Rh(III)-catalysed synthesis of cinnolinium and fluoranthenium salts by using $\mathrm{C}-\mathrm{H}$ activation/annulation reactions: Organelle specific mitochondrial staining application

Sivakalai Mayakrishnan, ${ }^{\text {a }}$ Masilamani Tamizmani, ${ }^{\text {b }}$ Chandrasekar Balachandran,

a Organic \& Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India.
b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
c Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan

Electronic

Supporting Information

Table of Contents

1. Parallel competitive reaction 3
2. H to D exchange experiments 5
3. Photoluminescence spectrum 7
4. Copy of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HRMS spectra 16
5. DFT Calculations 56
6. Reference 67

1. Parallel competitive reaction

Scheme S1

A solution of 2-phenyl-2H-indazole 1a ($58 \mathrm{mg}, 0.3 \mathrm{mmol}$), 1,2-di-p-tolylethyne $\mathbf{2 b}$ ($62 \mathrm{mg}, 0.3$ $\mathrm{mmol}), \mathrm{AgBF}_{4}(58 \mathrm{mg} 0.3 \mathrm{mmol}),\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(9.0 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(54 \mathrm{mg} 0.3$ mmol) in 1,2-DCE (3 mL). The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at $110{ }^{\circ} \mathrm{C}$ for 3 hours. At the same time, another solution of 2-phenyl-2H-indazole 1a (58 mg, 0.3 mmol), 1,2-bis(4-chlorophenyl)ethyne 2d (74 mg, 0.3 $\mathrm{mmol}), \mathrm{AgBF}_{4}(58 \mathrm{mg} 0.3 \mathrm{mmol}),\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(9.0 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(540.3 \mathrm{mmol})$ in 1,2-DCE (3 mL). The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at $110{ }^{\circ} \mathrm{C}$ for 3 hours. After cooling ambient temperature, the solvent was removed from both the reaction mixtures under reduced pressure and the residues of the reaction mixtures were separately purified by silica gel (100-200 mesh) column chromatography using Methanol/DCM as the eluant to afford 3e 32\% and 3g 24\% (3e:3g = ~1.3:1).

$4 a$

2d

Scheme S2
A solution of 5,6-diphenylindazolo[2,3-a]quinoline 1a (111 mg, 0.3 mmol), 1,2-di-ptolylethyne 2c ($61 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{AgBF}_{4} 58 \mathrm{mg}(0.3 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(9 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.3 \mathrm{mmol})$ in 1,2-DCE 3.0 mL . The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at $110^{\circ} \mathrm{C}$ for 3 hours. At the same time, another solution of 2-phenyl-2H-indazole 1a (111 mg, 0.3 mmol), 1,2-bis(4- chlorophenyl)ethyne 2d $(74 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{AgBF}_{4} 58 \mathrm{mg}(0.3 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(9 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$, and $\mathrm{Cu}(\mathrm{OAc})_{2}(0.3$ mmol) in 1,2-DCE 3 ml . The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at $110^{\circ} \mathrm{C}$ for 3 hours. After cooling ambient temperature, the solvent was removed from both the reaction mixtures under reduced pressure and the residues of the reaction mixtures were separately purified by silica gel (100-200 mesh) column chromatography using Methanol/DCM as the eluant to afford 5b 30\% and 5d 47\% (5b:5d = ~1.7:1.0)

2. H to D exchange experiments

Scheme S3

To an oven-dried 20 mL reaction tube with septum containing were added 2-phenyl-2Hindazole 1a 58.2 mg ($0.3 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right] 2(9.18 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.05$ equiv), $\mathrm{Cu}(\mathrm{OAc})_{2} 55.6 \mathrm{mg}$, ($0.3 \mathrm{mmol}, 1.0$ equiv), Acetic acid- $\mathrm{d}_{4} 0.38 \mathrm{ml}$ (20.0 equiv) and 1,2-DCE 3.0 ml . The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 12 h . After the reaction mixture was cooled to room temperature diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through celite and the filtrate was concentrated under reduced pressure. After that, purification was performed by column chromatography on silica gel using hexane and ethyl acetate ($90: 10$) as eluent. Desired product colourless solid $\mathbf{1 a}-d_{3} 52 \mathrm{mg}$ was obtained in 90% of yield. The H/D exchange was found to be 76% at the protons attached to $\mathrm{C}-2$ and $\mathrm{C}-5$ in the recovered 2-phenyl-2 H -indazole 1a- d_{3}. Also found H/D exchange 25% at the indazole $2-H$ position. These results also clearly reveal that the $\mathrm{C}-\mathrm{H}$ bond activation as a key intermediate in the reaction as well as it is the reversible process.

