# Electronic Supplementary Information for Visible Lightinduced Alkylpyridylation of Styrenes via a Reductive Radical Three-component Coupling

#### Jing-miao Yu,<sup>a</sup> Li-wen Zhu,<sup>b</sup> Xiao-yuan Hong,<sup>b</sup> Huan Gao,<sup>b</sup> Ting-ting Chen\*<sup>b</sup>

<sup>a</sup> School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China

<sup>b</sup>School of Pharmaceutical and Materials Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, People's Republic of China

\* Corresponding Author e-mail: chentt@tzc.edu.cn.

- 1. General information
- 2. General Procedure
- 3. NMR spectra

### **1. General Information**

All chemical reagents are obtained from commercial suppliers and used without further purification. All unknown compounds are characterized by <sup>1</sup>H NMR, <sup>13</sup>C NMR, MS, HRMS. Irradiation of visible light was performed with a 90W Kessil A360W Blue LED lamp. Analytical thin-layer chromatography are performed on glass plates precoated with silica gel impregnated with a fluorescent indicator (254 nm), and the plates are visualized by exposure to ultraviolet light.<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra are recorded on an AVANCE 400 Bruker spectrometer operating at 400 MHz and 100 MHz in CDCl<sub>3</sub>, respectively, and chemical shifts are reported in ppm. Multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). High-resolution mass spectra are taken on a Waters SYNAPT G2-Si instrument in the electrospray ionization (ESI) mode.

## 2. General Procedure

General procedure for visible light-induced alkylpyridylation of styrenes via a reductive radical three-component coupling: A 10 mL reaction vessel with a magnetic stirring bar was equipped with alkenes (0.2 mmol), 4-cyano pyridine (0.3 mmol), NHPI esters (0.3 mmol), HE (0.3 mmol) and MTBE (2 mL). The mixture was irradiated with a 90 W blue LED lamp (1 cm away with cooling from a fan), and stirred under Ar atmosphere at r.t. overnight. After the solvent had been removed under reduced pressure, the residue was purified by flash chromatography using PE-AcOEt (10:1-8:1, v/v) as the eluent to 1,1-diarylalkane derivatives.

## 3. NMR Spectra of All Products



<sup>1</sup>H NMR Spectrum of Compound 1 (400MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR Spectrum of Compound 1 (100MHz, CDCl<sub>3</sub>)





-10

ō0   130 120



5 / 33



<sup>13</sup>C NMR Spectrum of Compound 4 (100MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR Spectrum of Compound 5 (100MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR Spectrum of Compound 6 (400MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR Spectrum of Compound 7 (100MHz, CDCl<sub>3</sub>)











<sup>1</sup>H NMR Spectrum of Compound **10** (400MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR Spectrum of Compound **11** (100MHz, CDCl<sub>3</sub>)











<sup>1</sup>H NMR Spectrum of Compound **14** (400MHz, CDCl<sub>3</sub>)











<sup>1</sup>H NMR Spectrum of Compound **16** (400MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR Spectrum of Compound **16** (100MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR Spectrum of Compound 17 (400MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR Spectrum of Compound **18** (400MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR Spectrum of Compound **18** (377MHz, CDCl<sub>3</sub>)



<sup>13</sup>C NMR Spectrum of Compound 18 (100MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR Spectrum of Compound **19** (400MHz, CDCl<sub>3</sub>)



<sup>19</sup>F NMR Spectrum of Compound **19** (377MHz, CDCl<sub>3</sub>)













<sup>1</sup>H NMR Spectrum of Compound **22** (400MHz, CDCl<sub>3</sub>)



F80 7 - 5 5. 00 T 34 5.0 4.5 f1 (ppm) 4.0 5.5 2.0 8.0 7.5 7.0 6.5 6.0 3. 5 3.0 2.5 1.5 1.0 0.0 0. ō



9.0



<sup>13</sup>C NMR Spectrum of Compound **23** (100MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR Spectrum of Compound 24 (400MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR Spectrum of Compound **25** (400MHz, CDCl<sub>3</sub>)







<sup>1</sup>H NMR Spectrum of Compound **27** (400MHz, CDCl<sub>3</sub>)



<sup>1</sup>H NMR Spectrum of Compound **28** (400MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR Spectrum of Compound **29** (100MHz, CDCl<sub>3</sub>)