Supplementary Information

Synthetic trisaccharides reveal discrimination of endo-glycosidic linkages by exoacting α-1,2-mannosidases in the endoplasmic reticulum

Kyohei Nitta, Taiki Kuribara, Kiichiro Totani*
Department of Materials and Life Science, Seikei University, Musashino-shi, Tokyo, 180-8633, Japan

Table of Contents

Fig. S11
Fig. S2 1
Fig. S3 2
General methods \& materials for chemical synthesis 3
Chemical synthesis3
General methods \& materials for enzymatic assay 20
Enzymatic assay 20
References 22
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR Spectra for the novel compounds 24

Fig. S1 Extraction of ER fraction from SAMP6 liver.

Fig. S2 HPLC chromatogram of the substrates (A3, B3, C3 and D3) and the products ($\mathbf{A} 2, \mathbf{B} 2, \mathbf{C} 2$ and $\mathbf{D} 2$).

Fig. S3 Influence on the hydrolysis yield of $\mathbf{A 3}(250 \mu \mathrm{M}), \mathbf{B 3}(250 \mu \mathrm{M})$ or $\mathbf{C} 3(250 \mu \mathrm{M})$ by adding internal standard D2 $(50 \mu \mathrm{M})$. Each data point represents the mean value with the standard deviation $(n=3)$.

Fig. S4 Influence on the hydrolysis yield after 6 h from competitive assay of $\mathbf{B 3}(250 \mu \mathrm{M})$ with $\mathbf{C} 3(250 \mu \mathrm{M})$ in the ER fraction $(3 \mathrm{mg} / \mathrm{mL})$ by adding $\mathbf{A 2}(250 \mu \mathrm{M})$. Each data point represents the mean value with the standard deviation $(n=3)$.

General methods \& materials for chemical synthesis

Unless otherwise indicated, all reactions were performed under an argon atmosphere in oven-dried glassware. All reagents and dry solvents were used as purchased without further purification. Column chromatography on silica gel was carried out with silica gel $60 \mathrm{~N}(40-50 \mu \mathrm{~m})$ or silica gel $60 \mathrm{~N}(40-100 \mu \mathrm{~m})$ from Kanto Chemical Co. Column chromatography was also carried out using Automated Flash Chromatography System Smart Flash EPCLC AI-580S (Yamazen Co.) with Hi-Flash column or Ultrapack column. Gel filtration chromatography was carried out with Sephadex G-10 or Sephadex LH-20 from GE Healthcare. TLC was performed on pre-coated glass plates using silica gel (Merck, 60, F254) and detected by UV light (254 nm) and/or by staining reagents such as Orcinol/ $\mathrm{H}_{2} \mathrm{SO}_{4}$. Molecular sieves AW-300 used in the reactions, were activated for 12 h in vacuo at $180^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECA500 (500 MHz) spectrometer using $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{H}} 7.26\right), \mathrm{D}_{2} \mathrm{O}\left(\delta_{\mathrm{H}} 4.79\right)$ or $\mathrm{CD}_{3} \mathrm{OD}\left[\delta_{\mathrm{H}} 3.31\right.$ (central line of a quintet)] as the NMR solvents, whereby the spectra were referenced to the corresponding residual protonated solvent signals. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNM-ECA500 (125 MHz) spectrometer with CDCl_{3} [$\delta_{\mathrm{C}} 77.2$ (central line of a triplet)] or $\mathrm{CD}_{3} \mathrm{OD}$ [$\delta_{\mathrm{C}} 49.2$ (central line of a septet)], whereby the spectra were referenced to the solvent signals. High-resolution mass spectra (HRMS) were obtained from a Thermo SCIENTIFIC Q-Exactive (ESI-TOF) mass spectrometer.

Chemical synthesis

2-O-Acetyl-3,4,6-tri- \boldsymbol{O}-benzyl-1-deoxy- α-D-mannopyranosyl fluoride (2).

DAST $(10.5 \mu \mathrm{~L}, 0.0801 \mathrm{mmol})$ was added to a cold $\left(-40^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1}(24.4 \mathrm{mg}, 0.0482 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.500 \mathrm{~mL})$. After stirring the reaction mixture for 3 h at $0^{\circ} \mathrm{C}$, another portion of DAST ($10.5 \mu \mathrm{~L}, 0.0801 \mathrm{mmol}$) was added at $-40^{\circ} \mathrm{C}$. After stirring the reaction mixture for 80 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{MeOH}(0.200 \mathrm{~mL}, 4.94 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$ and washed with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL} \times 2)$ and brine $(100 \mathrm{~mL} \times 2)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, $1: 3, \mathrm{v} / \mathrm{v})$ to give $2(18.9 \mathrm{mg}, 80 \%)$. Physical data were consistent with those reported previously ${ }^{(1)}$: TLC, R_{f} $0.44(\mathrm{EtOAc} /$ hexane, $1: 3, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.14\left(\mathrm{~m}, 15 \mathrm{H},\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 5.61(\mathrm{dd}, J=$ $\left.2.3,2.3 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{F}}=49.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.47(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.86,4.71(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-$ $\left.\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.68,4.51\left(\mathrm{ABq}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.56,4.50\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 3.97-$ 3.94 (m, 3H, H-3, H-5, H-6), 3.81 (dd, $J=3.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 3.71 (dd, $J=1.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 2.16 (s, $3 \mathrm{H},-\mathrm{CH}_{3}$ of Ac).

1,2-di- O-Acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranose (3).

Compound 1 ($67.1 \mathrm{mg}, 0.133 \mathrm{mmol}$) was diluted in $\mathrm{AcOH}(1.30 \mathrm{~mL}, 22.7 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at $0^{\circ} \mathrm{C}, \mathrm{Ac}_{2} \mathrm{O}(1.30 \mathrm{~mL}, 1.38 \mathrm{mmol})$ and DMAP ($32.3 \mathrm{mg}, 0.264 \mathrm{mmol}$) were added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at room temperature, another portion of $\mathrm{Ac}_{2} \mathrm{O}(1.30 \mathrm{~mL}, 1.38$ mmol) was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 40 min at room temperature, the reaction was quenched with $\mathrm{MeOH}(2.6 \mathrm{~mL}, 6.42 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{EtOAc}(100 \mathrm{~mL})$ and washed with saturated aq. $\mathrm{NaHCO}_{3}(65 \mathrm{~mL} \times 3)$ and brine $(65 \mathrm{~mL} \times 3)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,
filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:2, v/v) to give $3(57.0 \mathrm{mg}, 80 \%)$. Physical data were consistent with those reported previously ${ }^{(2)}$: TLC, $R_{f} 0.44$ (EtOAc/toluene, $6: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (α-isomer) $\delta 7.36-7.13$ $\left(\mathrm{m}, 15 \mathrm{H},\left(-\mathrm{CH}_{2} \underline{\mathrm{Ph}}\right)_{3}\right), 6.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.37(\mathrm{dd}, J=1.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.86,4.73(\mathrm{ABq}, J=$ $\left.10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.68,4.51\left(\mathrm{ABq}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.56,4.51(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.00-3.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-6), 3.88-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.81(\mathrm{dd}, J=3.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.69$ (dd, $J=1.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $2.16\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of Ac), $2.07\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of Ac$)$.

4-Methoxyphenyl 2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranoside (4).

p-Methoxyphenol ($372 \mathrm{mg}, 3.00 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.140 \mathrm{~mL}, 1.00 \mathrm{mmol})$, and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.520 \mathrm{~mL}, 4.14 \mathrm{mmol})$ were added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3}(1.10 \mathrm{~g}, 2.06 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$. After stirring the reaction mixture for 4 h at room temperature, another portion of $\mathrm{Et}_{3} \mathrm{~N}(35.0 \mu \mathrm{~L}, 0.250 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.130 \mathrm{~mL}$, 1.03 mmol) were added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 30 min at room temperature, another portion of p-Methoxyphenol ($93.5 \mathrm{mg}, 0.750 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 30 min at room temperature, the mixture was diluted with EtOAc (200 mL) and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/toluene, $1: 20, \mathrm{v} / \mathrm{v}$) to give $4(1.15 \mathrm{~g}, 94 \%)$. Physical data were consistent with those reported previously ${ }^{(3)}$: TLC, $R_{f} 0.60(\mathrm{EtOAc} /$ toluene, $6: 1, \mathrm{v} / \mathrm{v}) ;{ }^{1} \mathrm{H}$ NMR $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.16\left(\mathrm{~m}, 15 \mathrm{H},\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)\right)_{3}\right), 6.99(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.79 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.54 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.46 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 1), $4.89,4.51\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.77,4.61\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.66,4.45$ $\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.18(\mathrm{dd}, J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.00(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.96-$ $3.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.81(\mathrm{dd}, J=4.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of MP), $3.68(\mathrm{dd}, J=1.7,10.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6), 2.18\left(\mathrm{~s}, 3 \mathrm{H},-\underline{\mathrm{CH}_{3}}\right.$ of Ac$)$.

4-Methoxyphenyl 3,4,6-tri-O-benzyl- α-D-mannopyranoside (5).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 1.00 \mathrm{~mL}, 5.19 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $4(1.12 \mathrm{~g}, 1.88 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 20.0 \mathrm{~mL})$. After stirring the reaction mixture for 30 min at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by column chromatography on silica gel (EtOAc/toluene, 1:6, v/v) to give $\mathbf{5}$ ($0.979 \mathrm{~g}, 94 \%$). Physical data were consistent with those reported previously ${ }^{(4)}$: TLC, $R_{f} 0.26$ (EtOAc/toluene, 1:6, v/v); ${ }^{1} \mathrm{H}$ NMR $\left.\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.17\left(\mathrm{~m}, 15 \mathrm{H},\left(-\mathrm{CH}_{2} \mathrm{Ph}\right)\right)_{3}\right), 7.00(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.79 (dd, $J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.52 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), $4.85,4.54(\mathrm{ABq}, J=10.9 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.78,4.75\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.62,4.45\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2} \mathrm{Ph}}\right)_{3}\right)$, $4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.08(\mathrm{dd}, J=3.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.97(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.93-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.78-3.73 (m, 4H, - OCH_{3} of MP, H-6), 3.66 (dd, $J=1.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ ').

4-Methoxyphenyl 3,4,6-tri- \boldsymbol{O}-benzyl-2- \boldsymbol{O}-pivaloyl- α-D-mannopyranoside (6).

$\operatorname{PivCl}(45.0 \mu \mathrm{~L}, 0.343 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(95.0 \mu \mathrm{~L}, 0.744 \mathrm{mmol})$, and DMAP ($\left.43.5 \mathrm{mg}, 0.356 \mathrm{mmol}\right)$ were added to
a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{5}(82.5 \mathrm{mg}, 0.148 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.00 \mathrm{~mL})$. After stirring the reaction mixture for 90 min at $50^{\circ} \mathrm{C}$, another portion of $\mathrm{PivCl}(45.0 \mu \mathrm{~L}, 0.343 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(95.0 \mu \mathrm{~L}, 0.744 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 40 min at $50^{\circ} \mathrm{C}$, the mixture was diluted with EtOAc (200 mL) and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, before the residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10, v/v) to give 6 ($87.0 \mathrm{mg}, 92 \%$): TLC, $R_{f} 0.75$ (EtOAc/toluene, 1:6, v/v); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.16\left(\mathrm{~m}, 15 \mathrm{H},\left(-\mathrm{CH}_{2} \underline{\mathrm{Ph}}\right)_{3}\right), 7.01(\mathrm{dd}, J=2.3,7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.79 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.54(\mathrm{dd}, J=2.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.43(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.87,4.53$ $\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.75,4.58\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.62,4.46(\mathrm{ABq}, J=12.0$ $\left.\mathrm{Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.02-3.94(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5), 3.80(\mathrm{dd}, J=3.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, 3.75 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), 3.71 (dd, $J=1.5,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), $1.24\left(\mathrm{~s}, 3 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.80,155.21,150.11,138.44,138.34,138.23,128.42 \times 2,128.38 \times 2,128.30 \times 2,128.16 \times 2$, $128.02 \times 2,127.78,127.70,127.55 \times 2,127.52,118.09 \times 2,114.64 \times 2,97.11,78.33,75.32,74.17,73.22,71.96$, $71.63,68.95,68.12,55.71,39.13,27.27 \times 3$; HRMS calcd. for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+} m / z 663.2934$, found 663.2921 .

4-Methoxyphenyl 4,6-O-benzylidene-2-O-pivaloyl- α-D-mannopyranoside (8).

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 64.0 mg$)$ was added to a solution of $\mathbf{6}(87.0 \mathrm{mg}, 0.136 \mathrm{mmol})$ in $\mathrm{MeOH}(2.00 \mathrm{~mL})$. After stirring the reaction mixture under H_{2} atmosphere for 17 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo to give 7. BDA ($0.200 \mathrm{~mL}, 1.34$ $\mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of unpurified $7 \mathrm{in} \mathrm{MeCN}(2.00 \mathrm{~mL})$. After stirring the reaction mixture for 5 min at $0^{\circ} \mathrm{C}, \mathrm{CSA}(49.0 \mathrm{mg}, 0.211 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 90 min at room temperature, the mixture was diluted with $\operatorname{EtOAc}(100 \mathrm{~mL})$ and washed with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:6, v/v) to give 8 ($61.6 \mathrm{mg}, 99 \%$): TLC, $R_{f} 0.46$ (EtOAc/hexane, 1:3, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.34(\mathrm{~m}, 5 \mathrm{H}$, Ph of Bzl), 6.99 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.83 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ of Bzl), 5.38 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.35$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.44 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 4.23 (dd, $J=5.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.06-4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.92(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.80(\mathrm{t}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 3.77 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), $1.30\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 178.03$, $155.43,149.91,137.13,129.41,128.44 \times 2,126.40 \times 2,118.07 \times 2,114.77 \times 2,102.40,97.69,79.41,71.74,68.79$, 67.46, $64.04,55.75,39.22,27.29 \times 3$; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}_{8}(\mathrm{M}+\mathrm{Na})^{+} m / z 481.1838$, found 481.1833 .

