Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Rh(III)-Catalyzed Olefination to Build Diverse Oxazole Derivatives from Functional Alkynes

Yuan He, Ting Zheng, Yin-Hui Huang and Lin Dong*

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

dongl@scu.edu.cn

Table of Contents

1. General Information2
2. Material2
3. General Procedure for the Synthesis of Oxazole Derivatives
4. Optimization of the Reaction Conditions
5. Synthetic Applications5
6. Mechanism Study7
7. References
8. X-ray Data of Compound 3aa and Sample Preparation11
9. Characterization Data and NMR Spectra of Oxazole Derivatives 19
10. ¹ H , ¹³ C and ¹⁹ F NMR spectra

1. General Information

All reactions were carried out in high-pressure reaction tube. Column chromatography was performed with silica gel (200–300 mesh). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker 400 MHz and 100MHz instrument. Spectra were reported relative to Me₄Si (δ 0.0 ppm), CDCl₃ (δ 7.26 ppm). ¹³C NMR were reported relative to CDCl₃ (δ 77.16 ppm). Splitting patterns are designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR and HRMS.

2. Material

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Solvents were dried over sodium (for THF and ether) and CaH₂ (for toluene, DCM and DCE) by refluxing for overnight and freshly distilled prior to use. Methanol was dried and distilled from magnesium powder under nitrogen atmosphere. 2-aryloxazoles was prepared following literature procedures^[1]. Alkynes were purified by column chromatography (petroleum ether) before each used.

General Procedure A for the Synthesis of Alkynes^[2]

To a solution of the allylic halide (1.5 equiv), Na₂SO₃ (0.5 equiv), CuI (2 mol%), K₂CO₃ (1 equiv) and 1 drop of DBU in DMSO, alkyne derivatives (1 equiv) were added and stirred at 30 °C overnight. After acidic work up, the mixture was quenched with water and extracted with dichloromethane (3×20 mL), the combined organic layer was washed with saturated aqueous NaHCO₃ and brine, then the combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether) afforded the product **2**.

General Procedure B for the Synthesis of Alkynes^[3]

$$R_{l}^{\square} \xrightarrow{X} + R \xrightarrow{Pd(PPh_3)_2Cl_2 (5 \text{ mol}\%)} R \xrightarrow{Pd(Ph_3)_2Cl_2 (5 \text{ mol}\%)} R \xrightarrow{P$$

A mixture of the Pd(PPh₃)₂Cl₂ (5 mol%), CuI (5 mol%), aryl halide or bromide (1.0 equiv), Degassed Et₃N and alkyne derivatives (1.1 equiv) were added and stirred at 60 °C overnight under Ar atmosphere. The mixture was quenched with aqueous saturated NH₄Cl and extracted with EtOAc (3 × 20 mL), the combined organic layer was washed with brine and then the combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether) afforded the product **2**.

General Procedure B for the Synthesis of Alkynes^[4]

A mixture of alkyne (1.0 equiv) in THF (0.25 M) was cooled to -78 °C and a solution of *n*-BuLi (1.0 equiv, 1.6 M in hexanes) was added. The reaction mixture was allowed to warm to room temperature. Then NaI (0.1 equiv.) and the corresponding bromoethylbenzene (1.2 equiv) were added. The mixture was heated to reflux. The reaction mixture was cooled to room temperature and quenched by addition of ammonium chloride solution. After completion of the reaction, extracted with EtOAc (3×20 mL), the combined organic layer was washed with brine and then the combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether) afforded the product **2**.

3. General Procedure for the Synthesis of Oxazole Derivatives

A mixture of 2-aryloxazolines 1 (0.1 mmol), acetylene derivatives 2 (2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (7 mol%), PhOCH₂COOH (1.5 equiv), and MnO₂ (0.3 equiv) were added to an oven dried high pressure tube under Ar atmosphere. Toluene (1 mL) was then added by syringe. The reaction mixture was stirred at 80 °C until raw materials disappear (monitored by TLC). After removal of the volatiles under vacuum, the crude product was purified by column chromatography on silica gel afforded the pure product **3**.

4. Optimization of the Reaction Conditions

Table S1. The effect of catalysis on the reaction	fable S1	le S1. The effect	t of catalysts or	1 the reaction ^a
---	----------	-------------------	-------------------	-----------------------------

Entry	Catalyst	Acid	Yield
1	[Cp*IrCl ₂] ₂	PhOCH ₂ COOH	ND
2	[RuCl ₂ (p-cymene)] ₂	PhOCH ₂ COOH	ND
3	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	PhOCH ₂ COOH	56%
4	[Cp*RhCl2]2	PhOCH ₂ COOH	ND
5^b	[Cp*RhCl ₂] ₂	PhOCH ₂ COOH	27%
6	Cp*Rh(OAc)2·H2O	PhOCH ₂ COOH	28%
7	Cp*Co(CO)I2	PhOCH ₂ COOH	ND

^aReaction conditions: 1a (0.05 mmol), 2a (2.5 equiv), catalyst (8 mol%), PhOCH₂COOH (1.5 equiv), toluene

(0.5 mL), 100 °C, 24 h under Ar. ^bAgSbF₆ (20 mol%) was added.

N O	+ <u>catalyst, addi Ph solvent</u>	tive Ph	Ph
1a	2a	3aa	
Entry	Catalyst	Solvent	Yield
1	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	DCE	42%
2	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	DCM	50%
3	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	Toluene	56%
4	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	CH ₃ OH	22%
5	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	CH ₃ CN	10%
6	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	THF	36%
7	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂	1,4-Dioxane	19%
8	Cp*Rh(CH3CN)3(SbF6)2	Chlorobenzene	54%

Table S2. The effect of solvents on the reaction^{*a*}

^{*a*}Reaction conditions: **1a** (0.05 mmol), **2a** (2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (8 mol%), PhOCH₂COOH (1.5 equiv), solvent (0.5 mL), 100 °C, 24 h under Ar.

	N O + Ph	catalyst, additiv solvent		Ph
	1a 2a		3aa	
Entry	Acid	Additive	Temp.	Yield
1	PhOCH ₂ COOH	-	100	56%
2	HOAc	-	100	18%
3	PhCOOH	-	100	17%
4	PhCH ₂ COOH	-	100	45%
5	ClCH ₂ COOH	-	100	36%
6	Na ₂ CO ₃	-	100	ND
7	PhOCH ₂ COOH	-	80	61%
8	PhOCH ₂ COOH	-	120	29%
9	PhOCH ₂ COOH	AgO	80	65%
10	PhOCH ₂ COOH	Ag ₂ O	80	71%
11	PhOCH ₂ COOH	AgOAc	80	66%
12	PhOCH ₂ COOH	Cu(OAc) ₂	80	39%
13	PhOCH ₂ COOH	CuO	80	65%
14	PhOCH ₂ COOH	Cu ₂ O	80	52%
15	PhOCH ₂ COOH	MnO ₂	80	72%

Table S3. The effect of acids, additives and temperature on the reaction^{*a*}

^{*a*}Reaction conditions: conditions: **1a** (0.05 mmol), **1a** (2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (8 mol%), PhOCH₂COOH (1.5 equiv), additive (0.3 equiv), toluene (0.5 mL), 100 °C, 24 h under Ar.