Figure SI1: Preliminary mechanistic study

Scheme S4
To an oven-dried 20 mL reaction tube with septum containing were added 2-phenyl-2Hindazole 1a 58 mg ($0.3 \mathrm{mmol}, 1.0$ equiv), diphenylacetylene 2a 52 mg (0.3 mmol), $\mathrm{AgBF}_{4} 58$ $\mathrm{mg}(0.3 \mathrm{mmol} \%),\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}\left(9 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{Cu}(\mathrm{OAc})_{2} 56 \mathrm{mg},(0.3 \mathrm{mmol}, 1.0$ equiv), acetic acid- $d_{4} 0.38 \mathrm{ml}$ (20.0 equiv) and 1,2-DCE 3.0 ml . The reaction mixture was heated at $110^{\circ} \mathrm{C}$ for 12 h . After the reaction mixture was cooled to room temperature diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through celite and the filtrate was concentrated under reduced pressure. After that, purification was performed by column chromatography on silica gel using DCM and Methanol (95:5) as eluent. Desired product colourless solid 3a was obtained in 78% of yield.

3. Photoluminescence spectrum

Figure SI2: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3a

Figure SI3: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3b

Figure SI4: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3c

Figure SI5: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3d

Figure SI6: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3f

Figure SI7: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound $\mathbf{4 g}$

Figure SI8: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3h

Figure SI9: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5a

Figure SI10: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5b

Figure SI11: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5c

Figure SI12: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5d

Figure SI13: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5e

Figure SI14: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound $\mathbf{5 f}$

Figure SI15: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound $\mathbf{5 g}$

Figure SI16: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound $\mathbf{5 h}$

Figure SI17: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5i

Figure SI18: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound $\mathbf{5 j}$

Figure SI19: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound $\mathbf{5 k}$
4. Copy of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and HRMS spectra

Figure S20: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3a in CDCl_{3}

Figure S21: ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3a in CDCl_{3}

3a

Figure S22:DEPT-135 NMR spectrum of compound 3a in CDCl_{3}

Figure S23: ${ }^{19}$ F spectrum of compound 3a

Figure S25: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 b}$ in CDCl_{3}

Figure S26: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 b}$ in CDCl_{3}

Figure S27: DEPT-135 NMR spectrum of compound 3b in CDCl_{3}

Figure S28: HRMS spectrum of compound 3b

Figure S29: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 c}$ in CDCl_{3}

Figure S30: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 c}$ in CDCl_{3}象

Figure S31: DEPT-135 NMR spectrum of compound $\mathbf{3 c}$ in CDCl_{3}

Figure S32: HRMS spectrum of compound 3c

3d

Figure S33: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3d in CDCl_{3}

3d

Figure S34: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 d}$ in CDCl_{3}

Figure S35: HRMS spectrum of compound 3d

Figure S36: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 e}$ in CDCl_{3}

$\stackrel{\infty}{\text { 궁 }}$

$3 \mathbf{e}$

Figure S37: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 e}$ in CDCl_{3}

3 e

Figure S38: DEPT-135 NMR spectrum of compound $\mathbf{3 e}$ in CDCl_{3}

Figure S39: HRMS spectrum of compound $\mathbf{3 e}$

Figure S40: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 f}$ in CDCl_{3}

Figure $\mathbf{S 4 1}:{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 f}$ in CDCl_{3}

3f

Figure S42: DEPT-135 NMR spectrum of compound $\mathbf{3 f}$ in CDCl_{3}

Figure S43: HRMS spectrum of compound $\mathbf{3 f}$

Figure S44: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 g}$ in DMSO- d_{6}

3g

Figure S45: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 g}$ in DMSO- d_{6}

3g

Figure S46: DEPT-135 NMR spectrum of compound $\mathbf{3 g}$ in DMSO-d ${ }_{6}$

Figure S47: HRMS spectrum of compound $\mathbf{3 g}$

3h

Figure S48: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 h}$ in DMSO- d_{6}

3h

Figure S49: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3 h}$ in DMSO- d_{6}

3h

Figure S50: DEPT-135 NMR spectrum of compound 3h in DMSO- d_{6}

Figure S51: HRMS spectrum of compound 3h

5a

Figure S52: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 a}$ in CDCl_{3}

5a

Figure S53: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 a}$ in CDCl_{3}

Figure S54: DEPT-135 NMR spectrum of compound 5a in CDCl_{3}

Figure S55: HRMS spectrum of compound 5a

\qquad

Figure S56: ${ }^{19} \mathrm{~F}$ spectrum of compound $\mathbf{5 a}$

Figure S57: ${ }^{11}$ B spectrum of compound $\mathbf{5 a}$

Figure S58: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 b}$ in CDCl_{3}

Figure S59: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 b}$ in CDCl_{3}

5b

Figure S60: DEPT-135 NMR spectrum of compound $\mathbf{5 b}$ in CDCl_{3}

Figure S61: HRMS spectrum of compound 5b

Figure S62: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 c}$ in CDCl_{3}

Figure S63: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 c}$ in CDCl_{3}

5c

Figure S64: DEPT-135 NMR spectrum of compound $\mathbf{5 c}$ in CDCl_{3}

Figure S65: HRMS spectrum of compound 5c

Figure S66: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 d}$ in CDCl_{3}

5d

[^0]Figure S67: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 d}$ in CDCl_{3}