4-Methoxyphenyl 4,6-O-benzylidene-2,3-di- O-pivaloyl- α-D-mannopyranoside (9).

$\operatorname{PivCl}(37.0 \mu \mathrm{~L}, 0.301 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(77.0 \mu \mathrm{~L}, 0.603 \mathrm{mmol})$ and DMAP ($31.2 \mathrm{mg}, 0.255 \mathrm{mmol}$) were added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{8}(55.0 \mathrm{mg}, 0.120 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.00 \mathrm{~mL})$. After stirring the reaction mixture for 80 min at $50^{\circ} \mathrm{C}$, second portion of $\mathrm{PivCl}(19.0 \mu \mathrm{~L}, 0.154 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(30.0 \mu \mathrm{~L}, 0.235 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 80 min at $50^{\circ} \mathrm{C}$, third portion of $\operatorname{PivCl}(19.0 \mu \mathrm{~L}, 0.154 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(30.0 \mu \mathrm{~L}, 0.235 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 50 min at $50^{\circ} \mathrm{C}$, the
mixture was diluted with EtOAc (50 mL) and washed with saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:10, v/v) to give 9 ($63.7 \mathrm{mg}, 98 \%$): TLC, $R_{f} 0.73$ (EtOAc/toluene, 1:6, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46-7.30(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}$ of Bzl), $7.00(\mathrm{dd}, J=2.3,6.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.83 (dd, $J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.68 (dd, $J=3.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 5.61 (s, 1 H , H of Bzl), 5.48 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.34 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.25 (dd, $J=4.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}$, H-6), 4.16-4.07 (m, 2H, H-4, H-5), 3.83 (t, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 3.77 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), 1.30 (s, 9H, $\left(\mathrm{CH}_{3}\right)_{3}$ of Piv), $1.19\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv) ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.24,177.03,155.31,149.72$, $137.11,128.89,128.17 \times 2,125.88 \times 2,117.88 \times 2,114.64 \times 2,101.45,97.52,76.72,70.02,68.69,68.03,64.43$, $55.64,38.95,38.88,27.18 \times 3,27.07 \times 3$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{NaO}_{9}(\mathrm{M}+\mathrm{Na})^{+} m / z 565.2414$, found 565.2397.

4-Methoxyphenyl 4-O-benzyl-2,3-di-O-pivaloyl- α-D-mannopyranoside (10).

Compound 9 ($59.9 \mathrm{mg}, 0.110 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.00 \mathrm{~mL})$. After stirring the reaction mixture for 20 min at $-100^{\circ} \mathrm{C}, \mathrm{PhBCl}_{2}(46.0 \mu \mathrm{~L}, 0.353 \mathrm{mmol})$ was added at -100 C . After stirring the reaction mixture for 10 min at $-100^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{SiH}(52.0 \mu \mathrm{~L}, 0.328 \mathrm{mmol})$ was added at $-100^{\circ} \mathrm{C}$. After stirring the reaction mixture for 10 min at $-100^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$ and washed with saturated aq. NaHCO_{3} $(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by Flash chromatography system (EtOAc/toluene, 2:98 $\rightarrow 24: 76$, v/v) to give $\mathbf{1 0}$ (55.3 $\mathrm{mg}, 92 \%$): TLC, $R_{f} 0.34$ ($\mathrm{EtOAc} /$ toluene, $1: 6, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.26\left(\mathrm{~m}, 5 \mathrm{H},-\mathrm{CH}_{2} \underline{\mathrm{Ph}}\right.$), 6.98 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ph of MP), 6.81 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.63 (dd, $J=2.9,9.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3), 5.42(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.34(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.78,4.65(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.10(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.83-3.74\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-6\right.$ ', $-\mathrm{OCH}_{3}$ of MP), $1.28\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv), $1.21\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.43,177.15$, $155.36,149.98,137.72,128.60 \times 2,128.05,127.74 \times 2,118.06 \times 2,114.72 \times 2,96.90,75.03,72.58,72.43,71.91$, $69.78,61.59,55.72,39.05,38.92,27.28 \times 6$; HRMS calcd. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{NaO}_{9}(\mathrm{M}+\mathrm{Na})^{+} m / z 567.2570$, found 567.2556.

4-Methoxyphenyl 6-O-benzyl-2,3-di- O-pivaloyl- α-D-mannopyranoside (11).

Compound $\mathbf{9}$ ($247 \mathrm{mg}, 0.455 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.00 \mathrm{~mL})$. After stirring the reaction mixture for 10 min at $-20^{\circ} \mathrm{C}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.100 \mathrm{~mL}, 0.910 \mathrm{mmol})$ was added at $-20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 5 min at $-20^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{SiH}(0.800 \mathrm{~mL}, 0.328 \mathrm{mmol})$ was added at $-100^{\circ} \mathrm{C}$. After stirring the reaction mixture for 4 h at $-100^{\circ} \mathrm{C}$ followed by 1 h at $0^{\circ} \mathrm{C}$, the mixture was diluted with EtOAc (100 mL) and washed with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by Flash chromatography system (EtOAc/hexane, 21:79, v/v) to give 11 ($222 \mathrm{mg}, 89 \%$): TLC, $R_{f} 0.44$ (EtOAc/toluene, $1: 6, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.26$ (m, $5 \mathrm{H},-\mathrm{CH}_{2} \underline{\mathrm{Ph}}$), 7.03 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.80(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.44 (dd, $J=2.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2), 4.62,4.54\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.13$ (ddd, $J=$ $4.6,9.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 4.02-3.98 (m, 1H, H-5), 3.84 (dd, $J=4.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.79-3.75 (m, 2H, H-$6^{\prime},-\mathrm{OCH}_{3}$ of MP), $1.25\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv), $1.21\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $71.93,69.98,69.63,67.60,55.71,39.07,39.03,27.21 \times 6 ; \mathrm{HRMS}$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{NaO}_{9}(\mathrm{M}+\mathrm{Na})^{+} m / z 567.2570$, found 567.2564.

4-Methoxyphenyl O-(2-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow \mathbf{2}$)-O-3,4,6-tri- O-benzyl- α -D-mannopyranoside (12).

$\operatorname{AgOTf}(100 \mathrm{mg}, 0.389 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(77.6 \mathrm{mg}, 0.204 \mathrm{mmol})$, DTBMP ($6.00 \mathrm{mg}, 0.0292 \mathrm{mmol}$) and MS AW-300 (1.25 g) were dissolved in toluene $(2.00 \mathrm{~mL})$. After stirring the mixture for 20 min at $-20^{\circ} \mathrm{C}$, the solution of $2(128 \mathrm{mg}, 0.259 \mathrm{mmol})$ and $5(78.5 \mathrm{mg}, 0.141 \mathrm{mmol})$ in toluene $(2.20 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 70 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.100 \mathrm{~mL}, 0.783$ mmol) at $-20^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:5, v/v) to give 12 ($135 \mathrm{mg}, 93 \%, \alpha$ only): TLC, $R_{f} 0.44$ (EtOAc/toluene, 1:4, v / v, double development); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39-7.11\left(\mathrm{~m}, 30 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 6\right), 6.95(\mathrm{dd}, J=2.3,6.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.73 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ph of MP), 5.57 (dd, $J=1.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2$), 5.54 (d, $J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.12\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.88,4.59\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{6}\right), 4.83,4.44$ $\left(\mathrm{ABq}, J=10.3 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{6}\right), 4.77,4.73\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{6}\right), 4.77,4.41(\mathrm{ABq}, J=10.9$ $\left.\mathrm{Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{6}\right), 4.62,4.45\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{6}\right), 4.60,4.46(\mathrm{ABq}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H},-$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{6}\right), 4.18(\mathrm{dd}, J=2.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.11(\mathrm{dd}, J=2.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.01-3.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{\prime}-3\right.$, $\left.\mathrm{H}^{\prime}-5, \mathrm{H}-4\right), 3.91-3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.81\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right), 3.76$ (dd, $J=6.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.74$3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\prime}-6,-\mathrm{OCH}_{3}\right.$ of MP), 3.69-3.66(m, 2H, H'-6', H-6'), $2.13\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of Ac$) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.25,154.97,150.11,138.54,138.44 \times 2,138.39,138.17,138.06,128.53 \times 2,128.44 \times 4$, $128.40 \times 2,128.38 \times 2,128.34 \times 2,128.27 \times 2,128.11 \times 2,127.92 \times 2,127.83 \times 2,127.78,127.75,127.70,127.64 \times 3$, $127.59 \times 4,127.46,117.86 \times 2,114.59 \times 2,99.72,97.72,79.53,78.25,75.29,75.20,74.71,74.55,74.42,73.42$, $73.28,72.39,72.32,72.05,69.16,68.99,68.77,55.69,21.25$; HRMS calcd. for $\mathrm{C}_{90} \mathrm{H}_{94} \mathrm{NaO}_{18}(\mathrm{M}+\mathrm{Na})^{+} m / z$ 1053.439,6 found 1053.4397.

4-Methoxyphenyl \boldsymbol{O}-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 2$)- O-3,4,6-tri- O-benzyl- α-Dmannopyranoside (13).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.135 \mathrm{~mL}, 0.701 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 2}(135 \mathrm{mg}, 0.131$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 2.70 \mathrm{~mL})$. After stirring the reaction mixture for 20 min at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by column chromatography on silica gel (EtOAc/toluene, $1: 10, \mathrm{v} / \mathrm{v}$) to give 13 ($115 \mathrm{mg}, 89 \%$). Physical data were consistent with those reported previously ${ }^{(5)}$: TLC, $R_{f} 0.24$ (EtOAc/hexane, 1:2, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.13\left(\mathrm{~m}, 30 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 6\right), 6.96(\mathrm{dd}, J=2.3,6.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.72 (dd, $J=2.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.60(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.19$ (d, $J=1.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.88,4.59\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{6}\right), 4.80,4.49\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{6}\right)$, $4.76,4.73\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{6}\right), 4.66,4.46\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathbf{P h}\right)_{6}\right), 4.57,4.48(\mathrm{ABq}$,
$\left.J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{6}\right), 4.54,4.54\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left({\underline{\left(\mathrm{H}_{2}\right.} 2 \mathrm{Ph}}_{6}\right), 4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.16(\mathrm{dd}, J=\right.$ 1.7, 2.9 Hz, 1H, H’-2), 4.13 (dd, $J=2.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.01-3.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\prime}-5\right), 3.97(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}$, H-4), 3.90-3.87 (m, 2H, H’-3, H-5), 3.82 (dd, $J=3.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.79\left(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right), 3.72$ (s, 3H, -OCH3 ${ }^{2}$ of MP) 3.71-3.66 (m, 3H, H'-6, H'-6', H-6').

4-Methoxyphenyl O-(2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-O-3,4,6-tri- O-benzyl-α-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranoside (14).

$\operatorname{AgOTf}(8.20 \mathrm{mg}, 0.0319 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(6.00 \mathrm{mg}, 0.0158 \mathrm{mmol})$, and MS AW-300 (340 mg) were dissolved in toluene $(0.500 \mathrm{~mL})$. After stirring the mixture for 10 min at room temperature and for $10 \mathrm{~min} \mathrm{at}-20^{\circ} \mathrm{C}$, the solution of $2(10.6 \mathrm{mg}, 0.0214 \mathrm{mmol})$ and $\mathbf{1 3}(11.0 \mathrm{mg}, 0.0111 \mathrm{mmol})$ in toluene $(0.6 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 80 min at gradually heated from -20 to $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(5.00 \mu \mathrm{~L}, 0.0359 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (200 $\mathrm{mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by Flash Chromatography System (UltraPack B, EtOAc/hexane, 12:88 $\rightarrow 26: 74 \rightarrow 51: 49$, v/v) to give 14 (16.1 $\mathrm{mg}, 99 \%, \alpha: \beta=99: 1$): TLC, $R_{f} 0.42$ (EtOAc/hexane, $1: 3, \mathrm{v} / \mathrm{v}$, double development); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.12\left(\mathrm{~m}, 45 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{9}\right), 6.95(\mathrm{dd}, J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.71(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.60(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.53\left(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 5.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\prime}-1\right), 5.05\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime \prime}-1\right), 4.86-4.30\left(\mathrm{~m}, 18 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{9}\right), 4.14(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.11(\mathrm{t}, J$ $\left.=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 4.05(\mathrm{dd}, J=2.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.00-3.96\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime}-3, \mathrm{H}^{\prime}-5\right), 3.94-3.84\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{\prime}-\right.$ 3, H-5, H-4, H"-4, H"-5), 3.80-3.75 (m, 2H, H"-6, H'-4), 3.72 (s, 3H, -OCH3 ${ }^{\prime}$ of MP), 3.70-3.64 (m, 4H, H'$6, \mathrm{H}-6, \mathrm{H}^{\prime}-6$ ', H'-6'), 3.54 (dd, $J=1.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 2.13 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$ of Ac); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.15,154.82,150.05,138.54,138.40,138.35,138.33,138.31,138.15,138.01,128.45 \times 2,128.33 \times 5$, $128.29 \times 8,128.24 \times 5,128.18 \times 2,128.00 \times 2,127.93 \times 2,127.83 \times 2,127.79 \times 3,127.76 \times 2,127.65,127.57,127.55$, $127.49 \times 4,127.45 \times 3,127.38,127.34,117.78 \times 2,114.57 \times 2,114.47,99.43,97.60,79.22,78.08,75.16,75.11 \times 2$, $74.99,74.95,74.75,74.65,74.25,73.36 \times 2,73.20 \times 2,73.16 \times 2,72.34,72.30,72.15,72.02,71.87 \times 2,69.39$, 69.16, 68.84, 68.71, 55.60, 21.19; HRMS calcd. for $\mathrm{C}_{90} \mathrm{H}_{94} \mathrm{NaO}_{18}(\mathrm{M}+\mathrm{Na})^{+} m / z 1485.6338$, found 1485.6345.