Table S4. The effect of equivalant on the reaction^a

Entry	Catalyst	Acid	Additive	Yield
1	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1	MnO ₂ /0.3	69%
2	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	77%
3	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/3	MnO ₂ /0.3	75%
4	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1.5	MnO ₂ /0.5	71%
5	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1.5	MnO ₂ /1	72%
6^b	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	75%
7 ^c	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	75%
8	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /9	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	76%
9	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /7	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	80%
10	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /6	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	75%
11^{d}	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	72%
12^{e}	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	PhOCH ₂ COOH/1.5	MnO ₂ /0.3	51%
13	Cp*Rh(CH ₃ CN) ₃ (SbF ₆) ₂ /8	-	-	NR

^{*a*}Reaction conditions: conditions: **1a** (0.05 mmol), **2a** (2.5 equiv), toluene (0.5 mL), 80 °C, 34 h under Ar. ^{*b*}**2a** (3 equiv). ^{*c*} under Air. ^{*d*} 60 °C, ^{*e*} 100 °C.

Table S5. The scope of alkynes^a

5. Synthetic Applications

Synthesis of 4

To a stirred solution of **3as** (0.026 mmol, 15.0 mg, 1.0 equiv) in MeOH (1.0 mL), con HCl (0.1 mL) was added, and the mixture was stirred at room temperature. After completion of the reaction (monitored by TLC), the mixture was quenched with water and extracted with ethyl acetate ($3 \times 20 \text{ mL}$), the combined organic layer was washed with brine and then the combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. Purification of the residue by column

chromatography (petroleum ether/ethyl acetate = 1/1, v/v) afforded the product **4** as a colorless oil (9.8 mg, 79% yield).

Synthesis of 5

To a stirred solution of **3aa** (0.05 mmol, 23.6 mg, 1.0 equiv) in EA (1.0 mL), DMSO (8.6 μ L, 1.2 mmol) and aqueous hydrobromic acid (48%, 40.4 mg, 2.4 mmol) was added at 60 °C for 0.5 h, after completion of the reaction (monitored by TLC), the mixture was concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) afforded the product **5** as a brownish red solid (18.1 mg, 46% yield)^[5].

Synthesis of 6

A mixture of **3ra** (0.057 mmol, 25.4 mg, 1.0 equiv), phenylacetylene (7.0 mg, 1.2 equiv), $Pd(PPh_3)_2Cl_2$ (2.0 mg, 5 mol%), CuI (1.1 mg, 10 mol%), and Et₃N (0.5 mL) were added to an oven dried high pressure tube under Ar atmosphere. The reaction mixture was stirred at 60 °C until raw materials disappear (monitored by TLC). The mixture was quenched with saturated ammonium chloride and extracted with ethyl acetate (3 × 20 mL), the combined organic layer was washed with brine and then the combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate = 10/1, v/v) afforded the product 6 as a colorless oil (21.5 mg, 91% yield)^[3].

Synthesis of 7

A mixture of **3xa** (0.056 mmol, 29.0 mg, 1.0 equiv), NaOH (1M in H₂O, 0.17 mL, 3 equiv), THF (0.3 mL), MeOH (0.3 mL) were added to an oven dried high-pressure tube under Ar atmosphere. The reaction mixture was stirred at 50 °C overnight. The mixture was cooled to room temperature, and con HCl (12 M, 14 μ L, 3 equiv) was added and the mixture was concentrated in

vacuo. The mixture was quenched with water and extracted with ethyl acetate $(3 \times 20 \text{ mL})$, the combined organic layer was washed with brine and then the combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo to give the product 7 as a white solid (26.1 mg, 93% yield).

Synthesis of 8

A mixture of **3ja** (0.15 mmol, 79.0 mg, 1.0 equiv), LiOH (18.0 mg, 5 equiv), 1,4-dioxane (0.5 mL), H₂O (0.5 mL) were added to an oven dried high pressure tube under Ar atmosphere. The reaction mixture was stirred at room temperature overnight. The mixture was cooled to 0 °C, and con HCl (12 M, 63 μ L, 5 equiv) was added. The mixture was quenched with water and extracted with ethyl acetate (3 × 20 mL), the combined organic layer was washed with brine and then the combined organic layers were dried (MgSO4), filtered, and concentrated in vacuo to give the crude product acid as a white solid (67.2 mg, 87% yield).

A 25 mL oven-dried tube flask with a stir bar was purged with argon and charged with the crude product acid (0.13 mmol, 67.2 mg) in anhydrous CH₂Cl₂ (1.0 mL), which was added DMF (1 drop) at 0 °C and (COCl)₂ (13.2 μ L, 1.2 equiv) was subsequently added dropwise by syringe. After 15 min, the reaction mixture was allowed to warm to room temperature overnight. After removal of the volatiles under vacuum, the crude product acid chloride was used directly without any further purification. To a solution of the propargylic amine (16.7 μ L, 2 equiv) in anhydrous CH₂Cl₂ (2.0 mL) at 0 °C, Et₃N (27.1 μ L, 1.5 equiv) and DMAP (0.3 mg, 2 mol%) were added, and the acid chloride (1.0 equiv) was added dropwise at 0 °C. After 15 min, the mixture was stirred at room temperature overnight. After the reaction was completed, the mixture was quenched with water and extracted with CH₂Cl₂ (3 × 20 mL), the combined organic layer was washed with brine and then the combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. Purification of the residue by column chromatography (petroleum ether/ethyl acetate = 3/1, v/v) afforded the product **8** as a colorless oil (35.0 mg, 41% yield).

6. Mechanism Study

(1) Intermolecular competition experiments

The intermolecular competition reaction between Me- and Cl- substituent on the para-position of aryl ring with 2a under standard conditions reveled that the electron-poor substituent exhibited a little bit better reaction activity in this competition reaction (eq 1). Furthermore, **3ab** and **3ae** showed no obvious reactivity difference in this reaction system, and the little mixed product with alkenes that would come from the two alkynes has been obtained, which was determined by LC-MS, exact mass: 520.2407, found: 520.2. (eq 2).

the little mixed product was determined by LC-MS

(1) H/D exchange experiments

Deuterium-labeling experiments were performed to study the mechanism of this reaction. **1a** (15.9 mg, 0.1 mmol), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) were stirred in toluene (1.0 mL) and D₂O (0.1 mL) under Ar atmosphere at 80 °C for 12 h. After completion, the reaction mixture was purified by column chromatography (petroleum ether/ethyl acetate =10/1, v/v) to afford the product **1a**+[**D**₂]-**1a**. The deuterium rate (78%) was obtained from ¹H NMR. Deuterium was observed at both *ortho*-positions of phenyl ring, which indicated the possibility of the reaction pathway via *ortho* C–H activation.

