, 128.36, 128.29, 127.66, 126.61 (q, J = 278.01 Hz), 52.21, 39.69 (q, J = 27.9 Hz), 37.84, 21.68; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -70.40 (CF₃); **HRMS** [ESI] Calcd for [M+H]⁺ C₂₁H₂₀F₃O₃: 377.1359, Found: 377.1370.

Methyl-5-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)-3,4-dihydro-2H-pyran-6-ca rboxylate (30a).

According to the general procedure, the product was isolated with 48%, 17.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.92–7.83 (m, 2 H), 7.30 (d, J = 8.5 Hz, 2 H), 5.28 (ddt, J = 13.8, 9.8, 4.5 Hz, 1 H), 4.10 (dddd, J = 10.4, 6.9, 3.4, 1.0 Hz, 1 H), 4.00 (dddd, J = 10.8, 7.4, 3.4, 1.0 Hz, 1 H), 3.79 (s, 3 H), 3.35 (d, J = 1.6 Hz, 1 H), 3.34–3.28 (m, 1 H), 2.44 (s, 3 H), 2.25 (dt, J = 18.1, 6.3 Hz, 1 H), 2.15 (dt, J = 17.9, 6.5 Hz, 1 H), 1.90 (dq, J = 10.5, 3.3 Hz, 1 H), 1.83 (ddd, J = 13.8, 6.8, 3.3 Hz, 1 H); 1³**C NMR** (126 MHz, CDCl₃) δ 195.28, 163.35, 144.42, 143.93, 133.71, 129.45, 128.23, 126.91 (q, J = 279.47 Hz), 114.51, 65.98, 52.29, 39.30 (q, J = 27.4 Hz), 34.84, 21.69, 21.44, 21.28; **HRMS** [ESI] Calcd for [M+H]⁺ C₁₈H₂₀F₃O₄: 357.1308, Found: 357.1315.

Methyl-1-methyl-3-(1,1,1-trifluoro-4-oxo-4-(*p*-tolyl)butan-2-yl)-1H-indole-2-carb oxylate (3pa).

According to the general procedure, the product was isolated with 45%, 18.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.86 (m, 1 H), 7.85–7.79 (m, 2 H), 7.47–7.33 (m, 2 H), 7.27–7.18 (m, 3 H), 5.74–5.56 (m, 1 H), 4.06 (s, 3 H), 4.00 (s, 3 H), 3.97–3.88 (m, 1 H), 3.80–3.72 (m, 1 H), 2.40 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 195.20, 162.67, 144.21, 138.75, 133.79, 130.00, 129.29, 129.14, 128.13, 127.97, 127.49 (q, *J* = 278.33 Hz), 125.72, 124.92, 121.99, 120.77, 114.84, 110.72, 52.12, 37.45, 36.57 (q, *J* = 29.1 Hz), 32.31, 21.63.; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₂H₂₁F₃NO₃: 404.1468, Found: 404.1476.

According to the general procedure, the product was isolated with 64%, 23.5 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (dd, J = 7.8, 1.4 Hz, 1 H), 7.37 (td, J = 7.5, 1.4 Hz, 1 H), 7.31 (d, J = 5.7 Hz, 2 H), 7.28–7.24 (m, 1 H), 7.22 (d, J = 8.0 Hz, 1 H), 7.20–7.16 (m, 1 H), 4.51 (qdd, J = 9.3, 7.5, 5.6 Hz, 1 H), 3.96 (s, 3 H), 3.57 (dd, J = 17.3, 5.6 Hz, 1 H), 3.43 (dd, J = 17.3, 7.5 Hz, 1 H), 2.35 (s, 3 H), 2.34 (s, 3 H).; ¹³**C NMR** (126 MHz, CDCl₃) δ 198.69, 169.28, 138.50, 137.07, 135.99, 135.24, 132.18, 132.17, 132.03, 131.61, 130.28, 129.77, 128.12, 127.77, 126.66 (q, J = 278.35 Hz), 125.69, 125.07, 52.29, 41.15 (q, J = 27.8 Hz), 40.82, 20.93, 20.25.; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₀H₂₀F₃O₃: 365.1359, Found: 365.1353.

Methyl-2-methyl-6-(1,1,1-trifluoro-4-(3-methoxyphenyl)-4-oxobutan-2-yl)benzoa

te (3ac).