4-Methoxyphenyl \boldsymbol{O}-(3,4,6-tri- \boldsymbol{O}-benzyl- α-D-mannopyranosyl-(1 $\rightarrow 2$)- \boldsymbol{O}-3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 2$)-3,4,6-tri- O-benzyl- α-D-mannopyranoside (15).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 50.0 \mu \mathrm{~L}, 0.260 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 4}(42.9 \mathrm{mg}, 0.0293$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL})$. After stirring the reaction mixture for 60 min at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by column chromatography on silica gel ($\mathrm{EtOAc} /$ toluene, $1: 2, \mathrm{v} / \mathrm{v}$) to give 15 ($39.8 \mathrm{mg}, 97 \%$): TLC, $R_{f} 0.49$ (EtOAc/toluene, $1: 6, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.14$ (m, $\left.45 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{9}\right), 6.96(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.71 (dd, $J=2.3,5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.62 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.27\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 5.12\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.85-4.32(\mathrm{~m}, 18 \mathrm{H},-$ $\left.\left(\underline{C H}_{2} \mathrm{Ph}\right)_{9}\right), 4.13\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2, \mathrm{H}^{\prime}-2, \mathrm{H}^{\prime}-2\right), 4.05(\mathrm{dd}, J=2.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.01-3.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\prime}-5\right), 3.93$ (dd, $J=2.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3$), 3.92-3.84 (m, 5H,H-4, H"-3, H'-5, H’-6), 3.78 (dd, J=4.0, $11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-$
4), $3.76(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} ’-4) 3.94-3.84\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-4, \mathrm{H}^{\prime}-4, \mathrm{H}^{\prime}-5\right), 3.80-3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime \prime}-6, \mathrm{H}^{\prime}-\right.$ 4), $3.72\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of MP), $3.72-3.63\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\prime}-6, \mathrm{H}-6, \mathrm{H}^{\prime}-6^{\prime}, \mathrm{H}^{\prime}-6^{\prime}\right), 3.57(\mathrm{dd}, J=1.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $\left.6^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.90,150.17,138.63,138.54 \times 2,138.51 \times 2,138.39 \times 2,138.26,138.12$, $138.01,128.60 \times 2,128.57 \times 2,128.49 \times 2,128.45 \times 2,128.41 \times 6,128.39 \times 6,128.33 \times 2,128.04 \times 2,127.99 \times 8$, $127.95,127.90 \times 2,127.81 \times 2,127.73,127.68,127.63,127.54 \times 5,127.46,127.42,117.88 \times 2,114.58 \times 2,101.13$, $101.03,97.69,80.03,79.24,75.38,75.26,75.15,75.10,75.03,74.72,74.41,73.45,73.26 \times 2,72.46,72.36$, $72.21,72.03,71.66,69.54,69.27,69.12,69.64,55.69$; HRMS calcd. for $\mathrm{C}_{88} \mathrm{H}_{92} \mathrm{NaO}_{17}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 1443.6232$, found 1443.6235 .

4-Methoxyphenyl \boldsymbol{O}-(α-D-mannopyranosyl-($1 \rightarrow 2$)- \boldsymbol{O} - α-D-mannopyranosyl)-(1 $\rightarrow 2$)- α-Dmannopyranoside $(16)=(A 3)$.

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 94.2 mg$)$ was added to a solution of $15(39.8 \mathrm{mg}, 0.0280 \mathrm{mmol}) \mathrm{in} \mathrm{MeOH} / \mathrm{THF}(2: 1$, $\mathrm{v} / \mathrm{v}, 2.00 \mathrm{~mL}$). After stirring the reaction mixture under H_{2} atmosphere for 17.5 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex G-10 ($3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm}$) $(20 \% \mathrm{EtOH})$ to give 16 (17.8 mg, quant.): TLC, $R_{f} 0.68\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 1: 2, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.11(\mathrm{dd}, J=2.3,6.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.96 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.75 (d, $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.34 (d, $J=1.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 5.05\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.15(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.13-4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime}-2, \mathrm{H}-3\right)$, $4.06\left(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 3.96\left(\mathrm{dd}, J=3.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3\right), 3.89\left(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6\right), 3.87$ ($\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6$ '), 3.84-3.81 (m, 2H, H"-3. H-6), 3.79-3.68 (m, 8H,H-5", -OCH3 3 of MP, H-4, H"-6, H$6^{\prime}, \mathrm{H}^{\prime}-6$ ', H-5, H'-5), $3.64\left(\mathrm{t}, J=9.4 \mathrm{~Hz}, \mathrm{H}^{\prime}-4\right) 3.60\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, \mathrm{H}^{\prime}-4\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 154.70$, $149.70,118.93 \times 2,115.03 \times 2,102.30,100.85,97.83,79.24,78.68,73.40,73.38,73.29,70.34,69.98 \times 2,69.95$, $67.18,66.90,66.82,61.23,61.17,60.70,55.80$; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NaO}_{17}(\mathrm{M}+\mathrm{Na})^{+} m / z 633.2007$, found 633.1993.

4-Methoxyphenyl 2-O-pivaroyl-(2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl)-(1 \rightarrow 3)-O-4,6-benzylidene- α-D-mannopyranoside (17).

$\operatorname{AgOTf}(40.4 \mathrm{mg}, 0.157 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(29.9 \mathrm{mg}, 0.0788 \mathrm{mmol})$, DTBMP ($3.00 \mathrm{mg}, 0.0146 \mathrm{mmol}$) and MS AW-300 (901 mg) were dissolved in toluene $(1.25 \mathrm{~mL})$. After stirring the mixture for 10 min at room temperature and for 20 min at $-40^{\circ} \mathrm{C}$, the solution of $2(45.0 \mathrm{mg}, 0.0910 \mathrm{mmol})$ and $\mathbf{8}(27.3 \mathrm{mg}, 0.0595 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene ($2.5: 1, \mathrm{v} / \mathrm{v}, 1.75 \mathrm{~mL}$) was added at $-40^{\circ} \mathrm{C}$. After stirring the reaction mixture for 70 min at $40^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.100 \mathrm{~mL}, 0.783 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by Flash Chromatography System (EtOAc/hexane, 8:92 $\rightarrow 20: 80$, v/v) to give 17 ($55.1 \mathrm{mg}, 99 \%$, α only): TLC, $R_{f} 0.67$ (EtOAc/toluene, $1: 4$, v/v, triple development); ${ }^{1} \mathrm{H}$ NMR (500 $\left.\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.14\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph} \text { of } \mathrm{Bzl},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right)_{3}\right), 6.93$ (dd, $J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.80 (dd, $J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\right.$ of Bzl), 5.52 (dd, $\left.J=1.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 5.36(\mathrm{dd}, J=1.7$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.33(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.31\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.85,4.49(\mathrm{ABq}, J=10.9 \mathrm{~Hz}$,
$\left.2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.71,4.49\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.66,4.44\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right)$, 4.53 (dd, $J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.23(\mathrm{dd}, J=4.6,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.07(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.05-$ 4.01 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-5$), 3.90-3.85 (m, 3H, H’-3, H’-6, H’-4), 3.84-3.78 (m, 2H, H-6', H'-5), 3.76 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), 4.53 (dd, $\left.J=1.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6^{\prime}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of Ac$), 1.24\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv$) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.43,170.30$, 155.44, 149.70, 138.76, 138.37, 138.02, 137.16, 129.01, 128.46×2, $128.38 \times 2,128.29 \times 2,128.25 \times 2,128.00 \times 2,127.89 \times 2,127.76,127.65 \times 2,127.59,127.48,126.11 \times 2,118.16 \times 2$, $114.72 \times 2,101.54,99.19,97.61,79.28,78.18,74.83,74.17,73.50,72.07,71.81,71.40,71.30,68.80,68.71$, $68.48,64.20,55.74,39.11,27.27 \times 3,21.19$; HRMS calcd. for $\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{NaO}_{14}(\mathrm{M}+\mathrm{Na})^{+} m / z 955.3881$, found 955.3879 .

4-Methoxyphenyl 2-O-pivaroyl-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 3$)- O-4,6-benzylidene- α -D-mannopyranoside (18).

$\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $58.0 \mu \mathrm{~L}, 0.600 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(2.70 \mathrm{mg}, 0.0643 \mathrm{mmol})$ were added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $17(14.1 \mathrm{mg}, 0.151 \mathrm{mmol})$ in THF $(2.00 \mathrm{~mL})$. After stirring the reaction mixture for 2 h at room temperature, second portion of $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $58.0 \mu \mathrm{~L}, 0.600 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 26 h at room temperature, the mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$ and washed with saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vaсиo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:3, v/v) to give 18 (10.4 mg, 78\%): TLC, $R_{f} 0.56(E t O A c / h e x a n e, ~ 1: 1, ~ v / v) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47-7.18\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{Ph}\right.$ of $\left.\mathrm{Bzl},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 6.93(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.80(\mathrm{dd}$, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}$ of Bzl), 5.37 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.33(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 5.31\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.81,4.51\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.68,4.50(\mathrm{ABq}, J=$ $\left.12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.63,4.60\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{3}\right), 4.55(\mathrm{dd}, J=3.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, $4.21(\mathrm{dd}, J=4.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.08-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime}-2, \mathrm{H}-5\right), 4.02(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.89(\mathrm{t}, J=$ 9.7 Hz, 1H, H'-4), $3.80\left(\mathrm{dd}, J=2.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.79-3.71\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}-3^{\prime},-\mathrm{OCH}_{3}\right.$ of MP, H-5', H'-6, H'$\left.6^{\prime}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.43,155.39,149.74,138.74,138.35$, $137.97,137.24,129.17,128.57 \times 2,128.42 \times 2,128.37 \times 2,128.29 \times 2,127.96 \times 3,127.78 \times 2,127.61 \times 2,127.57$, $127.48,126.14 \times 2,118.09 \times 2,114.71 \times 2,101.86,100.90,97.50,79.94,79.13,74.71,74.10,73.51,72.02,71.87$, $71.76,71.60,68.80,68.74,68.40,64.23,55.74,39.10,27.26 \times 3$; HRMS calcd. for $\mathrm{C}_{52} \mathrm{H}_{58} \mathrm{NaO}_{13}(\mathrm{M}+\mathrm{Na})^{+} m / z$ 913.3775, found 913.3773.

4-Methoxyphenyl \boldsymbol{O}-(2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($\mathbf{1} \rightarrow \mathbf{2}$)- \boldsymbol{O}-3,4,6-tri- \boldsymbol{O}-benzyl-α-D-mannopyranosyl)-($\mathbf{1} \rightarrow \mathbf{3}$)- \boldsymbol{O}-2- \boldsymbol{O}-pivaroyl-4,6-benzylidene- α-D-mannopyranoside (19).

$\operatorname{AgOTf}(9.60 \mathrm{mg}, 0.0374 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(7.10 \mathrm{mg}, 0.0187 \mathrm{mmol})$ and MS AW-300 $(360 \mathrm{mg})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene $(1: 1, \mathrm{v} / \mathrm{v}, 0.600 \mathrm{~mL})$. After stirring the mixture for 10 min at room temperature and for 20 \min at $-20^{\circ} \mathrm{C}$, the solution of $\mathbf{2}(11.7 \mathrm{mg}, 0.0237 \mathrm{mmol})$ and $\mathbf{1 8}(10.5 \mathrm{mg}, 0.0118 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ toluene $(1: 1, \mathrm{v} / \mathrm{v}, 0.600 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 50 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mu \mathrm{~L}, 0.0718 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$
and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by Flash Chromatography System (UltraPack B, EtOAc/hexane, 15:85 $\rightarrow 30: 70 \rightarrow 50: 50$, v/v) to give 19 (16.2 mg , quant., $\alpha / \beta=99: 1$): TLC, $R_{f} 0.43$ (EtOAc/toluene, 1:3, v/v, triple development); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.09\left(\mathrm{~m}, 35 \mathrm{H}, \mathrm{Ph}\right.$ of $\left.\mathrm{Bzl},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{6}\right), 6.90(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.78 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.51 (m, 2H, H of Bzl, H"-2), 5.37 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 5.33 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.27\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 5.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ "-1), 4.83, $4.38(\mathrm{ABq}, J=$ $\left.10.9 \mathrm{~Hz}, 4 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 9\right), 4.69-4.49\left(\mathrm{~m}, 6 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 9\right), 4.53(\mathrm{dd}, J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.47,4.24(\mathrm{ABq}$, $\left.J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 9\right), 4.17(\mathrm{dd}, J=3.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.11\left(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 4.03-3.98(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6^{\prime}\right), 3.96$ (dd, $J=3.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime \prime}-3$), $3.91-3.86$ (m, 2H, H"-4, H’-4), 3.81 (dd, $J=2.3,9.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}^{\prime}-3$), 3.80-3.67 (m, 8H, H'-6, H-5, -OCH O_{3} of MP, H'- $\mathbf{6}^{\prime}, \mathrm{H}^{\prime}-5, \mathrm{H}^{\prime}-5$), 3.70-3.64 (m, 4H, H'-6, H-6, H'$\left.6^{\prime}, \mathrm{H}^{\prime}-6^{\prime}\right), 3.40\left(\mathrm{dd}, J=3.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6\right), 3.21\left(\mathrm{dd}, J=1.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6^{\prime}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of $\mathrm{Ac}), 1.26\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.32,170.01,155.27,149.64,138.69$, $138.65,138.47,138.44,138.27,138.02,137.20,128.98,128.35 \times 2,128.30 \times 2,128.27 \times 2,128.24 \times 2,128.18 \times 8$, $128.15 \times 2,127.75 \times 2,127.63 \times 4,127.54 \times 2127.50 \times 2,127.46,127.39,127.35,127.32 \times 2,127.03 \times 2,126.02 \times 2$, $118.02 \times 2,101.73,100.25,99.08,97.42,79.62,78.91,78.14,75.00,74.54,74.24,73.99,73.66,73.29,73.08$, $71.97,71.90,71.52,71.40,69.06,68.67,68.58,68.23,64.13,55.63,38.99,38.94,27.18 \times 3,21.12$; HRMS calcd. for $\mathrm{C}_{81} \mathrm{H}_{88} \mathrm{NaO}_{19}(\mathrm{M}+\mathrm{Na})^{+} m / z$ 1387.5818, found 1387.5825.

