Rh(III)-catalysed synthesis of cinnolinium and fluoranthenium salts by using C-H activation/annulation reactions: Organelle specific mitochondrial staining application

Sivakalai Mayakrishnan, ^a Masilamani Tamizmani, ^b Chandrasekar Balachandran, ^c Shin Aoki, ^c Narayanan Uma Maheswari ^a*

 Organic & Bioorganic Chemistry Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020, India.

Corresponding author; 044-24437120, E-mail: umamaheswari@clri.res.in

- ^b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- ^c Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan

Electronic

Supporting Information

Table of Contents

1.	Parallel competitive reaction	3
2.	H to D exchange experiments	5
3.	Photoluminescence spectrum	7
4.	Copy of ¹ H, ¹³ C and HRMS spectra	16
5.	DFT Calculations	56
6.	Reference	67

1. Parallel competitive reaction

Scheme S1

A solution of 2-phenyl-2H-indazole **1a** (58 mg, 0.3 mmol), 1,2-di-p-tolylethyne **2b** (62 mg, 0.3 mmol), AgBF₄ (58 mg 0.3 mmol), [RhCp*Cl₂]₂ (9.0 mg, 5.0 mol %), and Cu(OAc)₂ (54 mg 0.3 mmol) in 1,2-DCE (3 mL). The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at 110 °C for 3 hours. At the same time, another solution of 2-phenyl-2H-indazole **1a** (58 mg, 0.3 mmol), 1,2-bis(4-chlorophenyl)ethyne **2d** (74 mg, 0.3 mmol), AgBF₄ (58 mg 0.3 mmol), [RhCp*Cl₂]₂ (9.0 mg, 5.0 mol %), and Cu(OAc)₂ (54 0.3 mmol) in 1,2-DCE (3 mL). The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at 110 °C for 3 hours. At the same time, another solution of 2-phenyl-2H-indazole **1a** (58 mg, 0.3 mmol), 1,2-bis(4-chlorophenyl)ethyne **2d** (74 mg, 0.3 mmol), AgBF₄ (58 mg 0.3 mmol), [RhCp*Cl₂]₂ (9.0 mg, 5.0 mol %), and Cu(OAc)₂ (54 0.3 mmol) in 1,2-DCE (3 mL). The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at 110 °C for 3 hours. After cooling ambient temperature, the solvent was removed from both the reaction mixtures under reduced pressure and the residues of the reaction mixtures were separately purified by silica gel (100-200 mesh) column chromatography using Methanol/DCM as the eluant to afford **3e** 32% and **3g** 24% (3e:3g = \sim 1.3:1).

Scheme S2

A solution of 5,6-diphenylindazolo[2,3-a]quinoline **1a** (111 mg, 0.3 mmol), 1,2-di-ptolylethyne **2c** (61 mg, 0.3 mmol), AgBF₄ 58 mg (0.3 mmol), [RhCp*Cl₂]₂ (9 mg, 5.0 mol %), and Cu(OAc)₂ (0.3 mmol) in 1,2-DCE 3.0 mL. The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at 110 °C for 3 hours. At the same time, another solution of 2-phenyl-2H-indazole **1a** (111 mg, 0.3 mmol), 1,2-bis(4- chlorophenyl)ethyne **2d** (74 mg, 0.3 mmol), AgBF₄ 58 mg (0.3 mmol), [RhCp*Cl₂]₂ (9 mg, 5.0 mol %), and Cu(OAc)₂ (0.3 mmol) in 1,2-DCE 3 ml. The tube was sealed with a Teflon-coated screw cap and the reaction solution was heated at 110 °C for 3 hours. After cooling ambient temperature, the solvent was removed from both the reaction mixtures under reduced pressure and the residues of the reaction mixtures were separately purified by silica gel (100-200 mesh) column chromatography using Methanol/DCM as the eluant to afford **5b** 30% and **5d** 47% (**5b:5d** = ~1.7:1.0)

2. H to D exchange experiments

Scheme S3

To an oven-dried 20 mL reaction tube with septum containing were added 2-phenyl-2Hindazole **1a** 58.2 mg (0.3 mmol, 1.0 equiv), [RhCp*Cl₂]2 (9.18 mg, 0.015 mmol, 0.05 equiv), Cu(OAc)₂ 55.6 mg, (0.3 mmol, 1.0 equiv), Acetic acid- d_4 0.38 ml (20.0 equiv) and 1,2-DCE 3.0 ml. The reaction mixture was heated at 110 °C for 12 h. After the reaction mixture was cooled to room temperature diluted with CH₂Cl₂, filtered through celite and the filtrate was concentrated under reduced pressure. After that, purification was performed by column chromatography on silica gel using hexane and ethyl acetate (90:10) as eluent. Desired product colourless solid **1a**- d_3 52 mg was obtained in 90% of yield. The H/D exchange was found to be 76% at the protons attached to C-2 and C-5 in the recovered 2-phenyl-2H-indazole **1a**- d_3 . Also found H/D exchange 25% at the indazole *2-H* position. These results also clearly reveal that the C-H bond activation as a key intermediate in the reaction as well as it is the reversible process.