(2) Kinetic isotope experiments Intermolecular kinetic isotope effect:

The kinetic isotope effect (KIE) study was conducted. Two oven-dried 25 mL tube were separately charged with **1a** (8.0 mg, 0.05 mmol), or **[D5]-1a** (8.2 mg, 0.05 mmol), and (4-methylpent-4-en-1-yn-1-yl)benzene **2a** (19.5 mg, 2.5 equiv) were stirred at 80 °C for 2 h under standard conditions. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:15) to give **3aa** and **[D]-3aa** in 21% and 10% respectively. The KIE value was determined using isolated yields to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D} = 2.1$, thus indicating that the first C-H bond cleavage might be involved in the

product determining step.

Intramolecular kinetic isotope effect:

In addition, the kinetic isotope effect (KIE) study was conducted. An oven-dried 25 ml tube **1a** (8.0 mg, 0.05 mmol), [**D**₅]-**1a** (8.2 mg, 0.05 mmol), and (4-methylpent-4-en-1-yn-1-yl)benzene **2a** (39.0 mg, 2.5 equiv) were stirred at 80 °C for 5 h under standard conditions. After completion, the reaction mixture was purified by flash chromatography eluting with ethyl acetate and petroleum ether (1:15) to give **3aa** + [**D**]-**3aa**. The ratio of two products was determined by ¹H NMR integration method to give kinetic isotopic effect (KIE) $k_{\rm H}/k_{\rm D}$ =2.0, thus indicating that the first C-H bond cleavage might be involved in the product determining step.

7. References

(1) He, Y.; Liao, X. Z.; Dong, l.; Chen, F. E. Org. Biomol. Chem. 2021, 19, 561-567.

(2) Lin, H.; Dong, L. Org. Lett. 2016, 18, 5524-5527.

(3) Huang, L., Rudolph, M., Rominger, F., Hashmi, A. S. K. Angew.Chem. Int. Ed. 2016, 55, 4808-4813.

(4) Xu, J.; Wang, Y. L.; Gong, T. J., Xiao, B., Fu, Y. Chem. Commun., 2014, 50, 12915–12918.

(5) Song, S.; Li, X. W.; Sun, X., Yuan, Y., Jiao, N. Green Chem., 2015, 17, 3285–3289.

8. X-ray Data of Compound 3ya and Sample Preparation

8.1 Sample preparation and crystal measurement

Single crystals suitable for X-ray diffraction experiment were obtained by slow evaporation of EA/petroleum ether (1:20, V/V) solution containing the corresponding compound **3ya**. The crystal was kept at 298.0 K during data collection. Using Olex2 [1], the structure was solved with the SHELXT [2] structure solution program using Intrinsic Phasing and refined with the SHELXL [3] refinement package using Least Squares minimisation.

8.2 X-ray data of compound 3ya

Figure S1: X-ray structure of 3ya.

Table 1 Crystal data and structure refinement for 3ya.

Identification code	3ya
Empirical formula	C ₃₃ H ₃₁ NO
Formula weight	457.59
Temperature/K	298.0
Crystal system	triclinic
Space group	P-1
a/Å	9.8028(4)
b/Å	11.5069(5)
c/Å	12.8022(6)
α/°	65.998(3)
β/°	84.345(3)
γ/°	84.332(3)
Volume/Å ³	1310.06(10)
Z	2
$\rho_{calc}g/cm^3$	1.160
μ/mm^{-1}	0.529
F(000)	488.0
Crystal size/mm ³	$0.53 \times 0.44 \times 0.24$
Radiation	CuKa ($\lambda = 1.54178$)

2Θ range for data collection/ ^c	7.574 to 134.106
Index ranges	$\textbf{-10} \leq h \leq 11, \textbf{-13} \leq k \leq 13, \textbf{-15} \leq l \leq 15$
Reflections collected	33779
Independent reflections	$4597 \; [R_{int} = 0.0718, R_{sigma} = 0.0415]$
Data/restraints/parameters	4597/0/337
Goodness-of-fit on F ²	1.112
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0556, \mathrm{wR}_2 = 0.1616$
Final R indexes [all data]	$R_1 = 0.0659, wR_2 = 0.1707$
Largest diff. peak/hole / e Å ⁻³	0.25/-0.21

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å2×10³) for 3ya. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom	x	у	Z	U(eq)
C1	6496(2)	6880(3)	2929(2)	82.8(7)
C2	8926(3)	-609(3)	3692(3)	123.5(11)
C33	6759.9(14)	1843.4(14)	4041.8(12)	41.3(4)
C32	7991.4(14)	3482.8(14)	4237.2(12)	41.5(4)
O3	8330.8(18)	3319(5)	1640.8(17)	64.3(9)
N4	6675(5)	4693(4)	1716(4)	62.1(8)
C30	2237(2)	1473(2)	663(2)	80.2(7)
C31	1733(2)	1795(2)	1557(2)	75.3(6)
C3	2620.6(18)	1966.7(17)	2250.5(17)	60.2(5)
C4	4035.8(16)	1812.1(15)	2060.9(14)	49.4(4)
C5	4952.7(15)	2072.5(15)	2786.9(13)	47.4(4)
C6	6019.4(15)	1363.3(14)	3340.9(12)	43.6(4)
C7	7386.9(14)	3003.9(14)	3550.9(12)	40.3(4)
C8	8756.3(15)	4667.7(14)	3741.4(12)	42.2(4)
С9	9813.6(15)	4751.7(15)	2974.6(13)	46.1(4)
C10	10771.9(16)	5775.6(16)	2421.2(12)	46.5(4)
C11	12168.6(17)	5443.0(19)	2316.3(15)	56.2(4)
C12	13120(2)	6351(2)	1833.2(17)	68.3(5)
C13	12698(2)	7613(2)	1418.8(17)	69.7(6)
C14	3613(3)	1324(2)	467(2)	83.6(7)
C15	4517(2)	1496(2)	1152.9(17)	69.9(5)
C16	11335(2)	7964(2)	1479.5(18)	73.6(6)
C17	10364.8(19)	7061.3(17)	1968.4(16)	58.8(5)
C18	8356.0(16)	5637.4(16)	4253.5(13)	47.9(4)
C19	6926.2(18)	6263.1(16)	4042.0(15)	55.4(4)
C21	7912.6(16)	2781.1(16)	5419.7(13)	50.1(4)

Atom	x	у	z	U(eq)
C22	7325.5(17)	1626.8(17)	5899.7(13)	52.6(4)
C23	6772.6(16)	1146.0(16)	5219.0(13)	49.9(4)
C24	7437.5(16)	3709.8(15)	2294.2(12)	45.0(4)
C25	8092(3)	4173(3)	545.9(16)	84.2(7)
C26	7089(3)	4980(2)	593.9(17)	84.6(7)
C27	6467.3(17)	36.1(16)	3418.9(16)	54.7(4)
C28	7935(2)	-109.2(19)	2975(2)	71.2(6)
C29	8210(2)	331(3)	1738(2)	93.8(8)
O3A	6470(50)	4760(50)	1900(30)	64.3(9)
N4A	8450(60)	3870(80)	1540(40)	62.1(8)
C20	5981(8)	6043(17)	4981(6)	97(3)
C20A	6323(17)	6638(16)	4933(8)	73(3)

Table 3 Anisotropic Displacement Parameters (Å $^2 \times 10^3$) for 3ya. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U_{11} + 2hka^* b^* U_{12} + ...].$

Atom	U11	U22	U33	U23	U13	U12
C1	65.2(13)	109.2(17)	83.8(14)	-47.6(13)	-21.9(11)	6.3(12)
C2	70.4(16)	149(3)	152(3)	-65(2)	-31.6(17)	33.9(18)
C33	32.6(7)	44.0(8)	42.1(8)	-12.3(6)	-2.8(6)	-1.4(6)
C32	34.0(7)	48.8(8)	40.1(8)	-16.1(6)	-5.0(6)	-0.5(6)
O3	73.7(10)	75(2)	43.0(8)	-24.9(10)	5.0(7)	-1.7(10)
N4	79(2)	56.5(11)	42.6(18)	-12.3(11)	-10.6(13)	6.2(12)
C30	81.2(15)	79.2(14)	82.6(15)	-26.0(12)	-35.4(12)	-14.3(11)
C31	48.1(11)	72.2(13)	99.0(16)	-22.3(12)	-22.6(10)	-9.1(9)
C3	49.5(10)	57.2(10)	70.4(11)	-20.9(9)	-10.4(8)	-2.3(8)
C4	46.5(9)	45.7(8)	50.0(9)	-10.8(7)	-10.0(7)	-6.5(7)
C5	44.7(9)	46.1(8)	49.0(9)	-15.7(7)	-5.3(7)	-4.7(7)
C6	36.9(8)	45.7(8)	44.0(8)	-13.3(6)	0.7(6)	-7.2(6)
C7	34.5(7)	46.2(8)	37.2(7)	-13.9(6)	-2.9(6)	-1.0(6)
C8	38.0(8)	50.5(9)	38.1(7)	-17.0(6)	-7.1(6)	-2.5(6)
С9	44.2(8)	54.2(9)	44.1(8)	-23.2(7)	-3.7(6)	-5.4(7)
C10	45.0(8)	60.1(10)	38.4(8)	-23.3(7)	0.6(6)	-8.9(7)
C11	47.3(9)	67.4(11)	57.9(10)	-29.7(8)	2.3(7)	-6.9(8)
C12	48.9(10)	94.6(15)	68.2(12)	-39.3(11)	7.3(8)	-17.6(10)
C13	66.4(12)	83.8(15)	62.9(11)	-31.9(10)	17.0(9)	-32.5(10)
C14	87.5(16)	105.9(18)	69.6(13)	-43.9(13)	-17.9(11)	-10.2(13)
C15	56.0(11)	96.3(15)	60.9(11)	-33.9(11)	-6.1(8)	-7.8(10)
C16	81.9(15)	60.1(11)	69.9(12)	-18.1(10)	11.4(10)	-15.2(10)
C17	51.5(10)	60.2(11)	58.2(10)	-17.5(8)	1.7(8)	-6.2(8)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 3ya. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C18	46.1(9)	59.1(9)	44.2(8)	-26.0(7)	-3.3(6)	-5.6(7)
C19	52.8(10)	55.6(10)	61.3(10)	-27.6(8)	-5.2(8)	0.3(8)
C21	46.2(9)	63.4(10)	38.3(8)	-16.6(7)	-8.4(6)	-3.2(7)
C22	48.4(9)	61.3(10)	36.5(8)	-6.8(7)	-6.2(6)	-3.5(7)
C23	42.8(9)	52.5(9)	43.9(8)	-7.9(7)	-2.3(6)	-6.4(7)
C24	48.9(9)	47.4(9)	38.4(8)	-15.0(7)	-2.1(6)	-12.0(7)
C25	107.7(19)	103.2(18)	36.8(10)	-23.2(10)	6.7(10)	-18.0(15)
C26	124(2)	75.1(14)	39.7(10)	-1.6(9)	-21.1(11)	-16.6(14)
C27	49.1(9)	47.6(9)	64.4(10)	-18.4(8)	-6.6(8)	-4.7(7)
C28	52.2(11)	59.8(11)	109.6(17)	-42.6(11)	-10.3(11)	3.5(8)
C29	71.8(15)	108.6(19)	116(2)	-64.9(16)	20.7(13)	-9.5(13)
O3A	73.7(10)	75(2)	43.0(8)	-24.9(10)	5.0(7)	-1.7(10)
N4A	79(2)	56.5(11)	42.6(18)	-12.3(11)	-10.6(13)	6.2(12)
C20	69(3)	117(8)	90(3)	-34(4)	13(2)	19(4)
C20A	77(6)	61(6)	71(4)	-25(4)	9(4)	18(5)

Table 4 Bond Lengths for 3ya.

Atom	n Atom	Length/Å	Atom	n Atom	Length/Å
C1	C19	1.397(3)	C8	C18	1.512(2)
C2	C28	1.324(3)	C9	C10	1.477(2)
C33	C6	1.499(2)	C10	C11	1.393(2)
C33	C7	1.400(2)	C10	C17	1.384(2)
C33	C23	1.390(2)	C11	C12	1.377(3)
C32	C7	1.410(2)	C12	C13	1.364(3)
C32	C8	1.493(2)	C13	C16	1.362(3)
C32	C21	1.394(2)	C14	C15	1.387(3)
03	C24	1.324(3)	C16	C17	1.388(3)
03	C25	1.373(4)	C18	C19	1.508(2)
N4	C24	1.283(5)	C19	C20	1.395(7)
N4	C26	1.365(5)	C19	C20A	1.433(10)
C30	C31	1.375(4)	C21	C22	1.375(2)
C30	C14	1.355(3)	C22	C23	1.380(2)
C31	C3	1.383(3)	C24	O3A	1.41(5)
C3	C4	1.391(2)	C24	N4A	1.28(5)
C4	C5	1.485(2)	C25	C26	1.299(3)
C4	C15	1.381(3)	C25	N4A	1.25(5)
C5	C6	1.330(2)	C26	O3A	1.65(3)

Table 4 Bond Lengths for 3ya.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
C6	C27	1.512(2)	C26	N4A	1.89(5)
C7	C24	1.476(2)	C27	C28	1.513(3)
C8	С9	1.338(2)	C28	C29	1.459(3)

Table 5 Bond Angles for 3ya.