According to the general procedure, the product was isolated with 89%, 34.0 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (dt, J = 7.7, 1.2 Hz, 1 H), 7.44 (dd, J = 2.7, 1.6 Hz, 1 H), 7.36 (t, J = 8.0 Hz, 1 H), 7.29 (d, J = 4.7 Hz, 2 H), 7.18 (q, J = 4.4 Hz, 1 H), 7.11 (ddd, J = 8.3, 2.7, 0.9 Hz, 1 H), 4.57–4.41 (m, 1 H), 3.98 (s, 3 H), 3.82 (s, 3 H), 3.68–3.54 (m, 2 H), 2.36 (s, 3 H).; ¹³C NMR (100 MHz, CDCl₃) δ 194.66, 169.33, 159.90, 137.48, 136.06, 135.39, 132.26, 130.32, 129.76, 129.66, 126.72 (q, J = 278.24Hz), 124.79, 120.67, 120.15, 112.28, 55.47, 52.26, 41.12 (q, J = 27.8 Hz), 39.18, 20.27; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₀H₂₀F₃O₄: 381.1308, Found: 381.1318.

Methyl-2-methyl-6-(1,1,1-trifluoro-4-(4-methoxyphenyl)-4-oxobutan-2-yl)benzoa te (3ad).

According to the general procedure, the product was isolated with 92%, 35.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97–7.83 (m, 2 H), 7.33–7.28 (m, 2 H), 7.16 (dd, J = 5.7, 3.1 Hz, 1 H), 6.95–6.85 (m, 2 H), 4.57–4.42 (m, 1 H), 3.98 (s, 3 H), 3.85 (s, 3 H), 3.64–3.57 (dd, J = 17.5, 5.7 Hz, 1 H), 3.53 (dd, J = 17.5, 7.9 Hz, 1 H), 2.35 (s, 3 H).; ¹³**C NMR** (100 MHz, CDCl₃) δ 193.32, 169.34, 163.78, 136.01, 135.39, 132.42, 130.43, 130.24, 129.70, 129.26, 126.80 (q, J = 278.22 Hz), 124.84, 122.63, 113.82, 55.50, 52.24, 41.14 (q, J = 27.8 Hz), 38.70, 20.25; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₀H₂₀F₃O₄: 381.1308, Found:381.1312. Methyl-2-methyl-6-(1,1,1-trifluoro-4-(naphthalen-2-yl)-4-oxobutan-2-yl)benzoate (3ae).

According to the general procedure, the product was isolated with 78%, 31.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.49–8.40 (m, 1 H), 7.97 (ddd, J = 9.8, 8.4, 1.6 Hz, 2 H), 7.88–7.80 (m, 2 H), 7.57 (dddd, J = 19.3, 8.2, 6.9, 1.4 Hz, 2 H), 7.36 (d, J = 7.9 Hz, 1 H), 7.30 (t, J = 7.7 Hz, 1 H), 7.21–7.14 (m, 1 H), 4.58 (qdd, J = 9.3, 7.6, 5.2 Hz, 1 H), 3.98 (s, 3 H), 3.8–3.68 (m, 2 H), 2.36 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 194.79, 169.37, 136.10, 135.74, 135.42, 133.48, 132.43, 132.36, 130.34, 129.87, 129.79, 129.60, 128.73, 128.59, 127.80, 126.95, 126.81 (q, J = 278.98 Hz), 124.87, 123.76, 52.28, 41.26 (q, J = 27.7 Hz), 39.23, 20.29; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₃H₂₀F₃O₃: 401.1359, Found: 401.1361.

Methyl-2-methyl-6-(1,1,1-trifluoro-4-(4-fluorophenyl)-4-oxobutan-2-yl)benzoate (3af).

According to the general procedure, the product was isolated with 88%, 32.3 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00–7.91 (m, 2 H), 7.30 (d, J = 5.3 Hz, 2 H), 7.21–7.15 (m, 1 H), 7.14–7.08 (m, 2 H), 4.51 (qdd, J = 9.3, 7.8, 5.1 Hz, 1 H), 3.99 (s, 3 H), 3.62 (dd, J = 17.7, 5.1 Hz, 1 H), 3.56 (dd, J = 17.7, 7.8 Hz, 1 H), 2.35 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 193.28, 169.31, 165.96 (d, J = 255.6 Hz), 136.12, 135.36, 132.58 (d, J = 3.1 Hz), 132.21, 130.86, 130.76, 130.37, 129.78, 126.68 (q, J = 278.32 Hz),124.77, 115.95, 115.73, 52.28, 41.07 (q, J = 28.0 Hz), 39.05, 20.28; **HRMS** [ESI] Calcd for [M+H]⁺ C₁₉H₁₇F₃O₃: 369.1108, Found: 369.1109.

Methyl-2-(4-(3-bromophenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-6-methylbenzoate (3ag).

According to the general procedure, the product was isolated with 36%, 15.4 mg.