0.00

Figure SI1: Preliminary mechanistic study

Scheme S4

To an oven-dried 20 mL reaction tube with septum containing were added 2-phenyl-2Hindazole **1a** 58 mg (0.3 mmol, 1.0 equiv), diphenylacetylene **2a** 52 mg (0.3 mmol), AgBF₄ 58 mg (0.3 mmol%), [RhCp*Cl₂]₂ (9 mg, 0.015 mmol, 0.05 equiv), Cu(OAc)₂ 56 mg, (0.3 mmol, 1.0 equiv), acetic acid- d_4 0.38 ml (20.0 equiv) and 1,2-DCE 3.0 ml. The reaction mixture was heated at 110 °C for 12 h. After the reaction mixture was cooled to room temperature diluted with CH₂Cl₂, filtered through celite and the filtrate was concentrated under reduced pressure. After that, purification was performed by column chromatography on silica gel using DCM and Methanol (95:5) as eluent. Desired product colourless solid **3a** was obtained in 78% of yield.

3. Photoluminescence spectrum

Figure SI2: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3a

Figure SI3: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3b

Figure SI4: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3c

Figure SI5: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3d

Figure SI6: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3f

Figure SI7: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 4g

Figure SI8: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 3h

Figure SI9: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5a

Figure SI10: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5b

Figure SI11: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5c

Figure SI12: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5d

Figure SI13: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5e

Figure SI14: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5f

Figure SI15: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5g

Figure SI16: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5h

Figure SI17: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5i

Figure SI18: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5j

Figure SI19: Normalized absorption (black), Fluorescence in DCM (red) spectra of compound 5k

4. Copy of ¹H, ¹³C and HRMS spectra

Figure S21: ¹³C NMR spectrum of compound 3a in CDCl₃

Figure S23: ¹⁹F spectrum of compound 3a

Figure S25: ¹H NMR spectrum of compound 3b in CDCl₃

Figure S27: DEPT-135 NMR spectrum of compound 3b in CDCl₃

-10.37 -10.37

Figure S29: ¹H NMR spectrum of compound 3c in CDCl₃

Figure S31: DEPT-135 NMR spectrum of compound 3c in CDCl₃

Figure S32: HRMS spectrum of compound 3c

Figure S33: ¹H NMR spectrum of compound 3d in CDCl₃

Figure S34: ¹³C NMR spectrum of compound 3d in CDCl₃

Figure S35: HRMS spectrum of compound 3d

Figure S36: ¹H NMR spectrum of compound 3e in CDCl₃

Figure S37: ¹³C NMR spectrum of compound 3e in CDCl₃

Figure S38: DEPT-135 NMR spectrum of compound 3e in CDCl₃

Figure S39: HRMS spectrum of compound 3e

Figure S41: ¹³C NMR spectrum of compound 3f in CDCl₃

Figure S42: DEPT-135 NMR spectrum of compound 3f in CDCl₃

Figure S43: HRMS spectrum of compound 3f

Figure S45: ¹³C NMR spectrum of compound 3g in DMSO-d₆

Figure S46: DEPT-135 NMR spectrum of compound 3g in DMSO-d₆

Figure S47: HRMS spectrum of compound 3g

-10.89

Figure S48: ¹H NMR spectrum of compound 3h in DMSO-d₆

Figure S49: ¹³C NMR spectrum of compound 3h in DMSO-d₆

Figure S50: DEPT-135 NMR spectrum of compound 3h in DMSO-d₆

Figure S51: HRMS spectrum of compound 3h

170

160 150

140 130

120 110

100 90 80 f1 (ppm)