Atom Atom Atom		n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C7	C33	C6	121.76(12)	C4	C15	C14	120.9(2)
C23	C33	C6	119.16(14)	C13	C16	C17	121.2(2)
C23	C33	C7	119.01(14)	C10	C17	C16	120.25(17)
C7	C32	C8	122.52(13)	C19	C18	C8	115.53(12)
C21	C32	C7	117.91(14)	C1	C19	C18	120.64(17)
C21	C32	C8	119.51(13)	C1	C19	C20A	120.4(4)
C24	03	C25	104.0(3)	C20	C19	C1	120.3(3)
C24	N4	C26	105.6(4)	C20	C19	C18	118.4(3)
C14	C30	C31	119.37(18)	C20A	C19	C18	113.9(6)
C30	C31	C3	120.4(2)	C22	C21	C32	121.19(14)
C31	C3	C4	120.8(2)	C21	C22	C23	120.51(14)
C3	C4	C5	119.01(16)	C22	C23	C33	120.37(15)
C15	C4	C3	117.68(15)	O3	C24	C7	119.6(2)
C15	C4	C5	123.19(15)	N4	C24	O3	113.05(18)
C6	C5	C4	129.24(15)	N4	C24	C7	127.3(3)
C33	C6	C27	116.44(13)	O3A	C24	C7	114.5(14)
C5	C6	C33	118.38(14)	N4A	C24	C7	130.5(19)
C5	C6	C27	124.88(14)	N4A	C24	O3A	109(3)
C33	C7	C32	120.87(13)	C26	C25	O3	108.6(2)
C33	C7	C24	118.94(13)	N4A	C25	C26	96(3)
C32	C7	C24	120.18(13)	C25	C26	N4	108.7(3)
C32	C8	C18	115.99(13)	C25	C26	O3A	114.7(16)
C9	C8	C32	119.13(14)	C25	C26	N4A	41.1(18)
C9	C8	C18	124.54(14)	O3A	C26	N4A	76(2)
C8	C9	C10	129.29(14)	C6	C27	C28	114.31(14)
C11	C10	С9	118.82(15)	C2	C28	C27	120.6(3)
C17	C10	С9	123.89(15)	C2	C28	C29	121.8(2)
C17	C10	C11	117.26(16)	C29	C28	C27	117.61(18)
C12	C11	C10	121.74(18)	C24	O3A	C26	86.8(17)
C13	C12	C11	119.92(19)	C24	N4A	C26	81(2)
C16	C13	C12	119.53(19)	C25	N4A	C24	114(4)
C30	C14	C15	120.9(2)	C25	N4A	C26	43.0(15)

Table 6 Torsion Angles for 3ya.

A	В	С	D	Angle/°	A	B	С	D	Angle/°
C33	C6	C27	C28	-63.7(2)	C8	C9	C10	C17	-44.9(2)
C33	C7	C24	03	-76.2(3)	C8	C18	C19	C1	-54.8(2)
C33	C7	C24	N4	102.5(3)	C8	C18	C19	C20	115.3(9)
C33	C7	C24	O3A	102(2)	C8	C18	C19	C20A	150.2(9)
C33	C7	C24	N4A	-107(6)	C9	C8	C18	C19	120.22(17)
C32	C7	C24	03	102.4(3)	C9	C10	C11	C12	-178.48(15)
C32	C7	C24	N4	-79.0(3)	C9	C10	C17	C16	178.90(16)
C32	C7	C24	O3A	-79(2)	C10	C11	C12	C13	-1.5(3)
C32	C7	C24	N4A	72(6)	C11	C10	C17	C16	-2.8(3)
C32	C8	C9	C10	-175.88(13)	C11	C12	C13	C16	-0.5(3)
C32	C8	C18	C19	-66.55(18)	C12	C13	C16	C17	0.8(3)
C32	C21	C22	C23	-1.3(2)	C13	C16	C17	C10	0.9(3)
03	C25	5C26	N4	1.5(4)	C14	C30	C31	C3	0.0(3)
C30	C31	C3	C4	-0.3(3)	C15	C4	C5	C6	-52.8(3)
C30	C14	C15	C4	0.7(4)	C17	C10	C11	C12	3.1(2)
C31	C30	C14	C15	-0.2(4)	C18	C8	C9	C10	-2.9(2)
C31	C3	C4	C5	176.79(17)	C21	C32	C7	C33	-1.6(2)
C31	C3	C4	C15	0.7(3)	C21	C32	C7	C24	179.86(13)
C3	C4	C5	C6	131.29(19)	C21	C32	C8	C9	121.28(16)
C3	C4	C15	C14	-0.9(3)	C21	C32	C8	C18	-52.33(18)
C4	C5	C6	C33	-178.72(15)	C21	C22	C23	C33	-2.2(2)
C4	C5	C6	C27	-5.2(3)	C23	C33	C6	C5	117.18(17)
C5	C4	C15	C14	-176.82(19)	C23	C33	C6	C27	-56.90(19)
C5	C6	C27	C28	122.70(19)	C23	C33	C7	C32	-1.7(2)
C6	C33	5C7	C32	175.35(13)	C23	C33	C7	C24	176.78(14)
C6	C33	5C7	C24	-6.1(2)	C24	03	C25	C26	-1.4(4)
C6	C33	C23	C22	-173.48(14)	C24	N4	C26	C25	-0.9(4)
C6	C27	C28	C2	99.6(3)	C25	03	C24	N4	0.9(4)
C6	C27	C28	C29	-79.9(2)	C25	03	C24	C7	179.7(2)
C7	C33	6C6	C5	-59.91(19)	C25	C26	03A	C24	-1(3)
C7	C33	6C6	C27	126.01(15)	C25	C26	N4A	C24	-141(7)
C7	C33	C23	C22	3.7(2)	C26	N4	C24	03	0.0(4)
C7	C32	2 C8	С9	-55.86(19)	C26	N4	C24	C7	-178.74(19)
C7	C32	2 C8	C18	130.53(14)	C26	C25	N4A	C24	42(7)
C7	C32	2C21	C22	3.2(2)	O3A	C24	N4A	C25	-49(8)
C7	C24	O3A	C26	-179.0(7)	O3A	C24	N4A	C26	-21(4)
C7	C24	N4A	C25	159(3)	O3A	C26	N4A	C24	18(4)
C7	C24	N4A	C26	-173.0(15)	O3A	C26	N4A	C25	159(4)

Table 6 Torsion Angles for 3ya.

Α	B	С	D	Angle/°	Α	В	С	D	Angle/°
C8	C32	C7	C33	175.54(13)	N4A	C24	O3A	C26	24(5)
C8	C32	C7	C24	-3.0(2)	N4A	C25	C26	O3A	-23(5)
C8	C32	C21	C22	-174.07(14)	N4A	C26	O3A	C24	-16(3)
C8	C9	C10	C11	136.74(17)					

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3ya.