4-Methoxyphenyl O-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-O-3,4,6-tri- O-benzyl- α-d-

 mannopyranosyl)-($\mathbf{1 \rightarrow 3}$)-O-4,6-benzylidene- α-D-mannopyranoside (20).$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 100.0 \mu \mathrm{~L}, 0.520 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 9}(41.3 \mathrm{mg}, 0.0302$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL})$. After stirring the reaction mixture for 17 h at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by Flash Chromatography System (UltraPack B, EtOAc/toluene, $14: 86 \rightarrow 44: 56, \mathrm{v} / \mathrm{v}$) to give 20 ($29.0 \mathrm{mg}, 77 \%$): TLC, $R_{f} 0.31$ (EtOAc/toluene, $1: 4, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.46-7.12\left(\mathrm{~m}, 42 \mathrm{H}, \mathrm{Ph}\right.$ of $\left.\mathrm{Bzl},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{6}\right), 6.84(\mathrm{dd}, J=2.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.77(\mathrm{dd}, J=$ $2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.51\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}\right.$ 0f Bzl), $4.79-4.43\left(\mathrm{~m}, 12 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 9\right), 4.29-4.24(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} \cdot-2, \mathrm{H}-$ 3), 4.15-4.06 (m, 5H, H'-5, H-4, H-2, H"-4, H"-2), 4.01-3.97 (m, 1H, H"-5), 3.94 (dd, $J=2.9,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\prime}-4\right), 3.92-3.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}^{\prime}-3\right), 3.83-3.70\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}^{\prime}-3, \mathrm{H}^{-6},-\mathrm{OCH}_{3}\right.$ of MP, H" $-6, \mathrm{H}-6$ '), 3.60-3.53 (m, $3 \mathrm{H}, \mathrm{H}^{\prime}-6, \mathrm{H}^{\prime}-6$ ', H^{\prime} ' -6 '); ${ }^{13} \mathrm{C}^{\mathrm{C}}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.90,149.87,138.19,138.15,138.00 \times 2,137.95$, $137.62,137.56,129.01,128.87,128.46 \times 4,128.40 \times 4,128.38 \times 3,128.34 \times 2,128.24 \times 2,128.08 \times 2,127.91 \times 2$, $127.86 \times 8,127.77 \times 8,127.53,126.13 \times 2,117.62 \times 2,114.50 \times 2,101.57,99.53,99.31,79.90,75.26,75.21,74.90$, $74.42,73.56,73.33,72.42,71.95,71.92,71.50,69.84,69.76,68.86,68.66,68.36,64.29,55.62$; HRMS calcd. for $\mathrm{C}_{74} \mathrm{H}_{78} \mathrm{NaO}_{17}(\mathrm{M}+\mathrm{Na})^{+} m / z$ 1261.5137, found 1261.5127.

4-Methoxyphenyl O-(α-D-mannopyranosyl-($1 \rightarrow 2$)-O- α-D-mannopyranosyl)-($1 \rightarrow 3$)- O - α-Dmannopyranoside $\mathbf{(2 1)}=(\mathbf{B 3})$.

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 94.2 mg$)$ was added to a solution of $20(28.7 \mathrm{mg}, 0.0232 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1$, $\mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL}$). After stirring the reaction mixture under H_{2} atmosphere for 4 h at room temperature, the mixture
was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex LH-20 ($3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm}$) ($20 \% \mathrm{EtOH}$) to give 21 (12.0 $\mathrm{mg}, 85 \%$): TLC, $R_{f} 0.63\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 1: 3, \mathrm{v} / \mathrm{v}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.10(\mathrm{dd}, J=2.3,4.6 \mathrm{~Hz}, 2 \mathrm{H}$, Ph of MP), 6.96 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.46\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 5.42(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, H"-1), 5.05 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.29 (dd, $J=2.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2$), 4.11 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}$ '2), 4.10 (dd, $\left.J=3.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3\right), 4.06$ (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.00 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ "3), $3.90-3.83$ (m, 4H, H'-6, H'-4, H-5, H-3), 3.80-3.72 (m, 9H, H’-6', -OCH ${ }_{3}$ of MP, H-6, H'-5, H"-6, H"-6', $\left.\mathrm{H}^{\mathrm{H}} \mathrm{G}^{\prime}\right), 3.70\left(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right), 3.70(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 154.66$, $149.59,118.71 \times 2,115.09 \times 2,102.36,100.82,99.06,78.53,78.24,73.56,73.46,73.28,70.36,69.99,69.57$, 66.97, 66.76, 65.97, 61.01, 60.96, 60.58, 55.82; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NaO}_{17}(\mathrm{M}+\mathrm{Na})^{+} m / z 633.2007$, found 633.2008 .

4-Methoxyphenyl 2,3-di-O-pivaroyl-(2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow \mathbf{6}$)-O-4-benzyl- α-D-mannopyranoside (22).

$\mathrm{AgOTf}(49.3 \mathrm{mg}, 0.192 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(36.8 \mathrm{mg}, 0.0969 \mathrm{mmol})$, DTBMP ($4.70 \mathrm{mg}, 0.0229 \mathrm{mmol}$) and MS AW-300 (606 mg) were dissolved in toluene $(1.00 \mathrm{~mL})$. After stirring the mixture for 10 min at room temperature and for 15 min at $-20^{\circ} \mathrm{C}$, the solution of $\mathbf{2}(58.0 \mathrm{mg}, 0.0117 \mathrm{mmol})$ and $\mathbf{1 0}(50.5 \mathrm{mg}, 0.0927 \mathrm{mmol})$ in toluene $(1.00 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 90 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(28.0 \mu \mathrm{~L}, 0.201 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL}$) and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:3, v/v) to give $22(85.2 \mathrm{mg}, 90 \%, \alpha$ only): TLC, $R_{f} 0.47$ (EtOAc/toluene, 1:3, v/v, double development); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.14$ (m, 20H, $\left.-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 7.00(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.78(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.62 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.42$ (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2$), $5.40(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.30$ (d, $\left.J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.95\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.86,4.46\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)\right)_{4}\right), 4.73$, $4.52\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.69,4.47\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.65,4.45(\mathrm{ABq}, J=$ $\left.12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.94(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.92(\mathrm{dd}, J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}^{\prime}-3$), $3.89\left(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right.$), 3.86 (dd, $J=4.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.79-3.77 (m, 1H, H’-5), 3.73 (dd, $J=4.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6$), 3.68 (dd, $J=1.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 3.64 (s, $1 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), 3.60 (dd, $J=$ $\left.1.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6{ }^{\prime}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of Ac$), 1.28\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv), $1.20\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.26,176.99,170.15,155.08,149.96,138.44,138.06,137.86,137.48$, $128.40 \times 2,128.37 \times 2,128.28 \times 2,128.25 \times 2,128.04 \times 2,127.78 \times 5,127.57,127.34 \times 2,117.65 \times 2,114.59 \times 2,97.98$, $96.37,78.36 \times 2,75.21,74.66,74.12,73.35 \times 2,72.94,71.94,71.72,71.53,71.24,69.67,68.50,68.19,65.54$, $55.47,33.90,38.79,27.17 \times 3,27.15 \times 3,21.09$; HRMS calcd. for $\mathrm{C}_{59} \mathrm{H}_{70} \mathrm{NaO}_{15}(\mathrm{M}+\mathrm{Na})^{+} m / z 1041.4612$, found 1041.4607.

4-Methoxyphenyl 2,3-di- O-pivaroyl-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 6$)-O-4-benzyl- α-Dmannopyranoside (23).

$\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $140 \mu \mathrm{~L}, 0.144 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(4.90 \mathrm{mg}, 0.117 \mathrm{mmol})$ were added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $22(37.2 \mathrm{mg}, 0.0365 \mathrm{mmol})$ in THF $(1.00 \mathrm{~mL})$. After stirring the reaction mixture for 2 h at room temperature, second portion of $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $58.0 \mu \mathrm{~L}, 0.600 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 5 h at room temperature, the mixture was diluted with $\mathrm{EtOAc}(50 \mathrm{~mL})$ and washed with saturated aq. $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, $1: 3, \mathrm{v} / \mathrm{v}$) to give 23 ($29.7 \mathrm{mg}, 83 \%$): TLC, $R_{f} 0.44$ (EtOAc/hexane, $1: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.35-7.16\left(\mathrm{~m}, 20 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 4\right), 7.00(\mathrm{dd}, J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.78(\mathrm{dd}, J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.62(\mathrm{dd}, J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.40(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.30(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1)$, $5.01\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.86,4.46\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 4\right), 4.73,4.52(\mathrm{ABq}, J=11.5 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{4}\right), 4.69,4.47\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{4}\right), 4.65,4.45\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{4}\right)$, 4.02-4.00 (m, 2H, H-5, H'-2), $3.92(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.88-3.85$ (m, 2H,H-6, H’-4), 3.82 (dd, $J=3.4$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3$), 3.80-3.77 (m, 1H, H'-5), 3.79-3.77 (m, 1H, H'-5), 3.73-3.68 (m, 2H, H-6', H'-6), 3.64 (s, $1 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), $3.61\left(\mathrm{dd}, J=1.7,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6^{\prime}\right), 1.26\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv), $1.20\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.23,176.90,155.09,149.95,138.34,138.11,137.86,137.49$, $128.51 \times 2,128.40 \times 2,128.29 \times 4,127.92,127.83 \times 5,127.71 \times 2,127.62,127.53,127.35 \times 2,117.73 \times 2,114.57 \times 2$, $99.29,96.38,80.11,75.15,74.68,74.22,73.35,73.03,71.94,71.89,71.47,71.18,69.68,68.59,68.18,65.54$, $55.47,38.90,38.78,27.17 \times 3,27.14 \times 3$; HRMS calcd. for $\mathrm{C}_{57} \mathrm{H}_{68} \mathrm{NaO}_{14}(\mathrm{M}+\mathrm{Na})^{+} m / z 999.4507$, found 999.4524.

4-Methoxyphenyl \boldsymbol{O}-(2-O-acetyl-3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow \mathbf{2}$)-O-3,4,6-tri- \boldsymbol{O}-benzyl-α-D-mannopyranosyl)-($1 \rightarrow 6$)- O-2,3-di- O-pivaroyl-4-benzyl- α-D-mannopyranoside (24)

$\operatorname{AgOTf}(8.10 \mathrm{mg}, 0.0315 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(6.00 \mathrm{mg}, 0.0158 \mathrm{mmol})$, DTBMP ($0.65 \mathrm{mg}, 0.0032 \mathrm{mmol}$) and MS AW-300 (302 mg) were dissolved in toluene $(0.500 \mathrm{~mL})$. After stirring the mixture for 10 min at room temperature and for 10 min at $-20^{\circ} \mathrm{C}$, the solution of $\mathbf{2}(10.1 \mathrm{mg}, 0.0204 \mathrm{mmol})$ and $\mathbf{2 3}(9.6 \mathrm{mg}, 0.00982 \mathrm{mmol})$ in toluene $(0.500 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 50 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mu \mathrm{~L}, 0.0718 \mathrm{mmol})$ at $-20^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(200$ mL) and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:7, v/v) to give $24(14.4 \mathrm{mg}$, quant., α only): TLC, $R_{f} 0.49$ (EtOAc/hexane, $1: 3$, v/v, double development); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.33-7.12 (m, 35H, - $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{7}\right), 6.99(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.76(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.61 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.52\left(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}{ }^{\prime}-2\right.$), 5.38 (dd, $J=1.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-2), 5.27(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} ’-1), 4.93\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.88-4.37$ $\left(\mathrm{m}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{7}\right), 4.02-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime}-2, \mathrm{H}-5\right), 3.97\left(\mathrm{dd}, J=3.4,9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3\right), 3.94-$ 3.91 (m, 1H, H" -5), 3.88-3.83 (m, 5H, H-4, H-6, H" $-6, \mathrm{H}^{\prime}-3, \mathrm{H}^{\prime}-4$), 3.79-3.76 (m, 1H, H'-5), 3.77 (dd, $J=$ $\left.4.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right), 3.68$ (dd, $J=4.6,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6$), 3.63 (dd, $\left.J=1.7,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6^{\prime}\right), 3.60-$ $3.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\prime}-6\right.$ ', $-\mathrm{OCH}_{3}$ of MP), $3.53\left(\mathrm{dd}, J=1.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right.$ '), $2.11\left(\mathrm{~s}, 3 \mathrm{H},-\underline{\mathrm{CH}}_{3}\right.$ of Ac), $1.25(\mathrm{~s}$, $9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}$ of Piv), 1.19 (s, $9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}$ of Piv); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.28,176.94,170.14$, $155.09,150.10,138.53,138.45,138.39,138.24,137.98,137.51,128.37 \times 4,128.31 \times 2,128.26 \times 10,128.15 \times 2$,
$127.91 \times 2,127.79 \times 4,127.75,127.63,127.57,127.52 \times 2,127.47 \times 2,127.37,127.26 \times 3,117.73 \times 2,114.57 \times 2$, $99.29,96.38,80.11,75.15,74.68,74.22,73.35,73.03,71.94,71.89,71.47,71.18,69.68,68.59,68.18,65.54$, 55.47, $38.90,38.78,27.17 \times 3,27.14 \times 3$; HRMS calcd. for $\mathrm{C}_{86} \mathrm{H}_{98} \mathrm{NaO}_{20}(\mathrm{M}+\mathrm{Na})^{+} m / z 1473.6549$, found 1473.6544.