70

60 50

40 30 20

10

Ó

-10

Figure S54: DEPT-135 NMR spectrum of compound 5a in CDCl₃

K Elemen	tal Composition	Sec. 1										d x
File Edit	View Proce	is Help										
	I SEE MIIX											
Single Toleranc Element Number Monoisol 82 formu Elements	single Mass Analysis > Jennace 1100 Mos / DBE: min = 15, max = 50.0 > Jennaty prediction: Off Jumber of isotope seaks used for IF/TT = 3 > Jonoids topic Mass. Even Electron lons > Zimmatule you availed with 17 results within limits (all results (up to 1000) for each mass) >											
Mass	Calc. Mass	mDa P	PM DB	Formula	i-FIT	i-FIT Norm	Fit Conf %	C F	I N			^
547.2175	547.2174 547.2107 547.2359 547.2426 547.1923	0.1 0 6.8 1. -18.4 -3 -25.1 -4 25.2 4	2 29. 2.4 26. 33.6 25.5 15.9 28.5 5.1 30.5	5 C41 H27 N2 5 C32 H23 N10 5 C34 H27 N8 5 C43 H31 5 C39 H23 N4	552.6 551.3 551.7 552.8 552.3	3.794 2.573 2.929 4.008 3.543	2.25 7.63 5.34 1.82 2.89	41 2 32 2 34 2 43 3 39 2	2 3 10 7 8 1 3 4			
19112019 RAM-B-1_	_357_6399 19112019_002	112 (2.887)	VM2 (Ar,300	00.0,556.28,0.00,LS 1)						1: Ti	OF MS ES+
96-									5	540 2223	F_4	2.54+007
								491 1932	547.15	⁴⁹ 549.2280	810.5143 1000.4410	1168 3622
0	100	150	208.06	250 30	324.1956	50 4	420.4625	0 5	00	550 600 650	707.2242721.1678 790.5168 7************************************	m/z
For Help, p	ress F1		200	200 30			40					
@	6	iii 🖉			<u> </u>						📓 🔩 🧔 🤀 🗤 👀 🔢	3:54 PM /20/2019

Figure S55: HRMS spectrum of compound 5a

Figure S57: ¹¹B spectrum of compound 5a

Figure S59: ¹³C NMR spectrum of compound 5b in CDCl₃

Figure S60: DEPT-135 NMR spectrum of compound 5b in CDCl₃

Figure S61: HRMS spectrum of compound 5b

Figure S63: ¹³C NMR spectrum of compound 5c in CDCl₃

Figure S64: DEPT-135 NMR spectrum of compound 5c in CDCl₃

Figure S65: HRMS spectrum of compound 5c

Figure S67: ¹³C NMR spectrum of compound 5d in CDCl₃

Figure S68: DEPT-135 NMR spectrum of compound 5d in CDCl₃

🔀 Elem	ental Composi	tion	1000											
File E	dit View Pr	ocess	Help											
B 6	6 6 6	5 <u>M</u>												
Singl Tolera Eleme Numb Monois 790 for Eleme	ingle Mass Analysis • ieance = 100.0 mla / DBE: min = 1.5, max = 50.0 • ment prediction: Off · minet of isotope parks used for iFIT = 3 > noisotopic Mass. Even Electron lons 0 00 formula(e) evaluated with 131 results (up to 1000) for each mass) •													
Mass	Calc. M	ass	mDa PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	C	н	Ν	CI		
615.140	1 615.140	1	0.0 0.0	6.5	C28 H41 N2 CI6	523.4	14.256	0.00	28	41	2	6		
	615.141 615.138 615.141	3 3 9	-1.2 -2.0 1.8 2.9 -1.8 -2.9	24.5 11.5 1.5	C40 H30 CI3 C29 H36 N4 CI5 C27 H46 CI7	518.6 522.4 524.2	9.385 13.250 15.012	0.01 0.00 0.00	40 29 27	30 36 46	4	3 5 7		
201120 KB-7_2	19_357_6412 0112019_002	108 (2.)	785) AM2 (Ar	30000.0	556 45 0 00 LS 1)									1 TOF MS ES-
96-		100 (z.										615	917 1387	BF ₄ Cl 5d
													618.1414	
													619.1394	
												615.0742	Y	
0	73.9780 92.6	728	163.1852	188.0274	244.6642 285.5364 324.9519	386.0	400	9.1696 51	6.1874	547	2284	614.9640	633.1550 673.1422.711.1570	820.3284 899.8958 931.2802 1011.8855.1031.2262 1060.6520 1121.2386 1169.740 ml
For Help	press F1		100	200	200 300 3		400	400	500			600	000 700 750	800 800 800 800 1000 1000 1100
3	6		1	-		10					-			11/20/2019 🐨 🐨 👘 🖏 🗤 🗐