Atom	x	у	Z	U(eq)
H1A	7003	7624	2520	124
H1B	5533	7128	2957	124
H1C	6655	6313	2543	124
H2A	9826	-688	3411	148
H2B	8721	-882	4477	148
H30	1639	1358	198	96
H31	789	1899	1697	90
Н3	2267	2188	2851	72
Н5	4752	2841	2865	57
H9	9967	4067	2759	55
H11	12466	4585	2579	67
H12	14049	6104	1790	82
H13	13338	8230	1097	84
H14	3957	1102	-135	100
H15	5458	1399	999	84
H16	11049	8826	1188	88
H17	9437	7321	1992	71
H18A	8441	5221	5074	57
H18B	9006	6297	3948	57
H21	8263	3100	5892	60
H22	7301	1167	6689	63
H23	6406	351	5549	60
H25	8568	4174	-119	101
H25A	8431	3908	-32	101
H26	6715	5644	-32	101
H27A	5862	-195	2989	66
H27B	6361	-558	4214	66
H29A	9167	163	1569	141
H29B	7977	1230	1380	141
H29C	7668	-112	1450	141

Atom	x	У	z	U(eq)
H20A	5060	6308	4866	117
H20B	6272	5632	5721	117
H20C	5640	7297	4771	87
H20D	6614	6223	5672	87

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3ya.

Table 8 Atomic Occupancy for 3ya.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
03	0.905(14)	N4	0.953(16)	H25	0.905(14)
H25A	0.047(16)	H26	0.953(16)	O3A	0.095(14)
N4A	0.047(16)	C20	0.64(3)	H20A	0.64(3)
H20B	0.64(3)	C20A	0.36(3)	H20C	0.36(3)
H20D	0.36(3)				

9. Characterization Data and NMR Spectra of Oxazole Derivatives

2-(2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3aa)

The general procedure was applied to **1a** (8.0 mg, 0.05 mmol), **2a** (19.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (2.9 mg, 7 mol%), PhOCH₂COOH (11.4 mg, 1.5 equiv), MnO₂ (1.3 mg, 0.3 equiv) in toluene (0.5 mL) at 80 °C for 34 h under Ar. Purification by column chromatography on silica gel

(petroleum ether/ethyl acetate = 20/1, v/v) afforded **3aa** as a white solid (18.8 mg, 80% yield). Melting point: 81.4–82.8°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.32 (s, 3H), 7.25 – 7.11 (m, 10H), 6.75 (s, 1H), 6.53 (s, 2H), 4.72 (s, 4H), 2.94 (s, 4H), 2.20 (s, 3H), 1.58 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.7, 148.3, 145.5, 142.8, 139.5, 137.7, 132.5, 129.1, 128.6, 128.2, 128.1, 126.7, 125.7, 123.6, 112.5,40.3, 23.2, 10.9. HRMS (ESI): m/z calcd for C₃₄H₃₃ONNa [M+Na]⁺: 494.2454, found: 494.2464.

5-methyl-2-(4-methyl-2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)oxazole (3ba)

The general procedure was applied to **1b** (17.3 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 24 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ba** as a colorless oil

(33.1 mg, 68% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.23 (d, *J* = 7.5 Hz, 4H), 7.21 – 7.10 (m, 8H), 6.72 (s, 1H), 6.51 (s, 2H), 4.71 (s, 4H), 2.90 (s, 4H), 2.35 (s, 3H), 2.19 (s, 3H), 1.58 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 160.0, 148.2, 145.5, 142.9, 139.8, 139.0, 137.9, 132.4, 128.9, 128.7, 128.2, 126.7, 123.6, 123.0, 112.4, 40.3, 23.3, 21.7, 11.0. HRMS (ESI): m/z calcd for C₃₅H₃₅ONNa [M+Na]⁺: 508.2611, found: 508.2614.

2-(4-methoxy-2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ca)

The general procedure was applied to **1c** (18.9 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 25 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ca** as a white solid

(31.7 mg, 63% yield). Melting point: 61.9–63.2°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.35 – 7.28 (m, 4H), 7.25 – 7.23 (m, 3H), 7.23 – 7.20 (m, 3H), 6.92 (s, 2H), 6.78 (d, *J* = 1.3 Hz, 1H), 6.59 (s, 2H), 4.79 (s, 4H), 3.87 (s, 3H), 2.98 (s, 4H), 2.26 (d, *J* = 1.3 Hz, 3H), 1.66 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 159.6, 148.2, 147.1, 143.0, 139.5, 137.7, 132.5, 128.7, 128.2, 126.8, 123.6, 118.6, 113.6, 112.5, 55.4, 40.3, 23.3, 11.0. HRMS (ESI): m/z calcd for C₃₅H₃₅O₂NNa [M+Na]⁺: 524.2560, found: 524.2563.

2-(4-ethoxy-2,6-bis((E)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3da)

The general procedure was applied to **1d** (20.3 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 25 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3da** as a white solid

(31.5 mg, 61% yield). Melting point: 71.4–72.6°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.34 – 7.29 (m, 4H), 7.26 – 7.20 (m, 6H), 6.92 (s, 2H), 6.78 (d, J = 1.4 Hz, 1H), 6.59 (s, 2H), 4.79 (s, 4H), 4.10 (q, *J* = 7.0 Hz, 2H), 2.98 (s, 4H), 2.27 (d, *J* = 1.2 Hz, 3H), 1.66 (s, 6H), 1.46 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 160.0, 159.0, 148.2, 147.1, 143.0, 139.6, 137.8, 132.4, 128.7, 128.2, 126.8, 123.5, 118.4, 114.1, 112.5, 63.6, 40.3, 23.3, 14.9, 11.0. HRMS (ESI): m/z calcd for C₃₆H₃₇O₂NNa [M+Na]⁺: 538.2717, found: 538.2721.

2-(4-isopropyl-2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ea)

The general procedure was applied to **1e** (20.1 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 40 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ea** as a colorless oil

(26.7 mg, 52% yield). ¹ H NMR (400 MHz, CDCl₃): $\delta = 7.35 - 7.28$ (m, 4H), 7.26 - 7.19 (m, 8H), 6.79 (d, J = 1.4 Hz, 1H), 6.57 (s, 2H), 4.77 (s, 4H), 3.05 - 2.92 (m, 5H), 2.27 (d, J = 1.2 Hz, 3H), 1.65 (s, 6H), 1.31 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.1$, 149.7, 148.2, 145.4, 143.1, 139.9, 137.9, 132.3, 128.7, 128.2, 126.7, 126.3, 123.5, 123.3, 112.4, 40.4, 34.1, 23.9, 23.3, 11.0. HRMS (ESI): m/z calcd for C₃₇H₃₉ONNa [M+Na]⁺: 536.2924, found: 536.2927.