¹**H NMR** (500 MHz, CDCl₃) δ 8.05 (t, *J* = 1.8 Hz, 1 H), 7.85 (ddd, *J* = 7.8, 1.7, 1.1 Hz, 1 H), 7.69 (ddd, *J* = 7.9, 2.0, 1.0 Hz, 1 H), 7.34 (t, *J* = 7.9 Hz, 1 H), 7.30 (d, *J* = 6.5 Hz, 2 H), 7.21–7.16 (m, 1 H), 4.50 (qdd, *J* = 9.2, 7.9, 5.0 Hz, 1 H), 3.99 (s, 3 H), 3.61 (dd, *J* = 17.8, 5.0 Hz, 1 H), 3.55 (dd, *J* = 17.8, 7.9 Hz, 1 H), 2.36 (s, 3 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 193.59, 169.30, 137.79, 136.38, 136.17, 135.34, 132.09, 131.20, 130.42, 130.29, 129.82, 126.62, 126.61 (q, *J* = 278.21 Hz), 124.75, 123.08, 77.28, 77.02, 76.77, 52.30, 40.98 (q, *J* = 27.9 Hz), 39.29, 20.29; **HRMS** [ESI] Calcd for [M+H]⁺ C₁₉H₁₇BrF₃O₃: 429.0308, Found: 429.0311.

Methyl-2-methyl-6-(1,1,1-trifluoro-4-(furan-2-yl)-4-oxobutan-2-yl)benzoate (3ah).

According to the general procedure, the product was isolated with 88%, 30.0 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (dd, J = 1.7, 0.8 Hz, 1 H), 7.34–7.27 (m, 2 H), 7.19 (dd, J = 3.7, 0.8 Hz, 1 H), 7.16 (dd, J = 2.3, 1.7 Hz, 1 H), 6.52 (dd, J = 3.6, 1.7 Hz, 1 H), 4.53–4.35 (m, 1 H), 3.98 (s, 3 H), 3.52 (dd, J = 17.4, 5.3 Hz, 1 H), 3.44 (dd, J = 17.3, 8.1 Hz, 1 H), 2.34 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ 184.15, 169.27, 152.16, 146.56, 136.02, 135.35, 131.98, 130.35, 129.74, 126.58 (q, J = 278.25 Hz), 117.46, 112.51, 52.29, 40.76 (q, J = 27.9 Hz), 38.90, 20.22; **HRMS** [ESI] Calcd for [M+H]⁺ C₁₇H₁₆F₃O₄: 341.0995, Found: 341.1003.

Methyl-2-methyl-6-(1,1,1-trifluoro-4-oxo-4-(thiophen-2-yl)butan-2-yl)benzoate (3ai).

According to the general procedure, the product was isolated with 81%, 28.8 mg.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (dd, J = 3.8, 1.2 Hz, 1 H), 7.64 (dd, J = 4.9, 1.1 Hz, 1 H), 7.33–7.29 (m, 2 H), 7.19–7.16 (m, 1 H), 7.12 (dd, J = 4.9, 3.8 Hz, 1 H), 4.46 (tdd, J = 9.2, 8.1, 5.0 Hz, 1 H), 3.97 (s, 3 H), 3.59 (dd, J = 17.2, 5.1 Hz, 1 H), 3.49 (dd, J = 17.1, 8.0 Hz, 1 H), 2.34 (s, 3 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 187.70, 169.28, 143.21, 136.09, 135.33, 134.25, 132.19, 131.97 (q, J = 1.6 Hz), 130.39, 129.78, 128.17, 126.58 (q, J = 278.45 Hz), 124.82, 52.29, 41.23 (q, J = 28.0 Hz), 39.68 (q, J = 1.9 Hz), 20.24; ¹⁹**F NMR** (471 MHz, CDCl₃) δ -68.91; **HRMS** [ESI] Calcd for [M+H]⁺ C₁₇H₁₆F₃O₃S: 357.0767, Found: 357.0771.

Methyl-2-(4-(cyclohex-1-en-1-yl)-1,1,1-trifluoro-4-oxobutan-2-yl)-6-methylbenzo ate (3aj).

According to the general procedure, the product was isolated with 34%, 12.0 mg. ¹H NMR (500 MHz, CDCl₃) δ 7.33 (t, J = 7.7 Hz, 1 H), 7.27 (d, J = 8.1 Hz, 1 H), 7.19 (dt, J = 7.5, 1.0 Hz, 1 H), 6.92 (tt, J = 4.0, 1.7 Hz, 1 H), 4.39 (qdd, J = 9.4, 7.9, 5.1 Hz, 1 H), 4.02 (s, 3 H), 3.33 (dd, J = 17.2, 5.1 Hz, 1 H), 3.25 (dd, J = 17.2, 7.9 Hz, 1 H), 2.37 (s, 3 H), 2.29–2.23 (m, 2 H), 2.20 (dddd, J = 6.6, 4.9, 3.5, 1.9 Hz, 2 H), 1.66–1.56 (m, 4 H); ¹³C NMR (126 MHz, CDCl₃) δ 195.64, 169.33, 140.50, 139.01, 135.90, 135.35, 132.55, 130.13, 129.63, 126.78 (q, J = 278.31 Hz), 124.88, 123.45, 52.26, 41.20 (d, J = 27.8 Hz), 37.57, 26.08, 23.13, 21.78, 21.43, 20.22; HRMS [ESI] Calcd for [M+H]⁺ C₁₉H₂₂F₃O₃: 355.1516, Found: 355.1523.