4-Methoxyphenyl O-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl-($1 \rightarrow 2$)-O-3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($\mathbf{1} \rightarrow \mathbf{6}$)-O-4-benzyl- α-D-mannopyranoside (25).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.300 \mathrm{~mL}, 1.56 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 4}(71.8 \mathrm{mg}, 0.0495$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 3.00 \mathrm{~mL})$. After stirring the reaction mixture for 24 h at room temperature, second portion of $\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.200 \mathrm{~mL}, 1.04 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 1 h at room temperature, third portion of $\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.300 \mathrm{~mL}, 1.56 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 2 h at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by Flash Chromatography System (EtOAc/toluene, 22:78 $\rightarrow 42: 58$, v / v) to give 25 (52.8 mg , 86%): TLC, $R_{f} 0.43$ (EtOAc/toluene, 1:1, v/v); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.14\left(\mathrm{~m}, 35 \mathrm{H},-\left(\mathrm{CH}_{2} \underline{\mathrm{Ph}}\right) 7\right.$), 6.93 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.75(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.30(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\prime}-1\right), 5.22\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 5.11(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.86-4.45\left(\mathrm{~m}, 14 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{7}\right), 4.14-4.07$ (m, 3H, H"-2, H-2, H-5), 3.96-3.93 (m, 2H, H'-2, H-3), 3.90 (dd, J=3.4, 9.2 Hz, 1H, H-4), $3.88-3.74$ (m, 7H, H"-3, H’-4, H-6, H"-4, H’-3, H’-5, H"-5), 3.70-3.62 (m, 5H, H-6', H'-6, H"-6, H’-6', H"-6'), 3.61 (s, $3 \mathrm{H},-\mathrm{OCH}_{3}$ of MP); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.91,150.29,138.64,138.37,138.34,138.30,138.07$, $137.99,128.61 \times 2,128.56 \times 2,128.54 \times 2,128.46 \times 2,128.41 \times 2,128.39 \times 2,128.35 \times 2,128.03 \times 2,127.96 \times 2$, $127.93 \times 2,127.86 \times 2,127.84 \times 2,127.78 \times 2,127.73,127.65,127.58 \times 2,127.46 \times 2,117.50 \times 2,114.70 \times 2,100.38$, $99.23,98.18,80.00,75.83,75.09,74.91,74.86,74.55,73.95,73.52,73.33,72.17 \times 2,72.05,71.74,71.64,71.53$, $70.78,69.57,69.34,68.50,65.85,55.56$; HRMS calcd. for $\mathrm{C}_{74} \mathrm{H}_{80} \mathrm{NaO}_{17}(\mathrm{M}+\mathrm{Na})^{+} m / z 1263.5293$, found 1263.5294.

4-Methoxyphenyl O-(α-D-mannopyranosyl-($1 \rightarrow 2$)-O- α-D-mannopyranosyl)-($1 \rightarrow 6$)-O- α-Dmannopyranoside (26) =(C3).

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 94.2 mg$)$ was added to a solution of $\mathbf{2 5}(52.8 \mathrm{mg}, 0.0425 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1$, $\mathrm{v} / \mathrm{v}, 3.00 \mathrm{~mL}$). After stirring the reaction mixture under H_{2} atmosphere for 4 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex LH-20 ($3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm}$) ($20 \% \mathrm{EtOH}$) to give $\mathbf{2 6}$ (25.2 $\mathrm{mg}, 97 \%)$: TLC, $R_{f} 0.72\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 1: 3, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.12(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ph of MP), 6.99 (dd, $J=2.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.50(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.02(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{\prime}-1\right), 4.79\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1 \mathrm{in} \mathrm{ddH}_{2} \mathrm{O}\right), 4.16(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.01\left(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right)$, 4.00 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.87-3.80 (m, 7H, H'-6, H'-4, H"-6, $-\mathrm{OCH}_{3}$ of MP, H'-6), 3.79 (dd, $J=$ $3.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3$), 3.78-3.60 (m, 9H, H'-3, H-6, H'-5, H"-5, H-4, H-6', H'-2, H"-6', H-5), 3.58 (t, J= $9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} "-4) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 154.55,149.28,118.49 \times 2,115.09 \times 2,102.26,98.56,97.65$, $78.91,73.11,72.63,71.44,70.57,70.34,70.05,69.95,69.86,66.96,66.87,66.75,66.07,61.11,60.92,55.81$;

4-Methoxyphenyl 2,3-di-O-pivaroyl-(2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl)-(1 \rightarrow 4)-O-6-benzyl- α-D-mannopyranoside (27).

$\operatorname{AgOTf}(115 \mathrm{mg}, 0.448 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(84.5 \mathrm{mg}, 0.0223 \mathrm{mmol})$, DTBMP ($10.2 \mathrm{mg}, 0.0498 \mathrm{mmol}$) and MS AW-300 $(1.51 \mathrm{~g})$ were dissolved in toluene $(2.50 \mathrm{~mL})$. After stirring the mixture for 20 min at room temperature and for 30 min at $-20^{\circ} \mathrm{C}$, the solution of $2(149 \mathrm{mg}, 0.302 \mathrm{mmol})$ and $\mathbf{1 1}(90.4 \mathrm{mg}, 0.166 \mathrm{mmol})$ in toluene $(2.50 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 70 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(65.0 \mu \mathrm{~L}, 0.467 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by Flash Chromatography System (UltraPack B, EtOAc/hexane, 14:86 $\rightarrow 28: 72$, v/v) to give $27(169 \mathrm{mg}, 90 \%$, α only): TLC, $R_{f} 0.47$ (EtOAc/hexane, 1:3, v/v, double development); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.10$ $\left(\mathrm{m}, 20 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 7.04(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.79(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.56 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.37$ (dd, $J=2.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.34-5.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}^{\prime}-2\right), 5.15$ (d, $J=$ $\left.2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.79,4.40\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.71,4.47\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right)$, $4.59,4.33\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.53,4.48\left(\mathrm{~m}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.39-4.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.01-$ 3.98 (m, 1H, H-5), 3.90-3.87 (m, 2H, H-6, H’-3), 3.84 (t, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4$), 3.79-3.76 (m, 2H, H’-5, OCH_{3} of MP), 3.71 (dd, $J=1.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 3.63 (dd, $J=4.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6$), 3.49 (dd, $J=1.7$, $10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.79-3.77 (m, 1H, H'-5), 3.73 (dd, $J=4.0,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6$), 3.68 (dd, $J=1.2,11.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-6$ '), $2.10\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ of Ac$), 1.22\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv), $1.20\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.46,177.16,169.85,155.23,150.07,138.45,138.31,138.06,137.86,128.35 \times 2,128.36 \times 2$, $128.24 \times 2,128.21 \times 2,128.12 \times 2,127.85 \times 2,127.81 \times 2,127.70,127.58 \times 2,127.27,127.11 \times 2,118.13 \times 2$, $114.54 \times 2,99.54,96.49,78.07,75.02,73.80,73.39,72.98,72.50,72.46,72.22,71.82,71.52,69.31,69.05$, $68.66,68.54,55.61,38.89,27.10 \times 3,26.94 \times 3,21.01$; HRMS calcd. for $\mathrm{C}_{59} \mathrm{H}_{70} \mathrm{NaO}_{15}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 1041.4612$, found 1041.4611.

4-Methoxyphenyl 2,3-di- O-pivaroyl-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 \rightarrow 4)-O-6-benzyl- α-Dmannopyranoside (28).

$\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $500 \mu \mathrm{~L}, 0.514 \mathrm{mmol})$ and $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(18.1 \mathrm{mg}, 0.432 \mathrm{mmol})$ were added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 8}(138 \mathrm{mg}, 0.136 \mathrm{mmol})$ in THF $(2.60 \mathrm{~mL})$. After stirring the reaction mixture for 4.5 h at room temperature, second portion of $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $100 \mu \mathrm{~L}, 0.103 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 30 min at room temperature, the mixture was diluted with $\mathrm{EtOAc}(150 \mathrm{~mL})$ and washed with saturated aq. $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by Flash Chromatography System (EtOAc/hexane, $16: 84 \rightarrow 30: 70, \mathrm{v} / \mathrm{v}$) to give 28 (120 mg, 90\%): TLC, $R_{f} 0.41$ (EtOAc/hexane, $1: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.36-7.12\left(\mathrm{~m}, 20 \mathrm{H},-\left(\mathrm{CH}_{2} \underline{\mathrm{Ph}}\right)_{4}\right), 7.06(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.79(\mathrm{dd}, J=2.3,6.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.55 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.35(\mathrm{dd}, J=2.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 5.32(\mathrm{~d}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-1), 5.17\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.78,4.45\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 4\right), 4.66(\mathrm{ABq}, J=12.0$
$\left.\mathrm{Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{4}\right), 4.57,4.38\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}\right)_{4}\right), 4.48\left(\mathrm{ABq}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{2}} \mathrm{Ph}_{4}\right)\right.$, $4.25(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 4.04-4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.90\left(\mathrm{dd}, J=1.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 3.85(\mathrm{t}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}^{\prime}-4$), 3.82-3.72 (m, 7H, H-6, H-6', H'-3, $-\mathrm{OCH}_{3}$ of MP, H'-5), 3.61 (dd, J=4.0, $10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6$), 3.50 (dd, $\left.J=1.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6^{\prime}\right), 1.23\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv), $1.21\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.58,177.21,155.28,150.14,138.37,138.22,138.05,137.78,128.54 \times 2,128.28 \times 4$, $128.13 \times 2,127.95,127.90 \times 2,127.88 \times 2,127.73 \times 2,127.65,127.57,127.29,127.22 \times 2,118.34 \times 2,114.53 \times 2$, $101.15,96.71,79.76,75.00,73.89,73.44,73.07,72.97,72.30,72.10,72.06,71.33,69.36,69.33,68.60,68.52$, $55.60,38.96,38.89,27.12 \times 3,27.09 \times 3 ; H R M S$ calcd. for $\mathrm{C}_{57} \mathrm{H}_{68} \mathrm{NaO}_{14}(\mathrm{M}+\mathrm{Na})^{+} m / z 999.4507$, found 999.4497.

4-Methoxyphenyl O-(2-O-acetyl-3,4,6-tri-O-benzyl- α-D-mannopyranosyl-(1 $\rightarrow 2$)-O-3,4,6-tri- O -benzyl- α-D-mannopyranosyl)-(1-4)-O-2,3-di- O-pivaroyl-6-benzyl- α-D-mannopyranoside (29)

$\operatorname{AgOTf}(7.70 \mathrm{mg}, 0.0300 \mathrm{mmol}), \mathrm{Cp}_{2} \mathrm{HfCl}_{2}(5.60 \mathrm{mg}, 0.0148 \mathrm{mmol})$ and MS AW-300 (295 mg) were dissolved in toluene $(0.500 \mathrm{~mL})$. After stirring the mixture for 10 min at room temperature and for 10 min at $-20^{\circ} \mathrm{C}$, the solution of $2(9.80 \mathrm{mg}, 0.0198 \mathrm{mmol})$ and $\mathbf{2 8}(9.4 \mathrm{mg}, 0.00962 \mathrm{mmol})$ in toluene $(0.500 \mathrm{~mL})$ was added at $20^{\circ} \mathrm{C}$. After stirring the reaction mixture for 50 min at $0^{\circ} \mathrm{C}$, the reaction was quenched with $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mu \mathrm{~L}$, 0.0718 mmol) at $-20^{\circ} \mathrm{C}$. The mixture was filtered through a pad of celite. The filtrate and washings (200 mL of EtOAc) were combined and washed with saturated aq. $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$ and brine $(200 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:7, v/v) to give 29 ($11.7 \mathrm{mg}, 84 \%$, α only): TLC, $R_{f} 0.59$ (EtOAc/hexane, 1:3, v/v, double development); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.12\left(\mathrm{~m}, 35 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{7}\right)$, 7.03 (dd, $J=1.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.78 (dd, $J=1.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.57-5.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}$ "-2), 5.49 (dd, $J=2.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 5.34-5.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-1), 5.12\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}{ }^{\prime}-1\right), 5.05(\mathrm{~d}, J=$ $\left.1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.88-4.37\left(\mathrm{~m}, 14 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{7}\right), 4.24(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.96-3.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-5, \mathrm{H}^{\prime}-2\right.$, H"-3, H-6), 3.90-3.81 (m, 4H,H'-3, H"-4, H"-5, H'-4), 3.80 (dd, $J=2.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6$), 3.78-3.74 (m, $4 \mathrm{H}^{\prime}-\mathrm{OCH}_{3}$ of MP, H'-5), 3.70 (dd, $J=1.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '), 3.57-3.48 (m, 3H, H'"-6', H'-6, H'-6'), 2.09 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{CH}_{3}$ of Ac), $1.20\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv), $1.17\left(\mathrm{~s}, 9 \mathrm{H},-\left(\mathrm{CH}_{3}\right)_{3}\right.$ of Piv); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $177.34,177.12,170.09,155.24,150.13,138.65,138.49,138.27 \times 2,138.15,138.02 \times 2,128.37 \times 2,128.27 \times 8$, $128.15 \times 2,128.14 \times 2,128.08 \times 2,127.95 \times 2,127.82 \times 2,127.72 \times 2,127.57 \times 4,127.53 \times 2,127.45 \times 3,127.40$, $127.19,127.09 \times 2,118.25 \times 2,114.52 \times 2,78.14,75.01,74.84,74.71,74.38,73.85,73.40,73.28,72.78,72.17$, $71.98,71.76,71.64,71.47,69.37,69.11,69.06,68.56,68.35,55.62,38.88,38.84,27.24 \times 3,27.10 \times 3,21.16$; HRMS calcd. for $\mathrm{C}_{86} \mathrm{H}_{98} \mathrm{NaO}_{20}(\mathrm{M}+\mathrm{Na})^{+} m / z$ 1473.6549, found 1473.6552.

4-Methoxyphenyl $\quad O$-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl-(1 $\rightarrow 2$)- O-3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-($1 \rightarrow 4$)-O-6-benzyl- α-D-mannopyranoside (30).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.100 \mathrm{~mL}, 0.520 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $29(59.8 \mathrm{mg}, 0.0412$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL})$. After stirring the reaction mixture for 5.5 h at room temperature, second portion of $\mathrm{NaOMe}\left(28 \%\right.$ in $\mathrm{MeOH} ; 0.0500 \mathrm{~mL}, 0.260 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 15.5 h at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by Flash

Chromatography System (EtOAc/toluene, $31: 69 \rightarrow 61: 39$, v/v) to give 30 ($47.6 \mathrm{mg}, 93 \%$): TLC, $R_{f} 0.24$ (EtOAc/toluene, 1:1, v/v); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.16\left(\mathrm{~m}, 35 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{7}\right), 7.02(\mathrm{dd}, J=2.3$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.78 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.45 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ "-1), 5.38 (d, $J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.31\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.85-4.39\left(\mathrm{~m}, 14 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 7\right)^{2}, 4.28(\mathrm{dd}, J=1.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}$, H"-2), 4.13 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.02-3.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6), 3.92$ (dd, $J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.89-3.75 (m, 6H, H'-4, H"-3, H-4, H'-3, H' $-5, \mathrm{H}^{\prime}-5$), $\quad 3.74\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of MP), 3.70-3.54 (m, 8H, H-6', $H^{\prime \prime}-6, H^{\prime \prime}-6^{\prime}, \mathrm{H}^{\prime}-6$ ', H-4, H"-4, H'-2, H-6); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.97,150.38,138.42,138.38$, $138.34,138.14,138.05,137.78,137.39,128.64 \times 2,128.49 \times 2,128.46 \times 2,128.37 \times 2,128.27 \times 6,128.14 \times 6$, $127.97 \times 2,127.89 \times 2,127.87 \times 2,127.74 \times 2,127.71,127.60 \times 3,127.45 \times 2,127.27,118.06 \times 2,114.53 \times 2,99.83$, $99.47,98.33,79.97,75.02,74.98,74.63,74.51,74.10,73.97,73.40,73.13,72.80,72.40,72.16,71.74,71.41$, $71.37,70.94,70.78,70.39,69.71,69.14,68.19,55.58$; HRMS calcd. for $\mathrm{C}_{74} \mathrm{H}_{80} \mathrm{NaO}_{17}(\mathrm{M}+\mathrm{Na})^{+} m / z 1263.5293$, found 1263.5284 .

mannopyranoside (31) = (D3).

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 83.4 mg$)$ was added to a solution of $\mathbf{3 0}(47.6 \mathrm{mg}, 0.0383 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1$, $\mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL}$). After stirring the reaction mixture under H_{2} atmosphere for 25 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex LH-20 $(3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm})(20 \% \mathrm{EtOH})$ to give 31 ($19.6 \mathrm{mg}, 84 \%$): TLC, $R_{f} 0.64\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 1: 3, \mathrm{v} / \mathrm{v}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.09$ (dd, $J=2.3,6.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.96 (dd, $J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.50 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1$), 5.46 (d, $J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}{ }^{\prime}-1$), 5.04 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.13 (dd, $J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} ’-3$), 4.11-4.10 (m, 2H, H’-2, H"-2), 4.06 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 3.97 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3$), 3.89-3.83 (m, 4H, H’-6, H’-4, H-5, H-3), 3.81-3.80 (m, 1H, H'-5), 3.79 (s, 1H, -OCH ${ }_{3}$ of MP), 3.78-3.73 (m, 5H, H-6, H'-6', H'-6, H" $-6, \mathrm{H}^{\prime \prime}-6^{\prime}$, $\mathrm{H}-6^{\prime}$), 3.71 (t, $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime \prime}-4$), 3.67-3.63 (m, 2H, H-4, H"-5); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 154.65$, $149.63,118.75 \times 2,115.05 \times 2,102.26,100.00,99.09,78.79,74.39,73.79,73.74,73.23,71.85,70.97,70.49$, $70.36,70.09,70.01,66.77,66.75,61.04,60.90,60.81,55.80$; HRMS calcd. for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{NaO}_{17}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z}$ 633.2007, found 633.1997.

4-Methoxyphenyl \boldsymbol{O}-($\boldsymbol{\alpha}$-D-mannopyranosyl)-(1 $\boldsymbol{\rightarrow 2}$)- \boldsymbol{O} - $\boldsymbol{\alpha}$-D-mannopyranoside (32) =(A2).

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 41.2 mg$)$ was added to a solution of $\mathbf{1 3}(23.7 \mathrm{mg}, 0.0240 \mathrm{mmol})$ in $\mathrm{MeOH}(2.00$ $\mathrm{mL})$. After stirring the reaction mixture under H_{2} atmosphere for 21 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex G-10 $(3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm})(20 \% \mathrm{EtOH})$ to give $\mathbf{3 2}(8.13 \mathrm{mg}, 76 \%)$. Physical data were consistent with those reported previously ${ }^{(6)}$: TLC, $R_{f} 0.67\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 2: 3, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.05(\mathrm{dd}, J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.90(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.69(\mathrm{~d}$, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.00\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.11(\mathrm{dd}, J=2.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.06(\mathrm{dd}, J=3.4,8.3$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-6\right), 4.03\left(\mathrm{dd}, J=2.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 3.81(\mathrm{dd}, J=2.3,12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.79-3.75(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}^{\prime}-3, \mathrm{H}^{\prime}-6$ ' $), 3.74-3.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4,-\mathrm{OCH}_{3}\right.$ of MP), 3.71-3.65 (m, 3H, H-3, H-5, H'-5) $3.62(\mathrm{dd}, J=6.9,12.0$

4-Methoxyphenyl O-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 2$)- O-4,6-benzylidene- α-Dmannopyranoside (33).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.100 \mathrm{~mL}, 0.520 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 8}(15.6 \mathrm{mg}, 0.0175$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL})$. After stirring the reaction mixture for 5 h at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vасио, before the residue was purified by Flash Chromatography System (EtOAc/toluene, 34:66 $\rightarrow 45: 55$, v/v) to give 33 ($11.7 \mathrm{mg}, 83 \%$): TLC, $R_{f} 0.49$ (EtOAc/hexane, $1: 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.19$ $\left(\mathrm{m}, 20 \mathrm{H},-\left(\mathrm{CH}_{2} \underline{\mathrm{Ph}}\right)_{3}\right.$, Ph of Bzl$), 6.92(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP$), 6.83(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.56\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}\right.$ of Bzl), $5.16(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.14\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.83,4.48$ (ABq, J $\left.=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{3}} \mathrm{Ph}\right)_{3}\right), 4.70-4.66\left(\mathrm{~m}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{3}\right), 4.57,4.51\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\underline{\mathrm{CH}_{3}} \mathrm{Ph}\right)_{3}\right), 4.38-$ 4.36 (m, 1H, H’-2), 4.23 (dd, $J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3$), 4.21-4.19 (m, 1H, H-5), 4.16 (dd, $J=4.6,10.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\prime}-6\right), 4.08\left(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right), 3.97-3.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\prime}-5\right), 3.93(\mathrm{dd}, J=3.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3)$, 3.853.81 (m, 2H, H-4, H'-6'), 3.78 ($\mathrm{s}, 1 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), 3.62 (dd, $J=8.6,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.62 (dd, $J=8.6$, $9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$ '); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.96,149.91,137.93,137.65,137.52,137.24,128.97$, $128.54 \times 2,128.47 \times 2,128.41 \times 2,128.23 \times 2,128.14 \times 2,128.04,127.94 \times 3,128.88 \times 2,127.81,126.17 \times 2$, $117.53 \times 2,114.58 \times 2,101.78,100.39,99.57,79.88,77.17,74.90,74.63,73.75,72.18,71.56,69.65 \times 2,68.70$, 68.60, 64.30, 55.64; HRMS calcd. for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+} m / z 829.3200$, found 829.3203 .

4-Methoxyphenyl \boldsymbol{O}-(α-D-mannopyranosyl)-($\mathbf{1} \rightarrow \mathbf{3}$)- \boldsymbol{O} - $\boldsymbol{\alpha}$-D-mannopyranoside (34) $=(\mathbf{B} 2)$.

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 14.4 mg$)$ was added to a solution of $33(11.7 \mathrm{mg}, 0.0145 \mathrm{mmol})$ in THF/MeOH (1:1, $\mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL}$). After stirring the reaction mixture under H_{2} atmosphere for 26 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex G-10 ($3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm}$) ($20 \% \mathrm{EtOH}$) to give 34 ($6.00 \mathrm{mg}, 92 \%$): TLC, $R_{f} 0.73\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 2: 3, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 7.12(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.98 (dd, $J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.47 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 5.18 (d, $J=1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.31(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.13(\mathrm{dd}, J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.09(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 3.90\left(\mathrm{dd}, J=3.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-3\right), 3.91-3.89(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.86(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.81-$ 3.72 (m, 8H, H'-5, - OCH_{3} of MP, H-6, H-6', H’-6, H'-6') 3.67 (dd, J = $9.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 154.66,149.60,118.73 \times 2,115.09 \times 2,102.43,99.13,77.93,73.56,73.43,70.42,70.09,69.60,66.82$, $66.00,61.02,60.59,55.82 ;$ HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / z 471.1478$, found 471.1470 .

4-Methoxyphenyl O-(3,4,6-tri- O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 6$)- O-4-benzyl- α-Dmannopyranoside (35).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.0500 \mathrm{~mL}, 0.260 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $23(33.0 \mathrm{mg}, 0.0338$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL})$. After stirring the reaction mixture for 12 h at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by Flash Chromatography System (EtOAc/hexane, 29:71 $\rightarrow 8: 92$, v/v)
to give 35 (30.5 mg , quant.): TLC, $R_{f} 0.37$ ($\mathrm{EtOAc} /$ hexane, $1: 2, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) ~ \delta 7.34-7.17$ $\left(\mathrm{m}, 20 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 6.96(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.76(\mathrm{dd}, J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.42 $(\mathrm{d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.98\left(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.83,4.50\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right) 4\right), 4.78-$ $4.44\left(\mathrm{~m}, 6 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.12(\mathrm{dd}, J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.05(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.02(\mathrm{dd}, J$ $=1.7,2.9 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{H}^{\prime}-2$), 3.90-3.83 (m, 3H, H-5, H'-6, H'-6'), 3.83-3.80 (m, 1H, H'-5), $3.80(\mathrm{dd}, J=2.9,9.2$ $\mathrm{Hz} 1 \mathrm{H}, \mathrm{H}^{\prime}-3$), $3.73-3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}^{\prime}-4\right), 3.65(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.62-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6{ }^{\prime}-\mathrm{OCH}_{3}\right.$ of MP); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.82,150.04,138.42,138.09,137.96 \times 2,128.56 \times 2,128.47 \times 2$, $128.33 \times 2,128.28 \times 2,127.94 \times 2,127.92,127.84 \times 5,127.73 \times 2,126.64,127.58,117.36 \times 2,114.61 \times 2,99.44$, $97.98,79.80,75.75,75.06,74.76,74.14,73.40,71.81,71.65,71.12,71.07,70.87, \quad 68.78,68.11,65.92,55.42$; HRMS calcd. for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+} m / z$ 831.3356, found 831.3342.

4-Methoxyphenyl \boldsymbol{O}-($\boldsymbol{\alpha}$-D-mannopyranosyl)-($\mathbf{1 \rightarrow 6} \boldsymbol{-}$ - \boldsymbol{O} - $\boldsymbol{\alpha}$-D-mannopyranoside (36)=(C2).

$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 36.2 mg$)$ was added to a solution of $\mathbf{3 5}(30.5 \mathrm{mg}, 0.0377 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH}(1: 1$, $\mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL}$). After stirring the reaction mixture under H_{2} atmosphere for 21.5 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex G-10 $(3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm})(20 \% \mathrm{EtOH})$ to give $\mathbf{3 6}$ (16.9 mg , quant.): TLC, $R_{f} 0.69\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 1: 2, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.11(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), 6.98 (dd, $J=2.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), 5.51 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.73 (d, $J=1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.17(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.01(\mathrm{dd}, J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.90-3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, 3.87-3.82 (m, 2H, H-6, H'-3), $3.81\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OCH}_{3}\right.$ of MP), $3.75-3.67\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-4, \mathrm{H}^{\prime}-6^{\prime}, \mathrm{H}^{\prime}-4, \mathrm{H}^{\prime}-5, \mathrm{H}^{\prime}-2\right)$, 3.64-3.59 (m, 2H, H'-6, H'-6'); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.64,149.21,118.67 \times 2,115.06 \times 2,98.90$, 98.71, 72.66, 71.18, 70.62, 70.54, 69.95, 69.87, 66.81, 66.71, 65.52, 60.94, 55.83; HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+} m / z 471.1478$, found 471.1469 .

4-Methoxyphenyl O-(3,4,6-tri-O-benzyl- α-D-mannopyranosyl)-(1 $\rightarrow 4$)-O-6-benzyl- α-Dmannopyranoside (37).

$\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.0500 \mathrm{~mL}, 0.260 \mathrm{mmol})$ was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ solution of $28(16.1 \mathrm{mg}, 0.0158$ $\mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{THF}(1: 1, \mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL})$. After stirring the reaction mixture for 13 h at room temperature, second portion $\mathrm{NaOMe}(28 \%$ in $\mathrm{MeOH} ; 0.0500 \mathrm{~mL}, 0.260 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture for 3 h at room temperature, the reaction mixture was neutralized with Amberlyst 15 E at $0^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuo, before the residue was purified by column chromatography on silica gel ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 1: 25, \mathrm{v} / \mathrm{v}$) to give 37 ($11.8 \mathrm{mg}, 77 \%$): TLC, $R_{f} 0.33$ (EtOAc); ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) ; \delta 7.42-7.17\left(\mathrm{~m}, 20 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}_{4}\right), 7.04(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}\right.$ of MP), $6.82(\mathrm{dd}, J=2.3,6.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.36(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.34\left(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.81,4.48(\mathrm{ABq}, J=10.9 \mathrm{~Hz}$, $\left.2 \mathrm{H},-\left(\underline{\mathrm{CH}}_{2} \mathrm{Ph}\right)_{4}\right), 4.77,4.59\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.49,4.38\left(\mathrm{ABq}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right)$, $4.38,4.36\left(\mathrm{ABq}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H},-\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{4}\right), 4.23(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.00\left(\mathrm{dd}, J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-\right.$ 3), 3.95 (dd, $J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-2$), $3.92\left(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right), 3.84-3.74\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{\prime}-5, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-\right.$ 5), 3.72 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{OCH}_{3}$ of MP), $3.71-3.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6, \mathrm{H}^{\prime}-6, \mathrm{H}^{\prime}-6\right.$ '), $3.56(\mathrm{dd}, J=5.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.51$ (dd, $J=2.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$) ; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 156.62,151.75,139.86,139.83,139.57$,
$139.14,129.40 \times 2,129.33 \times 2,129.29 \times 4,129.13 \times 4,129.13 \times 2,128.89 \times 2,128.74,128.68,128.65,128.55$, $119.24 \times 2,115.60 \times 2,102.93,100.75,80.83,75.96,75.52,75.47,74.40,74.05,73.42,73.08,72.49,72.46$, $72.26,70.97,70.51,69.06,56.01$; HRMS calcd. for $\mathrm{C}_{47} \mathrm{H}_{52} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+} m / z 831.3356$, found 831.3357 .

4-Methoxyphenyl \boldsymbol{O}-($\boldsymbol{\alpha}$-D-mannopyranosyl)-($\mathbf{1} \rightarrow \mathbf{4}$)- \boldsymbol{O} - $\boldsymbol{\alpha}$-D-mannopyranoside (38)=(D2).
$\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on carbon, 11.2 mg$)$ was added to a solution of $37(11.8 \mathrm{mg}, 0.0121 \mathrm{mmol})$ in $\mathrm{THF} / \mathrm{MeOH}(1: 1$, $\mathrm{v} / \mathrm{v}, 1.00 \mathrm{~mL}$). After stirring the reaction mixture under H_{2} atmosphere for 4.5 h at room temperature, the mixture was filtered through a pad of celite. The filtrate and washings were concentrated in vacuo. The residue was purified by gel filtration chromatography on Sephadex LH-20 ($3 \mathrm{~cm} \Phi \times 80 \mathrm{~cm}$) $(20 \% \mathrm{EtOH})$ to give $\mathbf{3 8}$ ($5.00 \mathrm{mg}, 92 \%$): TLC, $R_{f} 0.64\left(\mathrm{H}_{2} \mathrm{O} / 2-\mathrm{PrOH}, 1: 4, \mathrm{v} / \mathrm{v}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.10(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ph}$ of MP), $6.96(\mathrm{dd}, J=2.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$ of MP), $5.47(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.25(\mathrm{~d}, J=1.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\prime}-1\right), 4.14(\mathrm{dd}, J=3.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 4.10(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.06(\mathrm{dd}, J=1.7,3.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{\prime}-2\right), 3.88(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.87\left(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime}-4\right), 3.82-3.78\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5, \mathrm{H}^{\prime}-3,-\mathrm{OCH}_{3}\right.$ of MP), 3.76-3.72 (m, 3H, H-6, H'-6, H'-5), 3.68-3.63 (m, 2H, H-6', H’-6'); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $154.65,149.57,118.77 \times 2,115.05 \times 2,101.56,99.07,74.12,73.72,71.86,70.93,70.42,70.36,70.30,66.55$, $60.91,60.79,55.78 ;$ HRMS calcd. for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{12}(\mathrm{M}+\mathrm{Na})^{+} m / z 471.1478$, found 471.1468 .

General methods \& materials for enzymatic assay

Reagents were purchased from suppliers and used without further purification. SAMP6 livers were purchased from Sankyo Labo Service. Anti-GM130 (610822) and anti-BiP (ab21685) antibodies were obtained from BD Biosciences and abcam, respectively. Anti-rabbit IgG (goat), HRP-labeled antibody (NEF812001EA) was purchased from perkinelmer and anti-mouse $\operatorname{IgG}(\mathrm{H}+\mathrm{L})$ antibody (A4416) was obtained from Sigma Aldrich. HPLC was performed by a JASCO LC-2000 system with TSK-GEL Amide-80 column ($5 \mu \mathrm{~m}, 4.6 \mathrm{~mm}$ I.D. \times 25 cm) from TOSOH Co.

Enzymatic assay

Extraction of ER fraction from SAMP6 livers (Figure S1).

SAMP6 livers (8-week-old, male, 0.4 g) were minced by a surgical scissors, and the paste was transferred to a motor-driven tight fitting glass/Teflon Potter-Elvehjem homogenizer. ER Extraction Buffer (4 mL) [Sucrose (0.25 M), EDTA (2 mM), HEPES ($10 \mathrm{mM}, \mathrm{pH} 7.4$), EDTA-free protease inhibitor cocktail (1 tablet per 50 mL , Poche)] was added to the homogenizer and the suspension was crushed (20 strokes, $4^{\circ} \mathrm{C}$). Resulting homogenates were centrifuged $\left(900 \mathrm{~g}, 4^{\circ} \mathrm{C}\right)$ for 10 min . Subsequently, recovered supernatant was centrifuged $\left(5,000 \mathrm{~g}, 4^{\circ} \mathrm{C}\right)$ for 10 min . Then the supernatant was centrifuged $\left(8,000 \mathrm{~g}, 4^{\circ} \mathrm{C}\right)$ for 10 min . After further centrifugation step ($20000 \mathrm{~g}, 4^{\circ} \mathrm{C}, 120 \mathrm{~min}$), the recovered pellet was obtained as the ER fraction. ERsolubilization Buffer ($10 \mu \mathrm{~L}$ per 1 mg of the ER pellet) [Sucrose (0.25 M), EDTA (2 mM), HEPES (10 mM , pH 7.4), EDTA-free protease inhibitor cocktail (1 tablet per 50 mL , Roche), TritonX-100 (0.6%)] was added to the pellet and the suspension was incubated at $4^{\circ} \mathrm{C}$ for 2 h . The protein concentration of the ER fraction was measured using a bicinchoninic acid (BCA) assay kit (Thermo Fisher Scientific) according to the manufacturers' instructions. Each purity of the preparations was analyzed by western blotting using anti-BiP
and anti-GM130 antibodies as ER and Golgi apparatus marker proteins, respectively.

Validation and assessment of purity of the ER fraction (Figure S1).

Each protein sample ($40 \mu \mathrm{~L}$) was added to the $5 \times$ SDS-PAGE sample buffer [Tris- $\mathrm{HCl}(250 \mathrm{mM}, \mathrm{pH} 6.8)$, DTT (375 mM), SDS (10%), glycelol (50%), Bromophenol Blue (0.1%)] and heated at $100^{\circ} \mathrm{C}$ for 3 min . The samples were centrifuged $\left(15000 \mathrm{~g}, 4^{\circ} \mathrm{C}, 3 \mathrm{~min}\right)$. The recovered supernatant ($5 \mu \mathrm{~L}$ for anti- BiP antibody or 15 $\mu \mathrm{L}$ for anti-GM130 antibody) was resolved on SDS-PAGE ($7.5 \% \mathrm{Tris} / \mathrm{HCl}$ gel) and transferred onto polyvinylidene difluoride (PVDF) membranes. The membranes were incubated with Blocking One (Nacalai Tesque) at room temperature for 1 h . Then anti-BiP antibody (5000-fold dilution) or anti-GM130 antibody (500 -fold dilution) was added to the membrane and it was incubated at $4^{\circ} \mathrm{C}$ for 16 h . After wash steps of membranes by TBS-T (5, 10, 15 min), secondary antibody solutions [anti-rabbit IgG (Goat) or anti-mouse IgG $(\mathrm{H}+\mathrm{L})]$ were added to the membranes and reacted with the membranes at room temperature for 30 min . After the same wash steps, the membranes were reacted by a chemiluminescent reagent (Immobilon Western, Millipore). The bands were detected using FluoroChemQ image analyzer (protein simple).

Individual glycohydrolysis assay of the synthetic trimmannosides in the ER fraction (Figure 4).

Reaction mixtures $(20 \mu \mathrm{~L})$ contained the ER fraction $(3 \mathrm{mg} / \mathrm{mL})$, TritonX-100 $(0.6 \%), \mathrm{CaCl}_{2}(10 \mathrm{mM})$, HEPES ($10 \mathrm{mM}, \mathrm{pH} 7.4$), and each trimannosides ($\mathbf{A 3}, \mathbf{B 3}, \mathbf{C} 3$ or $\mathbf{D 3})(250 \mu \mathrm{M})$. The mixtures were incubated for 1 , $2,4,6$ and 8 h at $37^{\circ} \mathrm{C}$. After incubation, $\mathrm{CH}_{3} \mathrm{CN}(45 \mu \mathrm{~L})$ and $\mathrm{ddH}_{2} \mathrm{O}(42 \mu \mathrm{~L})$ were added to the mixture (3 $\mu \mathrm{L})$ to stop enzymatic reaction. The samples were centrifuged $\left(20,000 \times \mathrm{g}, 4^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$ and the recovered supernatant ($50 \mu \mathrm{~L}$) was analyzed by HPLC [TSK-GEL Amide-80 column $5 \mu \mathrm{~m}$ (4.6 mm I.D. $\times 25 \mathrm{~cm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{ddH}_{2} \mathrm{O}$; linear gradients: $98: 2$ to $90: 10$ over 10 min and $90: 10$ to $65: 35$ over 10 min ; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; detection: 284 nm].

Influence of D2 on the hydrolysis of the synthetic trimannnosides in the ER fraction (Figure S3).
Reaction mixtures $(20 \mu \mathrm{~L})$ contained ER fraction ($3 \mathrm{mg} / \mathrm{mL}$), TritonX-100 $(0.6 \%), \mathrm{CaCl}_{2}(10 \mathrm{mM})$, HEPES $(10 \mathrm{mM}, \mathrm{pH} 7.4)$, trimannosides $(\mathbf{A 3}, \mathbf{B 3}$ or $\mathbf{C 3})(250 \mu \mathrm{M})$ and $\mathbf{D} 2(50 \mu \mathrm{M})$. The mixtures were incubated for $1,2,4,6$ and 8 h at $37^{\circ} \mathrm{C}$. After incubation, $\mathrm{CH}_{3} \mathrm{CN}(45 \mu \mathrm{~L})$ and $\mathrm{ddH}_{2} \mathrm{O}(42 \mu \mathrm{~L})$ were added to the mixture (3 $\mu \mathrm{L})$ to stop enzymatic reaction. The samples were centrifuged $\left(20,000 \times \mathrm{g}, 4^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$ and the recovered supernatant $(50 \mu \mathrm{~L})$ was analyzed by HPLC [TSK-GEL Amide- 80 column $5 \mu \mathrm{~m}$ (4.6 mm I.D. $\times 25 \mathrm{~cm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{ddH}_{2} \mathrm{O}$; linear gradients: 98:2 to $90: 10$ over 10 min and $90: 10$ to $65: 35$ over 10 min ; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; detection: 284 nm].

Competitive glycohydrolysis assay of synthetic trimannsosides in the ER fraction (Figure 5 and 9).

Reaction mixtures ($25 \mu \mathrm{~L}$) contained the ER fraction $(3 \mathrm{mg} / \mathrm{mL})$, TritonX-100 $(0.6 \%), \mathrm{CaCl}_{2}(10 \mathrm{mM})$, HEPES $(10 \mathrm{mM}, \mathrm{pH} 7.4)$ and $[\mathbf{A 3}(250 \mu \mathrm{M}), \mathbf{B 3}(250 \mu \mathrm{M}), \mathbf{C} 3(250 \mu \mathrm{M})$ and $\mathbf{D 2}(50 \mu \mathrm{M})]$ or $[\mathbf{A 3}(250 \mu \mathrm{M}), \mathbf{B 3}(250$ $\mu \mathrm{M})$ and D2 $(50 \mu \mathrm{M})]$ or $[\mathbf{A 3}(250 \mu \mathrm{M}), \mathbf{C} 3(250 \mu \mathrm{M})$ and D2 $(50 \mu \mathrm{M})]$ or $[\mathbf{B} 3(250 \mu \mathrm{M}), \mathbf{C} 3(250 \mu \mathrm{M})$ and D2 $(50 \mu \mathrm{M})$]. The mixtures were incubated at $37^{\circ} \mathrm{C}$ for $1,2,4,6$ and 8 h . After incubation, $\mathrm{CH}_{3} \mathrm{CN}(45 \mu \mathrm{~L})$ and $\mathrm{ddH}_{2} \mathrm{O}(42 \mu \mathrm{~L})$ were added to the mixture $(3 \mu \mathrm{~L})$ to stop enzymatic reaction. The samples were centrifuged
$\left(20,000 \times \mathrm{g}, 4^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$ and the recovered supernatant $(50 \mu \mathrm{~L})$ was analyzed by HPLC [TSK-GEL Amide80 column $5 \mu \mathrm{~m}(4.6 \mathrm{~mm}$ I.D. $\times 25 \mathrm{~cm})$; mobile phase: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{ddH}_{2} \mathrm{O}$; linear gradients: 98:2 to 90:10 over 10 min and 90:10 to $65: 35$ over 10 min ; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; detection: 284 nm].

Influence of A2 on the hydrolysis of B3/C3 mixture in the ER fraction (Figure S4).

Reaction mixtures $(25 \mu \mathrm{~L})$ contained the ER fraction $(3 \mathrm{mg} / \mathrm{mL})$, TritonX-100 ($0.6 \%), \mathrm{CaCl}_{2}(10 \mathrm{mM})$, HEPES $(10 \mathrm{mM}, \mathrm{pH} 7.4)$ and $[\mathbf{B 3}(250 \mu \mathrm{M}), \mathbf{C} 3(250 \mu \mathrm{M}), \mathbf{A 2}(250 \mu \mathrm{M})$ and $\mathbf{D 2}(50 \mu \mathrm{M})]$. The mixtures were incubated at $37^{\circ} \mathrm{C}$ for $1,2,4,6$ and 8 h . After incubation, $\mathrm{CH}_{3} \mathrm{CN}(45 \mu \mathrm{~L})$ and $\mathrm{ddH}_{2} \mathrm{O}(42 \mu \mathrm{~L})$ were added to the mixture $(3 \mu \mathrm{~L})$ to stop enzymatic reaction. The samples were centrifuged $\left(20,000 \times \mathrm{g}, 4^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$ and the recovered supernatant $(50 \mu \mathrm{~L})$ was analyzed by HPLC [TSK-GEL Amide-80 column $5 \mu \mathrm{~m}(4.6 \mathrm{~mm}$ I.D. $\times 25 \mathrm{~cm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{ddH}_{2} \mathrm{O}$; linear gradients: 98:2 to $90: 10$ over 10 min and $90: 10$ to 65:35 over 10 min ; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; detection: 284 nm].

Glycohydrolysis assay of A2 in the ER fraction (Figure 7 and 8).

Reaction mixtures ($25 \mu \mathrm{~L}$) contained ER fraction ($3 \mathrm{mg} / \mathrm{mL}$), TritonX-100 (0.6%), $\mathrm{CaCl}_{2}(10 \mathrm{mM})$, HEPES $(10 \mathrm{mM}, \mathrm{pH} 7.4)$, and $\mathbf{A 2}(250 \mu \mathrm{M})$ or $\mathbf{A 3}(250 \mu \mathrm{M})$. The mixtures were incubated for $1,2,4,6$ and 8 h at $37^{\circ} \mathrm{C}$. After incubation, $\mathrm{CH}_{3} \mathrm{CN}(45 \mu \mathrm{~L})$ and $\mathrm{ddH}_{2} \mathrm{O}(42 \mu \mathrm{~L})$ were added to the mixture $(3 \mu \mathrm{~L})$ to stop enzymatic reaction. The samples were centrifuged $\left(20,000 \times \mathrm{g}, 4^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$ and the recovered supernatant $(50 \mu \mathrm{~L})$ was analyzed by HPLC [TSK-GEL Amide- 80 column $5 \mu \mathrm{~m}$ (4.6 mm I.D. $\times 25 \mathrm{~cm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{ddH}_{2} \mathrm{O}$; linear gradients: 98:2 to $90: 10$ over 10 min and $90: 10$ to $65: 35$ over 10 min ; flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; detection: 284 nm].

Competitive glycohydrolysis assay of natural A3, B3 or C3 with unnatural D3 in the ER fraction (Figure 10).

Reaction mixtures $(20 \mu \mathrm{~L})$ contained ER fraction $(3 \mathrm{mg} / \mathrm{mL})$, TritonX-100 (0.6%), $\mathrm{CaCl}_{2}(10 \mathrm{mM})$, HEPES $(10 \mathrm{mM}, \mathrm{pH} 7.4)$ and $[\mathbf{A 3}(250 \mu \mathrm{M})$ and $\mathbf{D 3}(250 \mu \mathrm{M})]$ or $[\mathbf{B 3}(250 \mu \mathrm{M})$ and $\mathbf{D 3}(250 \mu \mathrm{M})]$ or $[\mathbf{C} 3(250 \mu \mathrm{M})$ and D3 $(250 \mu \mathrm{M})$]. The mixtures were incubated for $1,2,4,6$ and 8 h at $37^{\circ} \mathrm{C}$. After incubation, $\mathrm{CH}_{3} \mathrm{CN}(45$ $\mu \mathrm{L})$ and $\mathrm{ddH}_{2} \mathrm{O}(42 \mu \mathrm{~L})$ were added to the mixture $(3 \mu \mathrm{~L})$ to stop enzymatic reaction. The samples were centrifuged $\left(20,000 \times \mathrm{g}, 4^{\circ} \mathrm{C}, 20 \mathrm{~min}\right)$ and the recovered supernatant $(50 \mu \mathrm{~L})$ was analyzed by HPLC [TSKGEL Amide-80 column $5 \mu \mathrm{~m}$ (4.6 mm I.D. $\times 25 \mathrm{~cm}$); mobile phase: $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{ddH}_{2} \mathrm{O}$; linear gradients: 98:2 to $90: 10$ over 10 min and $90: 10$ to $65: 35$ over 10 min ; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; temperature: $40^{\circ} \mathrm{C}$; detection: $284 \mathrm{~nm}]$.

References

(1) I. Cumpstey, A. J. Fairbanks and J. J. Redgrave, Org Lett., 2001, 3, 2371-2374.
(2) K. J. Doores, Z. Fulton, V. Hong, M. K. Patel, C. N. Scanlan, M. R. Wormald, M. G. Finn, D. R. Burton, I. A. Wilson and B. G. Davis, Proc. Nat. Acad. Sci. USA, 2010, 107, 17107-17112.
(3) D. Tailer, V. Ferrièeres, K. Pekari and R. R. Schmidt, Tetrahedron Lett., 1999, 40, 679-682.
(4) A. Ishiwata, H. Akao and Y. Ito, Org Lett., 2006, 8, 5525-5528.
(5) K. J. Doores and B. G. Davis, Org. Biol. Chem., 2008, 6, $2692-2696$.
(6) T. Tanikawa, M. Fridman, W. Zhu, B. Faulk, I. C. Joseph, D. Kahne, B. K. Wagner and P. A. Clemons, J. Am. Chem. Soc., 2009, 131, 5075-5083.
${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$-NMR spectra for the novel compounds

Compound $6\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $6\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3}

Compound 8 (${ }^{1} \mathrm{H}$ NMR) in CDCl_{3}

Compound $\mathbf{8}\left({ }^{13} \mathrm{C}\right.$ NMR) in CDCl_{3}

Compound 9 (${ }^{1} \mathrm{H}$ NMR) in CDCl_{3}

Compound $9\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in CDCl_{3}

Compound $10\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $10\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in CDCl_{3}

Compound $11\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound 11 (${ }^{13} \mathrm{C} N \mathrm{NR}$) in CDCl_{3}

Compound $12\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $12\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in CDCl_{3}

Compound 12 (Non-decoupling HMQC) in CDCl_{3}

Compound $14\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in CDCl_{3}

Compound $14\left({ }^{13} \mathrm{C} N M R\right)$ in CDCl_{3}

Compound 14 (Non-decoupling HMQC) in CDCl_{3}

Compound $15\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $15\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3}

Compound $16\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in $\mathrm{D}_{2} \mathrm{O}$

Compound $16\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in $\mathrm{D}_{2} \mathrm{O}$

Compound 17 (${ }^{1} \mathrm{H}$ NMR) in CDCl_{3}

Compound $17\left({ }^{13} \mathrm{C} \mathrm{NMR}\right.$) in CDCl_{3}

Compound 17 (Non-decoupling HMQC) in CDCl_{3}

Compound $\mathbf{1 8}\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $\mathbf{1 8}\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3}

Compound $19\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $19\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3}

Compound 19 (Non-decoupling HMQC) in CDCl_{3}

Compound $20\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in CDCl_{3}

Compound $20\left({ }^{13} \mathrm{C} N \mathrm{NR}\right)$ in CDCl_{3}

Compound $21\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in CDCl_{3}

Compound $21\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in CDCl_{3}

Compound $22\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in CDCl_{3}

Compound $22\left({ }^{13} \mathrm{C} N \mathrm{NR}\right)$ in CDCl_{3}

Compound 22 (Non-decoupling HMQC) in CDCl_{3}

Compound $23\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $23\left({ }^{13} \mathrm{CNMR}\right)$ in CDCl_{3}

Compound 24 (${ }^{1} \mathrm{H} N \mathrm{NMR}$) in CDCl_{3}

Compound $24\left({ }^{13} \mathrm{C} N M R\right)$ in CDCl_{3}

Compound 24 (Non-decoupling HMQC) in CDCl_{3}

Compound $25\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $25\left({ }^{13} \mathrm{C} N \mathrm{NR}\right)$ in CDCl_{3}

Compound $26\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in CDCl_{3}

Compound $26\left({ }^{13} \mathrm{C} N \mathrm{NR}\right)$ in CDCl_{3}

Compound $27\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in CDCl_{3}

Compound $27\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in CDCl_{3}

Compound 27 (Non-decoupling HMQC) in CDCl_{3}

Compound 28 (${ }^{1} \mathrm{H} \mathrm{NMR}$) in CDCl_{3}

Compound $28\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3}

Compound 29 (${ }^{1} \mathrm{H} \mathrm{NMR}$) in CDCl_{3}

Compound 29 (${ }^{13} \mathrm{C} \mathrm{NMR}$) in CDCl_{3}

Compound 29 (Non-decoupling HMQC) in CDCl_{3}

Compound $30\left({ }^{1} \mathrm{H} N M R\right)$ in CDCl_{3}

Compound $30\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3}

Compound 31 (${ }^{1} \mathrm{H}$ NMR) in $\mathrm{D}_{2} \mathrm{O}$

Compound $31\left({ }^{13} \mathrm{C}\right.$ NMR) in $\mathrm{D}_{2} \mathrm{O}$

Compound 33 (${ }^{1} \mathrm{H} \mathrm{NMR}$) in CDCl_{3}

Compound $33\left({ }^{13} \mathrm{C} N \mathrm{NR}\right)$ in CDCl_{3}

Compound $34\left({ }^{1} \mathrm{H} N \mathrm{NRR}\right)$ in $\mathrm{D}_{2} \mathrm{O}$

Compound $34\left({ }^{13} \mathrm{C}\right.$ NMR) in $\mathrm{D}_{2} \mathrm{O}$

Compound $35\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in CDCl_{3}

Compound $35\left({ }^{13} \mathrm{C} \mathrm{NMR}\right)$ in CDCl_{3}

Compound $36\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in $\mathrm{D}_{2} \mathrm{O}$

Compound $36\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in $\mathrm{D}_{2} \mathrm{O}$

Compound $37\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in $\mathrm{CD}_{3} \mathrm{OD}$

Compound $37\left({ }^{13} \mathrm{C}\right.$ NMR $)$ in $\mathrm{CD}_{3} \mathrm{OD}$

Compound $38\left({ }^{1} \mathrm{H}\right.$ NMR $)$ in $\mathrm{D}_{2} \mathrm{O}$

Compound $38\left({ }^{13} \mathrm{C}\right.$ NMR) in $\mathrm{D}_{2} \mathrm{O}$