3,5-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)-4-(5-methyloxazol-2-yl)benzonitrile (3fa)

The general procedure was applied to **1f** (18.4 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 25 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v) afforded **3fa** as a colorless oil

(31.1 mg, 63% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.64 (s, 2H), 7.33 (t, *J* = 7.3 Hz, 4H), 7.28 – 7.26 (m, 1H), 7.26 – 7.20 (m, 5H), 6.86 (d, *J* = 1.4 Hz, 1H), 6.58 (s, 2H), 4.76 (d, *J* = 31.7 Hz, 4H), 2.96 (s, 4H), 2.30 (d, *J* = 1.2 Hz, 3H), 1.64 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 157.9, 149.2, 146.6, 142.2, 137.8, 137.0, 133.9, 131.5, 130.3, 128.6, 128.4, 127.3, 124.1, 118.7, 113.1, 40.1, 23.2, 11.0. HRMS (ESI): m/z calcd for C₃₅H₃₂ON₂Na [M+Na]⁺: 519.2407, found: 519.2411.

2-(2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)-4-(trifluoromethyl)phenyl)-5-methyloxa zole (3ga)

The general procedure was applied to **1g** (22.7 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 51 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ga** as a colorless oil

(34.6 mg, 64% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.61 (s, 2H), 7.36 – 7.30 (m, 4H), 7.26 – 7.22 (m, 6H), 6.85 (d, *J* = 1.3 Hz, 1H), 6.61 (s, 2H), 4.76 (d, *J* = 20.6 Hz, 4H), 3.00 (s, 4H), 2.30 (d, *J* = 1.2 Hz, 3H), 1.64 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.5, 149.0, 146.3, 142.4, 138.5, 137.3, 133.6, 131.1 (q, *J* = 32.1 Hz), 129.3 (d, *J* = 0.9 Hz), 128.7, 128.3, 127.1, 124.8 (q, *J* = 3.8 Hz), 124.0 (q, *J* = 271.3 Hz),123.9, 113.0, 40.2, 23.1, 11.0. ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.79. HRMS (ESI): m/z calcd for C₃₅H₃₂ONF₃Na [M+Na]⁺: 562.2328, found: 562.2338.

2-(4-fluoro-2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ha)

The general procedure was applied to **1h** (17.7 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 24 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ha** as a colorless oil

(36.7 mg, 75% yield). ¹ H NMR (400 MHz, CDCl₃): $\delta = 7.36 - 7.29$ (m, 4H), 7.26 - 7.20 (m, 6H), 7.10 (d, J = 9.3 Hz, 2H), 6.81 (s, 1H), 6.58 (s, 2H), 4.80 (d, J = 13.5 Hz, 4H), 2.98 (s, 4H), 2.28 (s, 3H), 1.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 162.5$ (d, J = 248.2 Hz), 159.0, 148.4, 147.9 (d, J = 8.5 Hz), 142.5, 138.4 (d, J = 1.6 Hz), 137.3, 133.1, 128.5, 128.2, 126.9, 123.6, 122.1 (d, J = 2.8 Hz), 114.9 (d, J = 21.7 Hz), 112.7, 40.1, 23.1, 10.9. ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -111.51$ (t, J = 9.3 Hz). HRMS (ESI): m/z calcd for C₃₄H₃₂ONFNa [M+Na]⁺: 512.2360, found: 512.2362.

2-(4-chloro-2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ia)

The general procedure was applied to **1i** (19.3 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ia** as a white solid

(38.4 mg, 76% yield). Melting point: 74.1–75.3°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.29 (s, 2H), 7.23 (d, *J* = 7.4 Hz, 3H), 7.19 – 7.11 (m, 7H), 6.74 (s, 1H), 6.51 (s, 2H), 4.70 (d, *J* = 17.5 Hz, 4H), 2.88 (s, 4H), 2.19 (s, 3H), 1.57 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.8, 148.7, 147.1,

142.5, 138.5, 137.4, 135.0, 133.3, 128.6, 128.3, 128.0, 127.0, 124.5, 123.8, 112.8, 40.1, 23.2, 11.0. HRMS (ESI): m/z calcd for C₃₄H₃₂ONClNa [M+Na]⁺: 528.2065, found: 528.2070.

methyl 3,5-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)-4-(5-methyloxazol-2-yl)benzoate (3ja)

The general procedure was applied to **1j** (21.7 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ja** as a white solid

(44.2 mg, 84% yield). Melting point: 104.0–104.9°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.98 (s, 2H), 7.32 – 7.27 (m, 3H), 7.24 – 7.15 (m, 7H), 6.81 (s, 1H), 6.57 (s, 2H), 4.69 (d, *J* = 8.0 Hz, 4H), 3.92 (s, 3H), 2.92 (s, 4H), 2.25 (s, 3H), 1.57 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 166.8, 158.8, 148.9, 145.8, 142.5, 139.1, 137.5, 133.2, 130.6, 130.0, 129.2, 128.7, 128.3, 126.9, 123.9, 112.8, 52.5, 40.1, 23.2, 11.0. HRMS (ESI): m/z calcd for C₃₆H₃₅O₃NNa [M+Na]⁺: 552.2509, found: 552.2512.

(E)-5-methyl-2-(3-(4-methyl-1-phenylpenta-1,4-dien-2-yl)-[1,1'-biphenyl]-2-yl)oxazole (3ka)

The general procedure was applied to 1k (23.5 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3ka** as a colorless oil (32.1 mg, 82% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.46 – 7.36 (m, 2H), 7.34 – 7.28 (m, 1H), 7.25 – 7.09 (m, 10H), 6.57 (d, *J* = 14.9 Hz, 2H), 4.71 (s, 2H), 2.91 (s, 2H), 2.06 (s, 3H), 1.58 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.4, 148.3, 145.7, 143.5, 142.8, 141.2, 139.5, 137.8, 132.9, 129.6, 128.9, 128.8, 128.7, 128.5, 128.2, 128.0, 126.9, 126.8, 126.4, 123.3, 112.5, 40.2, 23.3, 10.8. HRMS (ESI): m/z calcd for C₂₈H₂₅ONNa [M+Na]⁺: 414.1828, found: 414.1835.

(E)-2-(2-fluoro-6-(4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3la)

The general procedure was applied to **11** (17.7 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl

acetate = 20/1, v/v) afforded **3la** as a colorless oil (29.0 mg, 87% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.47 - 7.40 (m, 1H), 7.40 - 7.33 (m, 2H), 7.32 - 7.27 (m, 4H), 7.14 (t, *J* = 8.9 Hz, 1H), 6.94 (s, 1H), 6.64 (s, 1H), 4.75 (d, *J* = 17.3 Hz, 2H), 3.01 (s, 2H), 2.38 (s, 3H), 1.65 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ = 161.1 (d, *J* = 250.2 Hz), 155.4, 149.5, 146.8, 142.6, 138.7 (d, *J* = 2.3 Hz), 137.5, 133.1, 131.1 (d, *J* = 9.1 Hz), 128.7, 128.3, 127.1, 125.3 (d, *J* = 3.1 Hz), 124.2, 115.7 (d, *J* = 13.9 Hz), 114.6 (d, *J* = 22 Hz), 112.7, 40.0, 23.1, 11.1. ¹⁹F NMR (376 MHz, CDCl₃): δ = -113.13. HRMS (ESI): m/z calcd for C₂₂H₂₀ONFNa [M+Na]⁺: 356.1421, found: 356.1427.