Methyl-2-(4-(3-((tert-butoxycarbonyl)amino)phenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-6-methylbenzoate (3ak).

According to the general procedure, the product was isolated with 80%, 37.3 mg.

¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (t, J = 2.0 Hz, 1 H), 7.69–7.61 (m, 1 H), 7.57 (ddd, J = 7.8, 1.7, 1.0 Hz, 1 H), 7.35 (t, J = 8.0 Hz, 1 H), 7.31–7.27 (m, 2 H), 7.20–7.12 (m, 1 H), 6.71 (s, 1 H), 4.58–4.42 (m, 1 H), 3.97 (s, 3 H), 3.63 (dd, J = 17.8, 5.0 Hz, 1 H), 3.56 (dd, J = 17.7, 7.8 Hz, 1 H), 2.34 (s, 3 H), 1.52 (s, 9 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 194.59, 169.38, 152.64, 139.05, 136.82, 136.02, 135.33, 132.31, 130.29, 129.78, 129.35, 126.72 (q, J = 278.38 Hz), 124.89, 123.40, 122.59, 117.85, 81.01, 52.26, 41.07 (q, J = 27.8 Hz), 39.23, 28.29, 20.26; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₄H₂₇F₃NO₅:466.1836, Found: 466.1840.
Methyl-2-(4-(3'-((tert-butoxycarbonyl)amino)-[1,1'-biphenyl]-4-yl)-1,1,1-trifluor o-4-oxobutan-2-yl)-6-methylbenzoate (3al).

According to the general procedure, the product was isolated with 82%, 44.4 mg. ¹H NMR (500 MHz, CDCl₃) δ 8.03–7.96 (m, 2 H), 7.74–7.71 (m, 1 H), 7.69–7.61 (m, 2 H), 7.37 (t, J = 7.8 Hz, 1 H), 7.34–7.30 (m, 3 H), 7.28 (t, J = 1.5 Hz, 1 H), 7.20–7.16 (m, 1 H), 6.60 (s, 1 H), 4.61–4.48 (m, 1 H), 3.99 (s, 3 H), 3.67 (dd, J = 17.7, 5.0 Hz, 1 H), 3.61 (dd, J = 17.6, 8.0 Hz, 1 H), 2.36 (s, 3 H), 1.53 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 94.41, 169.34, 152.70, 145.89, 140.61, 139.05, 136.07, 135.39, 134.94, 132.31, 130.32, 129.77, 129.55, 128.67, 127.38, 126.75 (q, J = 278.29 Hz), 124.83, 121.93, 118.34, 117.28, 80.78, 52.28, 41.14 (q, J = 27.7 Hz), 39.12; HRMS [ESI] Calcd for [M+H]⁺ C₃₀H₃₁F₃NO₅: 542.2149, Found: 542.2160.

Methyl-2-(4-(3-((tert-butoxycarbonyl)amino)phenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-6-methoxybenzoate (3ck).

According to the general procedure, the product was isolated with 77%, 37.0 mg. ¹**H NMR** (500 MHz, CDCl₃) δ 7.87 (t, *J* = 2.0 Hz, 1 H), 7.72–7.68 (m, 1 H), 7.61 (dt, *J* = 7.8, 1.3 Hz, 1 H), 7.38 (q, *J* = 7.9 Hz, 2 H), 7.08 (d, *J* = 8.0 Hz, 1 H), 6.91 (dd, *J* = 8.4, 0.8 Hz, 1 H), 6.69 (s, 1 H), 4.48–4.38 (m, 1 H), 3.99 (s, 3 H), 3.84 (s, 3 H), 3.64 (dd, J = 17.6, 5.2 Hz, 1 H), 3.57 (dd, J = 17.6, 7.7 Hz, 1 H), 1.55 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.42, 167.71, 156.75, 152.61, 139.03, 136.81, 133.57, 130.93, 129.38, 126.57 (q, J = 278.06 Hz), 125.39, 123.38, 122.61, 119.50, 117.85, 111.03, 81.01, 55.97, 52.54, 41.19 (q, J = 28.2 Hz), 39.06, 28.30; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₄H₂₇F₃NO₆: 482.1785, Found: 482.1796.

Methyl-2-(4-(3-((tert-butoxycarbonyl)amino)phenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-1-naphthoate (3ek).