5d

Figure S68: DEPT-135 NMR spectrum of compound $\mathbf{5 d}$ in CDCl_{3}

Figure S69: HRMS spectrum of compound 5d

5e

Figure S70: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 e}$ in CDCl_{3}

5e

Figure S71: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 e}$ in CDCl_{3}

Figure S72: DEPT-135 NMR spectrum of compound $\mathbf{5 e}$ in CDCl_{3}

Figure S73: HRMS spectrum of compound 5e

Figure S74: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 f}$ in CDCl_{3}

Figure $\mathbf{S 7 4}:{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 f}$ in CDCl_{3}

Figure S75: DEPT-135 NMR spectrum of compound $\mathbf{5 f}$ in CDCl_{3}

Figure S76: HRMS spectrum of compound $\mathbf{5 f}$

Figure S77：${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 g}$ in CDCl_{3}

Figure S78：${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 g}$ in CDCl_{3}

$5 g$

Figure S79：DEPT－135 NMR spectrum of compound $\mathbf{5 g}$ in CDCl_{3}

Figure S80：HRMS spectrum of compound $\mathbf{5 g}$

Figure S81: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 h}$ in CDCl_{3}

5h

Figure S82: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5} \mathbf{h}$ in CDCl_{3}

玉．
㘿号

5h

Figure S83：DEPT－135 NMR spectrum of compound $\mathbf{5} \mathbf{h}$ in CDCl_{3}

Figure S84：HRMS spectrum of compound $\mathbf{5 h}$

Figure S85: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 i}$ in CDCl_{3}

Figure S86: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 i}$ in CDCl_{3}

Figure S87: DEPT-135 NMR spectrum of compound $\mathbf{5 i}$ in CDCl_{3}

Figure S88: HRMS spectrum of compound $\mathbf{5 i}$

Figure S89: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 j}$ in CDCl_{3}

5j

Figure S90: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 j}$ in CDCl_{3}

5j

Figure S91: DEPT-135 NMR spectrum of compound $\mathbf{5 j}$ in CDCl_{3}

Figure S92: HRMS spectrum of compound $\mathbf{5 j}$

Figure S93: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 k}$ in CDCl_{3}

Figure $\mathbf{S 9 4}:{ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5} \mathbf{k}$ in CDCl_{3}

Figure S95: HRMS spectrum of compound $\mathbf{5 k} \mathbf{+ 5 k}$,

Figure S96: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{5 I}$ in CDCl_{3}

Figure S97: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{5 1}$ in CDCl_{3}

Figure S98: HRMS spectrum of compound $\mathbf{5 1 + 5 1}{ }^{\prime}$

5. DFT Calculations

Table 2. Data of DFT studies ${ }^{1}$

Method Compound	B3LYP/6-311G*		
	LUMO (eV)	HOMO (eV)	Gap (eV)
3a	-5.6346	-9.2603	3.6257
3b	-5.6934	-9.1038	3.4104
3 c	-5.6850	-9.0847	3.3997
3d	-5.7168	-9.3781	3.6613
3 e	-5.7206	-9.0012	3.2806
3 f	-5.8308	-9.1160	3.2852
3g	-5.7962	-9.3231	3.5269
3h	-5.7775	-9.1544	3.3769
5a	-5.1511	-8.5408	3.3897
5b	-5.1040	-8.4167	3.3127
5c	-5.0251	-8.1794	3.1543
5d	-5.3217	-8.6695	3.3478
5e	-5.3013	-8.6377	3.3364
5 f	-5.0958	-8.4758	3.38
5g	-5.0039	-8.3479	3.344
5h	-5.0814	-8.1149	3.0335
$5 i$	-4.605	-7.466	2.86
5j	-5.31873	-8.6741	3.3553
5k	-5.0436	-8.3190	3.2754
5k'	-5.12689	-8.48288	3.3559
51	-5.2531	-8.5745	3.3214
51'	-5.2466	-8.5773	3.3307

Figure S99: HOMO-LUMO of the compound 3a

Figure S100: HOMO-LUMO of the compound 3b

Figure S101: HOMO-LUMO of the compound 3c

Figure S102: HOMO-LUMO of the compound 3d

Figure S103: HOMO-LUMO of the compound $\mathbf{3 e}$

Figure S104: HOMO-LUMO of the compound $\mathbf{3 f}$

Figure S105: HOMO-LUMO of the compound 3g

Figure S106: HOMO-LUMO of the compound 3h

Figure S107: HOMO-LUMO of the compound 5a

Figure S108: HOMO-LUMO of the compound 5b

Figure S109: HOMO-LUMO of the compound 5c

Figure S110: HOMO-LUMO of the compound 5d

Figure S111: HOMO-LUMO of the compound 5e

Figure S112: HOMO-LUMO of the compound $\mathbf{5 f}$

Figure S113: HOMO-LUMO of the compound 5g

Figure S114: HOMO-LUMO of the compound 5h

Figure S115: HOMO-LUMO of the compound $\mathbf{5 i}$

Figure S116: HOMO-LUMO of the compound $\mathbf{5 j}$
coses)

Figure S117: HOMO-LUMO of the compound $\mathbf{5 k}$

Figure S118: HOMO-LUMO of the compound 51

6. Reference

1. Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

[^0]:

