NHC-Catalyzed Truce-Smiles Rearrangement of \mathbf{N}-Aryl Methacrylamides Enabling the Cleavage of an Inert Aryl C-N

Bond

Yuanyuan Hu, ${ }^{[a]}$ Zhen Wang, ${ }^{[a]}$ Honggen Luo, ${ }^{[a]}$ Hongwei Jin, ${ }^{[a]}$ Yunkui Liu ${ }^{[a]}$ and Bingwei Zhou*[a]
${ }^{[a]}$ College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China. E-mail: zhoubw@zjut.edu.cn

Table of Contents

1. General Information S2
2. Preparation of N-Aryl Methacrylamides S3
3. NHC-Catalyzed Truce-Smiles Rearrangement of N-Aryl Methacrylamides S7
3.1 Optimization of reaction conditions S7
3.2 Typical procedure and characterization of products S10
3.3 Gram-scale reaction S17
4. Mechanistic Experiments S18
5. X-Ray Crystallography Data for $\mathbf{2 e}$ S20
6. References S22
7. ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra S23

1. General Information

Unless otherwise noted, all reactions were carried out in flame-dried reaction vessels with Teflon screw caps under nitrogen. Solvents were purified and dried according to standard methods prior to use. All commercially available reagents were obtained from chemical suppliers and used after proper purification if necessary. Flash column chromatography was performed on silica gel (200-300 mesh) with the indicated solvent mixtures. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker 500 AV spectrometers. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker 400 AV spectrometer. Chemical shifts (δ) were reported as parts per million (ppm) downfield from tetramethylsilane and the following abbreviations were used to identify the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{dt}=$ doublet of triplets, $\mathrm{dq}=$ doublet of quartets, $\mathrm{br}=$ broad and all combinations thereof can be explained by their integral parts. Coupling constant (J) was reported in hertz unit (Hz). The high resolution mass spectra (HRMS) were recorded on a Bruker Apex IV FTMS spectrometer.

2. Preparation of N-Aryl Methacrylamides

The methacrylamides $\mathbf{1 a}{ }^{[1]}, \mathbf{1 b}^{[2]}, \mathbf{1}^{[3]}, \mathbf{1} \mathbf{g}^{[1]}, \mathbf{1} \mathbf{j}^{[4]}, \mathbf{1}{ }^{[4]}, \mathbf{1 o}^{[5]}, \mathbf{1 q}^{[6]}, \mathbf{1}{ }^{[7]}$ were prepared according to the known literature ${ }^{[8]} . \mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 h}, \mathbf{1 i}, \mathbf{1 1}, \mathbf{1 m}, \mathbf{1 n}, \mathbf{1 p}, \mathbf{1 s}$ are new compounds.

Under N_{2}, to a 100 mL Schleck tube with a stir bar was added amine (10 mmol), DCM $(30 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{mmol})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, then methacryloyl chloride (12 mmol) was added. The mixture was stirred at room temperature for 5 h . The mixture was poured into brine and extracted with DCM. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuo. The corresponding $\mathrm{N}-\mathrm{H}$ enamide was obtained after purification by flash chromatography on silica gel with $\mathrm{PE} / \mathrm{EA}$ as the eluent or used without further purification.

Under N_{2}, to a 100 mL Schleck tube with a stir bar was added the above $\mathrm{N}-\mathrm{H}$ enamide (5 mmol) and dry THF (20 mL). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{NaH}(7.5 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 30 min . Then MeI (6 mmol) were added to above solution and stirred for another 5 h . The mixture was quenched with saturated ammonium chloride solution and extracted with EtOAc. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated under vacuo. The corresponding Methacrylamides was obtained after purification by flash chromatography on silica gel with PE/EA as the eluent. The $1 \mathbf{s}$ was obtained with 2-phenylacryloyl chloride instead of methacryloyl chloride.

1a

1b

1c

1d

1 e

$1 f$

1k

11

$1 i$

1j

1g

1h

1m

1n

10

1p

1q

1r

1s

Characterization of new compounds

N-methyl-N-(2-(trifluoromethoxy)phenyl)methacrylamide (1d)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.36-7.21(\mathrm{~m}, 4 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}$, $1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 171.9$, $144.5,140.0,136.9,129.1,128.5,127.3,120.9,120.2(\mathrm{q}, J=257.5 H z)$,
118.7, 37.0, 19.7. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NF}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$260.0893, found: 260.0896

N -(2-bromo-4-chlorophenyl)-N-methylmethacrylamide (1e)

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.61(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.8,142.4,140.0,134.2,133.4,130.5$, 128.8, 123.5, 119.0, 36.4, 20.2. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONBrCl}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 287.9785$, found: 287.9789 .

N-(2,4-dibromophenyl)-N-methylmethacrylamide (1f)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}$, $1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.84$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 171.4,142.6,139.7,135.9$, 131.6, 130.7, 123.5, 121.6, 118.8, 36.1, 20.0. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONBr}_{2}{ }^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 331.9280$, found: 331.9283 .

N -(2-bromo-4-cyanophenyl)-N-methylmethacrylamide (1h)

${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.92(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}$, $1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 171.3,148.0,139.6,137.2$, 132.2, 130.5, 123.5, 119.6, 116.5, 112.9, 36.6, 20.0. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ON}_{2} \mathrm{Br}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$279.0128, found: 279.0133.

N-(2-bromo-4-(trifluoromethoxy)phenyl)-N-methylmethacrylamide (1i)

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.99$ $(\mathrm{d}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}$, $\mathbf{C D C l}_{3}$) $\delta 171.7,148.2,142.3,139.9,130.6,127.7,126.0,123.5,120.7$, 119.0, 120.2 ($\mathrm{q}, J=257.4 \mathrm{~Hz}$), 36.4, 20.1. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{BrNF}_{3}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 337.9998$, found: 338.0001.

\mathbf{N}-(2,4-dichlorophenyl)-N-methylmethacrylamide (11)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.43(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.20$ (m, 1H), $7.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.20(\mathrm{~s}$, 3H), 1.79 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z , ~} \mathbf{C D C l}_{\mathbf{3}}$) $\delta 171.8,140.8$, 139.9, 134.0, 133.3, 130.4, 130.3, 128.1, 118.7, 36.2, 20.0. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONCl}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 244.0291$, found: 244.0293.

N-(4-bromo-2-chlorophenyl)-N-methylmethacrylamide (1m)

${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 3.21(\mathrm{~s}$, $3 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 171.8,141.3,139.9$, 133.6, 133.2, 131.1, 130.8, 121.6, 118.9, 36.2, 20.1. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONBrCl}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$287.9785, found: 287.9789.

N-methyl-N-(2-(4-methylquinolin-2-yl)phenyl)methacrylamide (1n)

${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.79-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~s}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.74$ (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 171.4,156.4,148.0,144.8,142.9$, $140.0,137.9,131.3,130.4,129.6,129.5,128.6,127.9,126.6,123.6,121.9$, 119.7, 38.2, 19.9, 19.0. HRMS(ESI) Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ON}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 317.1648$, found: 317.1652.

N -(4-bromonaphthalen-1-yl)-N-methylmethacrylamide (1p)

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.76(\mathrm{~m}$, 2H), 7.53 (s, 1H), $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.31$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H})$, $4.77(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 172.7, 141.3, 140.2, 133.1, 131.5, 130.7, 127.5, 127.4, 126.9, 126.2, 123.6, 122.6, 118.1, 37.7, 20.3. HRMS(ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ONBr}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 304.0332$, found: 304.0335.

N-methyl-N-(naphthalen-1-yl)-2-phenylacrylamide (1s)

${ }^{1} \mathbf{H}$ NMR (500 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.82-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50-7.44 (m, 2H), 7.23-7.17 (m, 1H), 7.15-7.03(m, 5H), 7.00-6.94(m, 1H), $\left.5.28(\mathrm{~s}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta 171.5$, 145.7, 139.7, 136.9, 134.3, 129.8, 128.5, 128.3, 128.1, 127.7, 126.8, 126.3, 126.2, 126.0, 125.2, 122.9, 122.8, 116.7, 116.5, 116.3, 37.3, 37.3. HRMS(ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ON}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 288.1383$, found: 288.1386.

3. NHC-Catalyzed Truce-Smiles Rearrangement of N-Aryl

Methacrylamides

3.1 Optimization of reaction conditions

Survey of the reaction parameters ${ }^{a}$

Entry	NHC/mol\%	Base/equiv.	Temp/ ${ }^{\circ} \mathrm{C}$	Solvent/ml	Yield/\%
1	NHC 1 (20)	NaOEt (0.3)	150	Toluene (0.5)	74
2	NHC 2 (20)	NaOEt (0.3)	150	Toluene (0.5)	Trace
3	NHC 3 (20)	NaOEt (0.3)	150	Toluene (0.5)	35
4	NHC 4 (20)	NaOEt (0.3)	150	Toluene (0.5)	0
5	NHC 5 (20)	NaOEt (0.3)	150	Toluene (0.5)	68
6	NHC 6 (20)	NaOEt (0.3)	150	Toluene (0.5)	0
7	NHC 7 (20)	NaOEt (0.3)	150	Toluene (0.5)	36
8	NHC 8 (20)	NaOEt (0.3)	150	Toluene (0.5)	Trace
9	NHC 9 (20)	NaOEt (0.3)	150	Toluene (0.5)	0
10	NHC 10 (20)	NaOEt (0.3)	150	Toluene (0.5)	0
11	NHC 11 (20)	NaOEt (0.3)	150	Toluene (0.5)	0
12	NHC 12 (20)	NaOEt (0.3)	150	Toluene (0.5)	0

13	-c	NaOEt (0.3)	150	Toluene (0.5)	0
14	NHC 1 (20)	$\mathrm{NaO} t-\mathrm{Bu}(0.3)$	150	Toluene (0.5)	47
16	NHC 1 (20)	$\mathrm{Na}_{2} \mathrm{CO}_{3}(0.3)$	150	Toluene (0.5)	34
17	NHC 1 (20)	NaOMe (0.3)	150	Toluene (0.5)	54
18	NHC 1 (20)	NaH (0.3)	150	Toluene (0.5)	48
19	NHC 1 (20)	$\mathrm{K}_{3} \mathrm{PO}_{4}(0.3)$	150	Toluene (0.5)	53
20	NHC 1 (20)	$\mathrm{Et}_{3} \mathrm{~N}(0.3)$	150	Toluene (0.5)	0
21	NHC 1 (20)	DBU (0.3)	150	Toluene (0.5)	0
22	NHC 1 (20)	DABCO (0.3)	150	Toluene (0.5)	0
23	NHC 1 (20)	-_b	150	Toluene (0.5)	0
24	NHC 1 (20)	NaOEt (0.5)	150	Toluene (0.5)	51
26	NHC 1 (20)	NaOEt (0.3)	120	Toluene (0.5)	31
27	NHC 1 (20)	NaOEt (0.3)	150	THF (0.5)	53
28	NHC 1 (20)	NaOEt (0.3)	150	Dioxane (0.5)	38
29	NHC 1 (20)	NaOEt (0.3)	150	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN} \\ (0.5) \end{gathered}$	25
30	NHC 1 (20)	NaOEt (0.3)	150	DMF (0.5)	Trace
31	NHC 1 (20)	NaOEt (0.3)	150	Xylene (0.5	48
32	NHC 1 (20)	NaOEt (0.3)	150	DMSO (0.5)	0
33	NHC 1 (20)	NaOEt (0.3)	150	Toluene	56

				(1.0)	
34	NHC 1 (10)	NaOEt (0.15)	150	Toluene (0.5)	59
35	NHC 1 (20)	NaOEt (0.3)	150	Toluene (0.5)	62^{d}

${ }^{\text {a }}$ Reaction conditions unless otherwise noted: 1a $(0.2 \mathrm{mmol})$, NHC $(0.04 \mathrm{mmol})$, Base $(0.06 \mathrm{mmol})$, Solvent (0.5 mL), $150{ }^{\circ} \mathrm{C}, 36 \mathrm{~h}$ under N_{2} atmosphere. ${ }^{\mathrm{b}}$ No Base. ${ }^{\mathrm{c}}$ No NHC. ${ }^{\mathrm{d}}$ for 24 h .

3.2 Typical procedure and characterization of products

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added $\mathrm{IMes}^{\mathrm{Me}} \cdot \mathrm{HCl}(\mathbf{N H C} \mathbf{1}$, $20 \mathrm{~mol} \%, 0.08 \mathrm{mmol}, 29.4 \mathrm{mg}), \mathrm{NaOEt}(0.12 \mathrm{mmol}, 8.2 \mathrm{mg})$, toluene $(1 \mathrm{~mL})$ and $\mathrm{N}-(2-$ bromophenyl)-N-methylmethacrylamide 1a ($0.4 \mathrm{mmol}, 101.2 \mathrm{mg}$) sequentially under nitrogen. The tube was sealed and stirred at $150^{\circ} \mathrm{C}$ for 36 h . After completion, the reaction mixture was diluted with ethyl acetate $(5.0 \mathrm{~mL})$ and filtered through a short pad silica gel washing with ethyl acetate (20 mL). The filtrate was concentrated and purified by silica gel column chromatography to provide the product $\mathbf{2 a}$ in 74% yield.

(E)-3-(2-bromophenyl)-N,2-dimethylacrylamide (2a)

Purified by silica gel column chromatography (Petroleum

2a ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow oil $(81 \mathrm{mg}, 74 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 7.60\left(\mathrm{dd}, J_{1}=8.0, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.33-7.29 (m, 1H), 7.28-7.23 (m, 2H), 7.20-7.14 (m, 1H), $5.99(\mathrm{~s}$, $1 \mathrm{H}), 2.95(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(\mathbf{1 2 5} \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 169.8,136.4,134.0,132.7,132.5,130.4,129.2,127.0,124.1,26.7,14.2$. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ONBr}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$254.0175, found: 254.0179.

(E)-3-(2-chlorophenyl)-N,2-dimethylacrylamide (2b)

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow oil ($50 \mathrm{mg}, 60 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H})$, 7.28-7.26(m, 3H), $6.01(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J$

[^0]129.0, 126.4, 26.7, 14.3. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ONCl}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 210.0680$, found: 210.0682 .

(E)-N,2-dimethyl-3-(2-(trifluoromethyl)phenyl)acrylamide (2c)

2c

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow oil ($55 \mathrm{mg}, 56 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, $\mathbf{C D C l}_{3}$) $\delta 7.67(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.93$ $(\mathrm{d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 169.5,135.0(\mathrm{q}, J=1.8 \mathrm{~Hz}), 134.9,131.5,130.5,130.0,128.5(\mathrm{q}, J=30.0 \mathrm{~Hz}), 127.6$, $125.8(\mathrm{q}, J=5.3 \mathrm{~Hz}), 124.0(\mathrm{q}, J=273.7 \mathrm{~Hz}), 26.6,14.1 .{ }^{\mathbf{1}} \mathbf{F} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-60.8$. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ONF}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 244.0943$, found: 244.0949.

(E)-N,2-dimethyl-3-(2-(trifluoromethoxy)phenyl)acrylamide (2d)

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow oil $(61 \mathrm{mg}, 59 \%$ yield $)$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.34-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, $2.91(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$
$\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 169.6,146.9,134.9,130.7,129.6,129.1,127.4$,
$126.4,121.4,120.4(\mathrm{q}, J=256.3 \mathrm{~Hz}), 26.6,14.2 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(\mathbf{3 7 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta-56.7$.
HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{NF}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 260.0893$, found: 269.0897.

(E)-3-(2-bromo-4-chlorophenyl)-N,2-dimethylacrylamide (2e)

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow solid ($76 \mathrm{mg}, 66 \%$ yield). mp : $62-64{ }^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 7.61(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28$ $(\mathrm{m}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 169.4,134.9,134.5,134.1,132.3,131.6,131.0$,
127.3, 124.4, 26.7, 14.2. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONBrCl}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 287.9785$, found: 287.9792.

(E)-3-(2,4-dibromophenyl)-N,2-dimethylacrylamide (2f)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as yellow solid ($76 \mathrm{mg}, 57 \%$ yield $). \mathrm{mp}$: $73-75^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.75(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}$, $\left.J_{1}=8.2 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 169.3,135.3,134.8,134.2,131.6,131.2,130.1,124.6,121.8,26.6,14.1$. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONBr}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 331.9280$, found: 331.9286.

(E)-3-(2-bromo-4-(trifluoromethyl)phenyl)-N,2-dimethylacrylamide (2g)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as yellow solid ($68 \mathrm{mg}, 57 \%$ yield). mp : $102-104{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 169.1,140.3,135.3,131.5,131.1(\mathrm{q}, J=32.5), 130.6$, $129.6(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.2,122.9(\mathrm{q}, J=271.3 \mathrm{~Hz}), 123.9(\mathrm{q}, J=3.6 \mathrm{~Hz}), 26.7,14.2 .{ }^{19}$ F NMR ($\mathbf{3 7 6} \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ-62.7. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ONBrF}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 322.0054$, found: 322.0057 .
(E)-3-(2-bromo-4-cyanophenyl)-N,2-dimethylacrylamide (2h)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=2: 1$ to $1: 2)$ as white solid $(68 \mathrm{mg}, 57 \%$ yield $) . \mathrm{mp}$: $132-134{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.90(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}$, $\left.J_{1}=8.0, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=4.9 \mathrm{~Hz}$,

3H), 1.97 (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 168.8,141.7,136.0,135.9,131.3$, 130.9, 130.6, 124.6, 117.1, 112.9, 26.8, 14.4. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ON}_{2} \mathrm{Br}^{-}\left([\mathrm{M}-\mathrm{H}]^{-}\right)$: 276.9982, found: 276.9978 .

(E)-3-(2-bromo-4-(trifluoromethoxy)phenyl)-N,2dimethylacrylamide (2i)

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as white solid $(76 \mathrm{mg}, 56 \%$ yield $)$. mp: $75-77^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.49(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19\left(\mathrm{dd}, J_{1}=8.5, J_{2}\right.$ $=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 169.3,148.4(\mathrm{q}, ~ J=1.7 \mathrm{~Hz}), 135.2,134.6,131.4,131.1,125.1,124.3$, $120.2(\mathrm{q}, ~ J=258.5 \mathrm{~Hz}), 119.4,26.7,14.1 .{ }^{\mathbf{1 9}} \mathbf{F} \mathbf{N M R}\left(376 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta-58.0$. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{NBrF}_{3}{ }^{-}\left([\mathrm{M}-\mathrm{H}]^{-}\right): 335.9847$, found: 335.9858 .

(E)-3-(2-bromo-4-methylphenyl)-N,2-dimethylacrylamide (2j)

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow oil ($59 \mathrm{mg}, 55 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.16-$ $7.05(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.96(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.9,139.4,133.4,133.3,133.0,132.5$, 130.1, 127.7, 123.9, 26.6, 20.7, 14.1. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ONBr}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 268.0032 , found: 268.0037 .
(E)-3-(2-bromo-5-methylphenyl)-N,2-dimethylacrylamide (2k)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as white solid ($61 \mathrm{mg}, 57 \%$ yield). mp : $120-122{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.24$ (s,
$1 \mathrm{H}), 7.03(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.29$
($\mathrm{s}, 3 \mathrm{H}$), $1.96(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 169.7,136.7,136.0,133.5$, 132.7, 132.2, 130.9, 129.9, 120.5, 26.6, 20.8, 14.1. HRMS(ESI) Calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ONBr}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 268.0032$, found: 268.0032 .

(E)-3-(2,4-dichlorophenyl)-N,2-dimethylacrylamide (2I)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as white solid ($42 \mathrm{mg}, 43 \%$ yield). mp : $76-78^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23$ (m, 2H), $7.19(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.97(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C} \mathbf{N M R}\left(126 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 169.4,134.7,134.6,134.1,133.1,131.1,129.4,129.3,126.7$, 26.7, 14.3. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONCl}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 244.0291$, found: 244.0297.

(E)-3-(4-bromo-2-chlorophenyl)-N,2-dimethylacrylamide (2m)

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow solid $(74 \mathrm{mg}, 64 \%$ yield $)$. mp: $79-81^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 7.57(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ $\left(\mathrm{dd}, J_{1}=8.3, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ δ 169.4, 134.7, 134.6, 133.5, 132.0, 131.3, 129.6, 129.4, 121.7, 26.7, 14.2. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ONBrCl}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 287.9785$, found: 287.9791.

(E)-N,2-dimethyl-3-(2-(4-methylquinolin-2-yl)phenyl)acrylamide (2n)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as white solid $(95 \mathrm{mg}, 75 \%$ yield $) . \mathrm{mp}$: $104-106^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 2 \mathrm{H})$,
$7.34(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 1.94$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 170.2,158.5,147.6,144.2,140.2,134.7,132.7,132.7,129.9$, 129.7, 129.6, 129.3, 128.2, 127.9, 126.8, 126.2, 123.7, 123.1, 26.4, 18.7, 14.2. HRMS(ESI) Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ON}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 317.1648$, found: 317.1654.

(E)-N,2-dimethyl-3-(naphthalen-1-yl)acrylamide (20)

Purified by silica gel column chromatography (Petroleum ether $/ E t O A c=3: 1$ to $1: 1$) as colorless oil ($76 \mathrm{mg}, 84 \%$ yield $)$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathbf{C D C l}_{3}\right) \delta 7.93-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.82(\mathrm{~m}$, $2 \mathrm{H}), 7.79$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.95(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 169.7,133.7,133.5,133.4,132.5,131.5,128.4$, 128.1, 126.4, 126.1, 126.0, 125.1, 124.8, 26.7, 14.3. HRMS(ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ON}^{+}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 226.1226$, found: 226.1231 .

(E)-3-(5-bromonaphthalen-1-yl)-N,2-dimethylacrylamide (2p)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as yellow solid ($90 \mathrm{mg}, 74 \%$ yield $)$. mp: $93-95^{\circ} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 8.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-$ $7.76(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}$, $1 \mathrm{H}), 2.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 169.4$, 134.1, 133.9, 132.7, 132.1, 131.9, 130.1, 127.2, 127.2, 126.4, 126.3, 124.7, 123.3, 26.7, 14.2. HRMS(ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ONBr}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 304.0332, found: 304.0337.

(E)-N,2-dimethyl-3-(naphthalen-2-yl)acrylamide (2q)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as white solid $(33 \mathrm{mg}, 36 \%$ yield $)$. $\mathrm{mp}: 111-113{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.87-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.43(\mathrm{~m}$, $\left.1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.19(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C} \mathbf{~ N M R ~ (1 2 5 ~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right)$ $\delta 170.3,133.8,133.7,133.2,132.7,132.3,128.6,128.1,127.9,127.7,127.0,126.4,126.4,26.8$, 14.4. HRMS(ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ON}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 226.1226$, found: 226.1231.
(E)-N,2-dimethyl-3-(pyridin-2-yl)acrylamide (2r)

Purified by silica gel column chromatography (Petroleum ether $/ \mathrm{EtOAc}=3: 1$ to $1: 1$) as yellow oil $(37 \mathrm{mg}, 52 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR (500 MHz, $\mathbf{C D C l}_{3}$) $\delta 8.64-8.61(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.14$ (m, 1H), $6.49(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.33(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(\mathbf{1 2 5} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right) \delta 170.2,155.3,149.1,136.1,135.7,131.6,125.3,122.0,26.6,14.2$. HRMS(ESI) Calculated for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ON}_{2} \mathbf{N a}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 199.0842, found: 199.0847.

(E)-N-methyl-3-(naphthalen-1-yl)-2-phenylacrylamide (2s)

Purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) as yellow solid $(17 \mathrm{mg}, 15 \%$ yield $)$. mp: $148-150{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.42$ $(\mathrm{m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.66$ $(\mathrm{s}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta$ 167.6, 137.1, 135.7, 135.2, $133.2,132.6,132.1,130.1,128.8,128.4,128.2,128.1,127.4,126.2,125.8,124.9,124.3,26.8$. HRMS(ESI) Calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ONNa}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 310.1202$, found: 310.1206.

3.3 Gram-scale reaction

Experimental procedure:

To a 250 ml flame-dried Schlenk tube containing a stirring bar was added $\mathrm{IMes}^{\mathrm{Me}} \cdot \mathrm{HCl}(1 \mathrm{mmol}$, 370 mg), NaOEt ($1.05 \mathrm{mmol}, 71.4 \mathrm{mg}$), N -(2-bromo-5-methylphenyl)-N-methylmethacrylamide $\mathbf{1 k}(5 \mathrm{mmol}, 1335 \mathrm{mg})$ and toluene $(12.5 \mathrm{~mL})$ sequentially under nitrogen. The tube was sealed and stirred at $150{ }^{\circ} \mathrm{C}$ for 36 h . After completion, the reaction mixture was extracted with ethyl acetate. Then, the solvent was removed under vacuum and the residue was purified by silica gel column chromatography (Petroleum ether/EtOAc $=3: 1$ to $1: 1$) to provide the product $\mathbf{2 k}$ in 58% yield (0.78 g , off white solid).

4. Mechanistic Experiments

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added $\mathrm{IMes}^{\mathrm{Me}} \cdot \mathrm{HCl}(0.2$ mmol, 74 mg), $\mathrm{NaOEt}(0.2 \mathrm{mmol}, 13.6 \mathrm{mg})$, toluene $(1 \mathrm{~mL})$ and N -methyl- N -(naphthalen-1yl)methacrylamide ($0.2 \mathrm{mmol}, 45 \mathrm{mg}$) sequentially under nitrogen. The tube was sealed and stirred at $150^{\circ} \mathrm{C}$ for 12 h . After completion, the reaction mixture was directly analyzed by HRMS and the possible intermediate \mathbf{B} was detected which might be involved in the catalytic cycle.

HRMS(ESI) Calculated for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{ON}_{3}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 558.3479 , found: 558.3474 .

HRMS (ESI) spectra for the intermediate \mathbf{B}

To a 25 ml flame-dried Schlenk tube containing a stirring bar was added NHC $1(0.08 \mathrm{mmol}$, $29.4 \mathrm{mg}), \mathrm{NaOEt}(0.12 \mathrm{mmol}, 8.2 \mathrm{mg})$, toluene (1 mL), N -(2-bromo-4-cyanophenyl)-Nmethylmethacrylamide $\mathbf{1 h}(0.2 \mathrm{mmol}, 55.6 \mathrm{mg})$, and N -methyl-N-(naphthalen-1-yl)-2phenylacrylamide 1s $(0.2 \mathrm{mmol}, 57.4 \mathrm{mg})$ sequentially under nitrogen. The tube was sealed and stirred at $150^{\circ} \mathrm{C}$ for 36 h . After completion, the reaction mixture was diluted with ethyl acetate (5.0 mL) and filtered through a short pad silica gel washing with ethyl acetate (20 mL). The filtrate was concentrated and purified by silica gel column chromatography to provide the products $\mathbf{2 h}$ and 2s in 28% and 5% yields respectively. However, the cross product $\mathbf{2 p}$ failed to be detected.

5. X-Ray Crystallography Data for 2e

Table 1. Crystal data and structure refinement for $2 \mathbf{e}$.

Identification code	2 e	
Empirical formula	C 11 H 11 Br ClNO	
Formula weight	288.57	
Temperature	173.0 K	
Wavelength	$1.34139 \AA$	
Crystal system	Orthorhombic	
Space group	$\mathrm{Pca} 2_{1}$	$\beta=90^{\circ}$.
Unit cell dimensions	$\mathrm{a}=9.7336(5) \AA$	
	$\mathrm{b}=9.4426(5) \AA$	
	$\mathrm{c}=12.9051(8) \AA$	
Volume		
Z	$1186.11(11) \AA^{3}$	
Density (calculated)	4	
Absorption coefficient	$1.616 \mathrm{Mg} / \mathrm{m}^{3}$	
F(000)	$4.460 \mathrm{~mm}^{-1}$	
Crystal size	576	
Theta range for data collection	$0.06 \mathrm{x} 0.05 \mathrm{x} 0.02 \mathrm{~mm}^{3}$	

Index ranges	$-10<=\mathrm{h}<=11,-11<=\mathrm{k}<=6,-15<=1<=15$
Reflections collected	5057
Independent reflections	$1866[\mathrm{R}(\mathrm{int})=0.0383]$
Completeness to theta $=53.594^{\circ}$	98.3%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7508 and 0.4809
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$1866 / 1 / 138$
Goodness-of-fit on F^{2}	1.044
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0278$, wR2 $=0.0697$
R indices (all data)	$\mathrm{R} 1=0.0283, \mathrm{wR} 2=0.0702$
Absolute structure parameter	$0.05(2)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.315 and -0.431 e. \AA^{-3}

6. References

[1] Y. Ping, K. Wang, Q. Pan, Z. Ding, Z. Zhou, Y. Guo and W. Kong, ACS Catal. 2019, 9, 7335.
[2] V. G. Correia, J. C. Abreu, C. A. E. Barata and L. H. Andrade, Org. Lett. 2017, 19, 1060.
[3] X. Yi, S. Lei, W. Liu, F. Che, C. Yu, X. Liu, Z. Wang, X. Zhou and Y. Zhang, Org. Lett. 2020, 22, 4583.
[4] X. Liu, B. Li and Z. Gu, J. Org. Chem. 2015, 80, 7547.
[5] J. Zhao, P. Li, Y. Xu, Y. Shi and F. Li, Org. Lett. 2019, 21, 9386.
[6] M.-Z. Zhang, X. Wang, M.-Y. Gong, L. Chen, W.-B. Shi, S.-H. He, Y. Jiang and T. Chen, Org. Biomol. Chem. 2018, 16, 5197.
[7] W. Kong, M. Casimiro, N. Fuentes, E. Merino and C. Nevado, Angew. Chem. Int. Ed. 2013, 52, 13086.
[8] (a) Y.-L. Li, J.-B. Wang, X.-L. Wang, Y. Cao and J. Deng, Eur. J. Org. Chem. 2017, 6052. (b) D. B. Bagal, S.-W. Park, H.-J. Song and S. Chang, Chem. Comтип. 2017, 53, 8798.

7. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

2a


```
ぶふ
```


2c

ZBIT-WZ-850-F
∞
$\stackrel{\infty}{\circ}$
$\stackrel{\circ}{i}$
i

$2 \mathrm{~B} 1 \mathrm{~T}-\mathrm{WZ}-854-\mathrm{F}$
2d

ぶゥ

2g

ZBIT-WZ-880-F
M
O
i

2g

2h

ZBIV-WZ-954-F
$\stackrel{8}{\stackrel{2}{2}}$

2j

2j

21

$200 \quad 190 \quad 180$

2n

20

2p

2q

$\underset{i}{\text { 筞 }}$

$2 r$

必

2s

[^0]: $=1.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 2 5} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta 169.8,134.6,134.4,134.0,130.4,130.4,129.5$,