According to the general procedure, the product was isolated with 80%, 40.1 mg.

¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (d, J = 8.7 Hz, 1H), 7.88–7.84 (m, 2 H), 7.83–7.79 (m, 1 H), 7.64 (d, J = 8.1 Hz, 1 H), 7.59–7.55 (m, 2 H), 7.54–7.48 (m, 2 H), 7.34 (t, J = 7.9 Hz, 1 H), 6.64 (s, 1 H), 4.78–4.69 (m, 1 H), 4.10 (s, 3 H), 3.72 (dd, J =17.7, 5.0 Hz, 1 H), 3.63 (dd, J = 17.6, 7.8 Hz, 1 H), 1.51 (s, 9 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 194.44, 169.02, 152.59, 139.05, 136.79, 133.05, 132.74, 130.66, 129.96, 129.39, 128.01, 127.51, 127.03 (q, J = 278.60 Hz), 126.92, 125.64, 123.91, 123.41, 122.60, 117.81, 81.03, 52.65, 41.60 (q, J = 28.0 Hz), 38.94, 28.30; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₇H₂₇F₃NO₅:502.1836, Found: 502.1838.

Methyl-2-(4-(3-((tert-butoxycarbonyl)amino)phenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-6-(phenylamino)benzoate (3fk).

According to the general procedure, the product was isolated with 86%, 46.6 mg. ¹**H** NMR (500 MHz, CDCl₃) δ 7.88 (t, J = 2.0 Hz, 1 H), 7.66 (s, 1 H), 7.64 (d, J = 8.6Hz, 1 H), 7.59 (dt, J = 8.0, 1.2 Hz, 1 H), 7.37 (t, J = 7.9 Hz, 1 H), 7.31–7.26 (m, 2 H), 7.25–7.23 (m, 1 H), 7.23–7.19 (m, 1 H), 7.13–7.08 (m, 2 H), 7.00 (tt, J = 7.4, 1.2 Hz, 1 H), 6.94 (d, J = 7.3 Hz, 1 H), 6.59 (s, 1 H), 4.99 (dqd, J = 12.9, 9.4, 6.4 Hz, 1 H), 4.00 (s, 3 H), 3.65–3.61 (m, 1 H), 3.60–3.56 (m, 1 H), 1.53 (s, 9 H); ¹³C NMR (126 MHz, CDCl₃) δ 194.95, 168.73, 152.57, 144.48, 141.53, 139.02, 136.93, 135.58, 131.47, 129.39, 126.97 (q, J = 278.33 Hz), 123.39, 122.62, 122.55, 120.54, 118.82, 117.80, 115.94, 81.07, 52.45, 40.67 (q, J = 27.5 Hz), 39.55, 28.31; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₉H₃₀F₃N₂O₅: 543.2101, Found: 543.2102.

Methyl-5-(4-(3-((tert-butoxycarbonyl)amino)phenyl)-1,1,1-trifluoro-4-oxobutan-2-yl)-3,4-dihydro-2H-pyran-6-carboxylate (3ok).

According to the general procedure, the product was isolated with 46%, 21.0 mg.

¹**H NMR** (500 MHz, CDCl₃) δ 7.88 (t, J = 2.0 Hz, 1 H), 7.73 (d, J = 8.0 Hz, 1 H), 7.63 (dt, J = 7.8, 1.2 Hz, 1 H), 7.43 (t, J = 7.9 Hz, 1 H), 6.63 (s, 1 H), 5.34–5.22 (m, 1 H), 4.13–4.08 (m, 1 H), 4.05–3.99 (m, 1 H), 3.81 (s, 3 H), 3.3–3.32 (m, 2 H), 2.26 (dt, J = 18.2, 6.4 Hz, 1 H), 2.16 (dt, J = 18.0, 6.5 Hz, 1 H), 1.92 (ddq, J = 13.5, 6.5, 3.4 Hz, 1 H), 1.85 (dqd, J = 13.5, 6.7, 3.4 Hz, 1 H), 1.56 (s, 9 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 195.38, 163.38, 152.55, 150.79, 139.07, 136.95, 129.48, 126.63 (q, J = 278.46 Hz), 123.36, 122.60, 117.75, 114.37, 81.04, 66.00, 52.30, 39.34 (q, J = 28.6 Hz), 35.17, 28.31, 21.45, 21.31; **HRMS** [ESI] Calcd for $[M+H]^+$ C₂₂H₂₇F₃NO₆: 458.1785, Found: 458.1782.

1³-methyl-2-(trifluoromethyl)-6,13-diaza-1(1,2),5(1,3)-dibenzenacyclotetradecaph ane-4,7,14-trione (5a).

According to the general procedure, the product was obtained with 22.0 mg.