Figure S69: HRMS spectrum of compound 5d

Figure S71: ¹³C NMR spectrum of compound 5e in CDCl₃

Figure S73: HRMS spectrum of compound 5e

Figure S74: ¹³C NMR spectrum of compound 5f in CDCl₃

Figure S75: DEPT-135 NMR spectrum of compound 5f in CDCl₃

💽 Elem	ental Compositio	1														- 0 -×-
File E	dit View Proce	ss Help														
		MEX														
Singl Tolera Eleme Numbo Monois 83 form Eleme	Integle Mass Analysis Integle Mass Analysis Integle Masss															
Mass	Calc. Mass	mDa PPM	DBE Formula	i-FIT	i-FIT Norm	Fit Conf %	СН	N								*
575.249	0 575.2487 575.2420	0.3 0.5	29.5 C43 H31 26.5 C24 H27	N2 622.0) 4.283 9 9 171	1.38	43 31	2								E
	575.2672	-18.2 -31.6	25.5 C36 H31	N8 625.5	5 7.766	0.04	36 31	8								
	575.2739 575.2236	-24.9 -43.3 25.4 44.2	28.5 C45 H35 30.5 C41 H27	624.3 N4 618.1	6.581 0.328	0.14 72.03	45 35 41 27	4								-
201120	19 357 6413															
KB-8_2	0112019_003 11	4 (2.938) AM2 (Ar,3	0000.0,556.30,0.00,	LS 1); Cm (111:11	4)											1: TOF MS ES+
100								515	576.2552			Sf	BF4			
									577.2628							
								575.1917	-							
64	1.5367 81.6109	170.4275,187.0	222.0841	316,1829	390.1353	423.1962	485.2136	575.1298 574.9626	578.2717	641,2654,660.2538			941,1478 987 :	2508		1185,4393
50	100	150	200 250	300	350 40	0 450	500	550	600	650 700	750 800	850 900	950	1000 1050	1100	1150 m/z
For Help	, press F1					_										
	<u> </u>		A											8	l 📉 🤿 🙆 😘	3:48 PM

Figure S76: HRMS spectrum of compound 5f

Figure S78: ¹³C NMR spectrum of compound 5g in CDCl₃

Figure S79: DEPT-135 NMR spectrum of compound 5g in CDCl₃

Figure S80: HRMS spectrum of compound 5g

Figure S81: ¹H NMR spectrum of compound 5h in CDCl₃

Figure S82: ¹³C NMR spectrum of compound 5h in CDCl₃

Figure S83: DEPT-135 NMR spectrum of compound 5h in CDCl₃

C Elemental Composition) - x										
File Edit View Process Hep											
I NOV OF NOV											
Single Mass Analysis Totrance = 100 mb / DBE min = 1.5, max = 50.0 Elameter prediction: Off Number of isotope packs used for FITT = 3 Monoisotopic Mass, Even Electore Inte 1304 formula(e) evaluated wth 271 results within limits (all results (up to 1000) for each mass) Elements Used:	E										
Mass Galc.Mass MDa PPM DBE Formula i-FIT i-FIT Norm Fit Conf % C H N 0	*										
[607289 604 40.4 7 263 601 12 2 2 607291 -09 -15 275 621 100 081 27 11 10 7 6072931 -09 -15 225 C28 H27 N14 03 081 27 14 3 6072931 -09 -15 215 C18 N14 03 408 27 14 3 6072931 -09 -15 115 C37 403 4408 0.77 30 39 13 607294 -149 -15 115 N12 044 74 30 39 13											
1912019, 327, 5401 PANE-3, 1912019 04.114 (2.938) AM2 (Ar 20000 0.556 47.0.00.1.5.1) 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	F MS ES+										
10 607 2382 10 607 2382 10 10	8 3769 ml										
	01 PM										

Figure S84: HRMS spectrum of compound 5h

Figure S86: ¹³C NMR spectrum of compound 5i in CDCl₃

Figure S87: DEPT-135 NMR spectrum of compound 5i in CDCl₃

💽 Elemen	tal Composition	April 1994 (D				-										- 0 X
File Edit View Process Help																
🖃 🖻																
Single Toleranc Element Number Monoisol 83 formu Elements	Mass Analys e = 100.0 mDa prediction: Off of isotope peak opic Mass, Ever la(e) evaluated v s Used:	is / DBE: mi is used for i-F n Electron lons with 17 results	n = -1.5, m IT = 3 within limit	nax = 50.0 s (all results (up t	to 1000) for ea	ich mass)										E
Mass	Calc. Mass	mDa PPI	V DBE	Formula	i-FIT	i-FIT Norm	Fit Conf %	С	H N							
714.2910	714.2909 714.2842	0.1 0.1 6.8 9.5	37.5	C53 H36 N3 C44 H32 N11	559.4 557.7	4.389 2.644	1.24 7.11	53 44	36 3 32 11							
	714.3094	-18.4 -25	8 33.5	C46 H36 N9	558.2	3.160	4.24	46	36 9							
	714.2658	25.2 35.3	3 38.5	C51 H32 N5	559.1	4.103	1.65	51	40 I 32 5							-
20112019 KB-10_20	_357_6414	0 (3 001) 649	(Ar 30000 0	556 51 0 00 1 9 1	1)											1: TOF MS 59+
₩e=10,cu	97.2209	178.4285	208.0765	256 6199 29 2010 - 2010	19 6232 3611	9017 <u>38458</u>	04 427.170	²¹ 5	200 1104	547 2311 575.2	480 <u>638 2835</u>	714.2910 714.2139 716.3028 714.1263 714.0261 117.3079.756			BF ₄	3.410=007
For Help, p	ress F1	150	200	250	500 .	300 40	0 450	,	500	550 0	00 650	700 750	800 850	900 950	1000 1050 1100	1150
@	6	i 🖉		A		703					-				in 💀 📾 🖞	3:50 PM 11/20/2019

Figure S88: HRMS spectrum of compound 5i

Figure S90: ¹³C NMR spectrum of compound 5j in CDCl₃

Figure S91: DEPT-135 NMR spectrum of compound 5j in CDCl₃

Figure S92: HRMS spectrum of compound 5j

Figure S93: ¹H NMR spectrum of compound 5k in CDCl₃

161.23 159.56 144.51 144.51 141.10 141.10 139.39 135.34 135.14 135.14 135.14 135.58 134.42 134.42 134.42 134.42 134.42 134.42 134.55 133.65 131.66 131.66 131.66 133.55 135.55 15 130.18 129.58 129.34 129.28 129.18 127.13 124.13 122.86 129.78 128.86 128.73 125.86 125.48 125.41 125.28 124.58 117.22 115.06 114.65 21.78

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S94: ¹³C NMR spectrum of compound 5k in CDCl₃

Figure S95: HRMS spectrum of compound 5k+5k'

7.02

Figure S96: ¹H NMR spectrum of compound 5l in CDCl₃

Figure S98: HRMS spectrum of compound 51+51'

5. DFT Calculations

Table 2. Data of DFT studies¹

Method]	B3LYP/6-311G*	
Compound	LUMO (eV)	HOMO (eV)	Gap (eV)
3 a	-5.6346	-9.2603	3.6257
3 b	-5.6934	-9.1038	3.4104
3c	-5.6850	-9.0847	3.3997
3d	-5.7168	-9.3781	3.6613
3 e	-5.7206	-9.0012	3.2806
3f	-5.8308	-9.1160	3.2852
3g	-5.7962	-9.3231	3.5269
3h	-5.7775	-9.1544	3.3769
5a	-5.1511	-8.5408	3.3897
5b	-5.1040	-8.4167	3.3127
5c	-5.0251	-8.1794	3.1543
5d	-5.3217	-8.6695	3.3478
5e	-5.3013	-8.6377	3.3364
5f	-5.0958	-8.4758	3.38
5g	-5.0039	-8.3479	3.344
5h	-5.0814	-8.1149	3.0335
5i	-4.605	-7.466	2.86
5j	-5.31873	-8.6741	3.3553
5k	-5.0436	-8.3190	3.2754
5k'	-5.12689	-8.48288	3.3559
51	-5.2531	-8.5745	3.3214
51'	-5.2466	-8.5773	3.3307

Figure S99: HOMO-LUMO of the compound 3a

Figure S100: HOMO-LUMO of the compound 3b

Figure S101: HOMO-LUMO of the compound 3c

Figure S102: HOMO-LUMO of the compound 3d

Figure S103: HOMO-LUMO of the compound 3e

Figure S104: HOMO-LUMO of the compound 3f

Figure S105: HOMO-LUMO of the compound 3g

Figure S106: HOMO-LUMO of the compound 3h

Figure S107: HOMO-LUMO of the compound 5a

Figure S108: HOMO-LUMO of the compound 5b

Figure S109: HOMO-LUMO of the compound 5c

Figure S110: HOMO-LUMO of the compound 5d

Figure S111: HOMO-LUMO of the compound 5e

Figure S112: HOMO-LUMO of the compound 5f

Figure S113: HOMO-LUMO of the compound 5g

Figure S114: HOMO-LUMO of the compound 5h

Figure S115: HOMO-LUMO of the compound 5i

Figure S116: HOMO-LUMO of the compound 5j

Figure S117: HOMO-LUMO of the compound 5k

Figure S118: HOMO-LUMO of the compound 51

6. Reference

Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.