¹**H NMR** (500 MHz, DMSO) δ 10.07 (s, 1 H), 8.39 (s, 1 H), 8.27 (s, 1 H), 7.49 (d, J = 5.5 Hz, 1 H), 7.45 (d, J = 4.9 Hz, 2 H), 7.41 (d, J = 8.0 Hz, 1 H), 7.36 (t, J = 7.7 Hz, 1 H), 7.24 (d, J = 7.4 Hz, 1 H), 4.13–4.01 (m, 1 H), 3.52–3.36 (m, 2 H), 3.27–3.15 (m, 1 H), 2.87 (s, 1 H), 2.35 (s, 1 H), 2.32–2.25 (m, 1 H), 2.17 (s, 3 H), 1.77 (s, 2 H), 1.65 (s, 1 H), 1.45 (s, 3 H); ¹³C NMR (126 MHz, DMSO) δ 196.41, 172.43, 167.48, 139.68, 139.29, 135.59, 134.34, 130.03, 129.52, 129.35, 128.48, 126.17 (q, J = 280.02 Hz), 124.93, 124.74, 122.50, 120.72, 44.02 (q, J = 28.0 Hz), 40.72, 36.85, 28.04, 25.96, 24.49, 19.06; ¹⁹F NMR (471 MHz, DMSO) δ -66.88; HRMS [ESI] Calcd for [M+H]⁺ C₂₄H₂₅F₃N₂O₃: 447.1890, Found: 447.1900.

1³-methoxy-2-(trifluoromethyl)-6,13-diaza-1(1,2),5(1,3)-dibenzenacyclotetradeca phane-4,7,14-trione (5b).

According to the general procedure, the product was obtained with 21.9 mg.

¹**H NMR** (500 MHz, DMSO) δ 10.06 (s, 1 H), 8.35 (s, 1 H), 8.13 (t, J = 5.3 Hz, 1 H), 7.53–7.37 (m, 4 H), 7.14 (d, J = 7.9 Hz, 1 H), 7.06 (d, J = 8.3 Hz, 1 H), 4.10 (q, J = 8.2 Hz, 1 H), 3.73 (s, 3 H), 3.52–3.37 (m, 2 H), 3.20–3.09 (m, 1 H), 2.88 (td, J = 11.1, 10.4, 5.0 Hz, 1H), 2.41–2.24 (m, 2 H), 1.76 (s, 2 H), 1.62 (s, 1 H), 1.43 (s, 3 H).; ¹³**C NMR** (126 MHz, DMSO) δ 196.29, 172.32, 165.09, 155.71, 139.17, 135.53, 131.18, 129.71, 129.41, 129.24, 128.79, 126.05 (q, J = 280.56 Hz), 124.68, 122.70, 122.43, 120.69, 119.41, 111.41, 55.59, 43.53 (q, J = 28.0 Hz), 40.55, 36.75, 28.08, 27.97, 25.98, 24.43.; ¹⁹**F NMR** (471 MHz, DMSO) δ -66.70; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₄H₂₆F₃N₂O₄: 463.1839, Found: 463.1838.

1³-(phenylamino)-2-(trifluoromethyl)-6,13-diaza-1(1,2),5(1,3)-dibenzenacyclotetr adecaphane-4,7,14-trione (5c).

According to the general procedure, the product was obtained with 17.0 mg.

¹**H NMR** (500 MHz, DMSO) δ 10.07 (s, 1 H), 8.35 (s, 1 H), 8.20 (t, J = 5.3 Hz, 1 H), 7.52 (s, 1 H), 7.47 (d, J = 5.9 Hz, 2 H), 7.33 (t, J = 8.0 Hz, 1 H), 7.23–7.17 (m, 3 H), 7.14 (d, J = 7.8 Hz, 1 H), 7.03 (s, 1 H), 7.00–6.97 (m, 2 H), 6.84 (tt, J = 7.2, 1.1 Hz, 1 H), 4.14 (dt, J = 15.5, 7.8 Hz, 1 H), 3.56–3.42 (m, 2 H), 3.17 (d, J = 5.2 Hz, 1 H), 2.87 (ddd, J = 14.3, 9.9, 5.0 Hz, 1 H), 2.41–2.32 (m, 1 H), 2.31–2.21 (m, 1 H), 1.75 (s, 2 H), 1.57 (s, 1 H), 1.41 (d, J = 9.0 Hz, 3 H) ; ¹³**C NMR** (126 MHz, DMSO) δ 197.15, 172.93, 166.62, 143.92, 141.12, 139.75, 136.25, 131.86, 131.39, 129.92, 129.81, 129.47, 126.05 (q, J = 280.56 Hz), 125.30, 123.20, 121.20, 120.85, 120.71, 118.95, 118.49, 49.07, 44.19 (q, J = 28.03 Hz), 41.25, 37.28, 28.27, 26.44, 24.87; ¹⁹**F** **NMR** (471 MHz, DMSO) δ -66.52; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₉H₂₈F₃N₃O₃: 524.2156, Found: 524.2152.

2-(trifluoromethyl)-6,13-diaza-1(2,1)-naphthalena-5(1,3)-benzenacyclotetradecap hane-4,7,14-trione (5d).

According to the general procedure, the product was obtained with 26.2 mg.

¹**H NMR** (500 MHz, DMSO) δ 10.09 (s, 1 H), 8.82 (s, 1 H), 8.54 (s, 0.5 H), 8.01 (s, 2.5 H), 7.89–7.42 (m, 7 H), 4.27 (m, 1 H), 3.76 (m, 1 H), 3.44 (m, 1 H), 2.72 (s, 0.5 H), 2.42–2.04 (m, 2.5 H), 1.79 (m, 3 H), 1.48 (m, 2 H), 1.43–1.14 (m, 1 H); ¹³**C NMR** (126 MHz, DMSO) δ 205.47, 172.99, 167.34, 132.94, 129.59, 128.34, 127.42, 126.01, 125.57, 124.76, 122.48, 41.06, 37.61, 30.04, 26.72, 25.44; ¹⁹**F NMR** (471 MHz, DMSO) δ -65.44, -67.45; **HRMS** [ESI] Calcd for $[M+H]^+ C_{27}H_{25}F_3N_2O_3$: 483.1890, Found: 483.1884.

2-(trifluoromethyl)-13,14-dihydro-12H-6,13-diaza-1(5,6)-pyrana-5(1,3)-benzenac yclotetradecaphane-4,7,14-trione (5e).

According to the general procedure, the product was obtained with 26.3 mg. ¹**H NMR** (500 MHz, DMSO) δ 9.99 (s, 1 H), 8.08 (dd, J = 8.8, 4.1 Hz, 1 H), 7.92 (s, 1 H), 7.72 (d, J = 7.9 Hz, 1 H), 7.51 (d, J = 7.8 Hz, 1 H), 7.44 (t, J = 7.8 Hz, 1 H), 6.13–5.96 (m, 1 H), 4.00 (dp, J = 8.2, 4.8 Hz, 2 H), 3.43–3.35 (m, 1 H), 3.25 (dd, J =13.5, 4.5 Hz, 1 H), 3.04–2.96 (m, 1 H), 2.70 (dq, J = 14.1, 4.8 Hz, 1 H), 2.32 (ddd, J =18.3, 9.4, 4.6 Hz, 2 H), 2.20 (ddd, J = 13.2, 8.9, 4.6 Hz, 1 H), 2.06 (dt, J = 18.0, 6.4 Hz, 1 H), 1.86–1.76 (m, 2 H), 1.65 (t, J = 7.4 Hz, 1 H), 1.57 (dq, J = 13.3, 6.1, 5.5 Hz, 1 H), 1.40 (dh, J = 13.2, 7.4 Hz, 2 H), 1.31 (q, J = 7.4 Hz, 2 H); ¹³C NMR (126 MHz, DMSO) δ 198.86, 171.98, 162.61, 143.86, 139.54, 136.18, 129.56, 127.45 (q, J =280.63 Hz), 124.57, 122.51, 121.72, 112.84, 66.00, 39.00, 38.33, 36.74, 29.77, 25.75, 25.35, 21.50, 21.13 ; ¹⁹F NMR (471 MHz, DMSO) δ -65.13; HRMS [ESI] Calcd for [M+H]⁺C₂₂H₂₅F₃N₂O₄: 439.1839, Found:439.1840.

(Z)-11-phenyl-13-(trifluoromethyl)-2,9-diaza-1(1,3)-benzenacyclopentadecaphan-11-ene-3,10,15-trione (5f).

According to the general procedure, the product was obtained with 19.0 mg.

¹**H NMR** (500 MHz, DMSO) δ 10.09 (s, 1 H), 8.13 (s, 1 H), 8.07 (t, J = 5.4 Hz, 1 H), 7.55–7.46 (m, 3 H), 7.43–7.31 (m, 5 H), 5.89 (d, J = 10.1 Hz, 1 H), 4.06–3.93 (m, 1 H), 3.44 (dd, J = 13.8, 6.2 Hz, 1 H), 3.16 (dq, J = 13.4, 6.3, 5.6 Hz, 1 H), 3.12–3.01 (m, 2 H), 2.42–2.33 (m, 1 H), 2.29 (q, J = 8.6, 8.1 Hz, 1 H), 1.75 (s, 2 H), 1.58 (s, 2 H), 1.48–1.38 (m, 2 H); ¹³**C NMR** (126 MHz, DMSO) δ 197.41, 172.30, 166.34, 143.21, 138.90, 136.35, 129.44, 128.62, 128.52, 126.72, 126.19 (q, J = 279.14 Hz), 125.94, 122.99, 122.47, 121.75, 42.30 (q, J = 30.02 Hz), 36.56, 28.22, 26.09, 24.32; ¹⁹**F NMR** (471 MHz, DMSO) δ -67.76; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₅H₂₅F₃N₂O₃: 459.1890, Found: 459.1886. 1³-methyl-2-(trifluoromethyl)-6,14-diaza-1(1,2),5(1,3)-dibenzenacyclopentadecap hane-4,7,15-trione (5g).

According to the general procedure, the product was obtained with 39.2 mg.

¹**H NMR** (500 MHz, DMSO) δ 9.85 (s, 1 H), 8.54 (s, 1 H), 8.21 (s, 1 H), 7.97 (s, 1 H), 7.49 (d, J = 6.3 Hz, 2 H), 7.43–7.36 (m, 2 H), 7.32–7.26 (m, 1 H), 3.98 (s, 1 H), 3.47 (dd, J = 13.8, 5.0 Hz, 1 H), 3.42–3.34 (m, 1 H), 3.00 (d, J = 52.4 Hz, 2 H), 2.53 (d, J = 12.8 Hz, 1 H), 2.28 (s, 3 H), 2.21 (ddd, J = 13.1, 9.1, 3.7 Hz, 1 H), 1.88 (s, 1 H), 1.66 (s, 2 H), 1.49–1.30 (m, 5 H).; ¹³C NMR (126 MHz, DMSO) δ 197.48, 172.25, 168.31, 139.77, 139.60, 135.80, 134.77, 131.19, 130.62, 130.00, 129.31, 126.80 (q, J = 279.63 Hz), 125.40, 124.41, 122.65, 120.91, 44.20 (q, J = 27.0 Hz), 41.51, 37.52, 27.82, 25.66, 24.44, 24.36, 19.61; ¹⁹F NMR (471 MHz, DMSO) δ -66.40; HRMS [ESI] Calcd for [M+H]⁺ C₂₅H₂₇F₃N₂O₃: 461.2047, Found: 461.2056.

1³-methyl-2-(trifluoromethyl)-6,9,12-triaza-1(1,2),5(1,3)-dibenzenacyclotridecaph ane-4,7,10,13-tetraone (5h).

According to the general procedure, the product was obtained with 28.0 mg. **¹H NMR** (500 MHz, DMSO) δ 9.34 (s, 1 H), 9.28 (s, 1 H), 8.62 (s, 1 H), 8.32 (d, *J* = 7.5 Hz, 1 H), 8.04 (s, 1 H), 7.60 (d, *J* = 7.6 Hz, 1 H), 7.54 (d, *J* = 7.8 Hz, 2 H), 7.46 (d, J = 9.3 Hz, 2 H), 7.35 (d, J = 7.0 Hz, 1 H), 4.23 (s, 1 H), 4.10 (d, J = 14.7 Hz, 1 H), 3.89–3.74 (m, 2 H), 3.73–3.61 (m, 2 H), 2.88 (t, J = 13.5 Hz, 1 H), 2.36 (s, 3 H); ¹³C **NMR** (126 MHz, DMSO) δ 196.04, 171.09, 170.64, 169.12, 139.17, 136.74, 136.53, 135.14, 133.16, 131.22, 130.51, 130.19, 127.07 (q, J = 279.53 Hz), 125.03, 124.00, 122.35, 121.82, 46.21 (q, J = 27.2 Hz), 45.18, 45.04, 44.32, 20.86; ¹⁹F NMR (471 MHz, DMSO) δ -64.28; **HRMS** [ESI] Calcd for [M+H]⁺ C₂₂H₂₀F₃N₃O₄: 448.1479, Found: 448.1491.

220 210 200 190 160 150 140 130 120 110 100 f1 (ppm) -10 -20

7,38800 7,78750 7,78750 7,78750 7,78750 7,78750 7,78151 7,78151 7,78151 7,78151 7,78151 7,78151 7,78121 7,48141 7,48142 7,48142 7,48142 7,48125 4,0920 6,68325 7,48125

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -130 -14(ppm)

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 f1 (ppm)

References

- 1) G. Blay, I. Fernández, M. C. Muñoz, J. R. Pedro, C. Vila, *Chem. Eur. J.*, 2010, **16**, 9117-9122.
- 2) Q. Jiang, T. Guo, K. Wu, Z. Yu, Chem. Commun., 2016, 52, 2913-2915.
- 3) D. G. Stark, L. C. Morrill, P.-P. Yeh, A. M. Z. Slawin, T. J. C. O'Riordan, A. D. Smith, *Angew. Chem. Int. Ed.*, 2013, **52**, 11642-11646.