(E)-2-(2-iodo-6-(4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ma)

The general procedure was applied to 1m (28.4 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 33 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl

acetate = 20/1, v/v) afforded **3ma** as a white solid (33.8 mg, 77% yield). Melting point: 64.5–65.8°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.85 (d, *J* = 7.9 Hz, 1H), 7.42 (d, *J* = 7.7 Hz, 1H), 7.31 (t, *J* = 7.5 Hz, 2H), 7.25 – 7.16 (m, 3H), 7.13 (t, *J* = 7.8 Hz, 1H), 6.87 (s, 1H), 6.55 (s, 1H), 4.76 (d, *J* = 15.7 Hz, 2H), 2.94 (s, 2H), 2.36 (s, 3H), 1.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 160.4, 148.8, 147.3, 142.5, 138.5, 137.9, 137.3, 133.6, 133.1, 131.1, 129.0, 128.6, 128.3, 127.1, 123.5, 112.8, 99.4, 40.0, 23.2, 11.1. HRMS (ESI): m/z calcd for C₂₂H₂₁ONI [M+H]⁺:442.0662, found:442.0661.

(E)-5-methyl-2-(2-methyl-6-(4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)oxazole (3na)

The general procedure was applied to **1n** (17.3 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl

acetate = 20/1, v/v) afforded **3na** as a colorless oil (19.9 mg, 60% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.36 – 7.27 (m, 4H), 7.25 – 7.18 (m, 4H), 6.86 (d, *J* = 1.5 Hz, 1H), 6.56 (s, 1H), 4.76 (s, 2H), 2.94 (s, 2H), 2.33 (s, 6H), 1.63 (s, 3H).¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 148.5, 145.3, 142.9, 139.8, 138.8, 137.9, 132.5, 129.5, 129.1, 128.6, 128.2, 127.0, 126.9, 126.7, 123.4, 112.5, 40.0, 23.2, 20.5, 11.0. HRMS (ESI): m/z calcd for C₂₃H₂₃ONNa [M+Na]⁺:352.1672, found:352.1677.

2-(3-fluoro-2,6-bis((E)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (30a)

The general procedure was applied to **1o** (17.7 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 24 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **30a** as a colorless oil (36.5 mg, 75% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.42 – 7.33 (m, 5H), 7.33 – 7.27 (m, 6H), 7.21 (t, *J* = 8.9 Hz, 1H), 6.88 (s, 1H), 6.70 (s, 1H), 6.61 (s, 1H), 4.81 (d, *J* = 12.8 Hz, 2H), 4.69 (d, *J* = 8.3 Hz, 2H), 3.06 (s, 2H), 3.00 (s, 2H), 2.34 (s, 3H), 1.66 (d, *J* = 16.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.9 (d, *J* = 243.3 Hz), 158.5 (d, *J* = 1.2 Hz), 148.7, 142.7 (d, *J* = 21.7 Hz), 141.5 (d, *J* = 3.7 Hz), 138.9, 137.6 (d, *J* = 21.7 Hz), 134.5, 133.2, 132.8, 132.3 (d, *J* = 17.2 Hz), 129.4 (d, *J* = 8.6 Hz), 128.7 (d, *J* = 19.9 Hz), 128.2 (d, *J* = 2.9 Hz), 126.9 (d, *J* = 7.2 Hz), 123.7, 116.8 (d, *J* = 23.5 Hz), 112.7, 112.6 (d, *J* = 1.6 Hz), 40.3, 23.2, 22.8 (d, *J* = 1.7 Hz), 11.0. ¹⁹F NMR (376 MHz, CDCl₃): δ = -114.17 (dd, *J* = 9.1, 5.3 Hz). HRMS (ESI): m/z calcd for C₃₄H₃₂ONFNa [M+Na]⁺: 512.2360, found: 512.2371.

(E)-5-methyl-2-(5-methyl-2-(4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)oxazole (3pa)

The general procedure was applied to **1p** (17.3 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3pa** as a colorless oil (23.4 mg, 71% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.68 (s, 1H), 7.31 (d, *J* = 4.4 Hz, 4H), 7.25 – 7.15 (m, 3H), 6.80 (s, 1H), 6.54 (s, 1H), 4.64 (d, *J* = 15.0 Hz, 2H), 3.11 (s, 2H), 2.32 (d, *J* = 27.6 Hz, 6H), 1.55 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 161.3, 148.9, 143.0, 140.7, 140.6, 138.1, 137.0, 131.3, 130.5, 130.4, 129.9, 128.7, 128.3, 126.7, 126.0, 124.1, 112.3, 40.7, 23.2, 21.1, 11.1. HRMS (ESI): m/z calcd for C₂₃H₂₃ONNa [M+Na]⁺: 352.1672, found: 352.1677.

(E)-2-(5-bromo-2-(4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3qa)

The general procedure was applied to 1q (23.6 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl

acetate = 20/1, v/v) afforded **3qa** as a colorless oil (37.2 mg, 95% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.52 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 6.7 Hz, 1H), 7.25 – 7.09 (m, 6H), 6.81 (s, 1H), 6.50 (s, 1H), 4.69 (d, *J* = 15.0 Hz, 2H), 2.88 (s, 2H), 2.28 (s, 3H), 1.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.6, 149.0, 147.6, 142.5, 138.4, 137.3, 133.6, 131.5, 130.9, 129.0, 128.6, 128.3, 128.2, 127.1, 124.8, 123.6, 112.8, 39.9, 23.2, 11.1. HRMS (ESI): m/z calcd for C₂₂H₂₀ONBrNa [M+Na]⁺: 416.0620, found: 416.0625.

(E)-2-(5-iodo-2-(4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ra)

The general procedure was applied to 1r (28.4 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl

acetate = 20/1, v/v) afforded **3ra** as a colorless oil (35.5 mg, 80% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 8.13 (d, *J* = 2.0 Hz, 1H), 7.59 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.25 – 7.20 (m, 4H), 7.18 – 7.09 (m, 1H), 6.99 (d, *J* = 8.1 Hz, 1H), 6.73 (s, 1H), 6.46 (s, 1H), 4.54 (d, *J* = 32.4 Hz, 2H), 3.03 (s, 2H), 2.22 (s, 3H), 1.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.4, 149.4, 142.8, 142.7, 139.9, 138.4, 137.8, 137.6, 132.4, 131.8, 128.7, 128.4, 128.1, 127.0, 124.4, 112.6, 92.2, 40.5, 23.2, 11.1. HRMS (ESI): m/z calcd for C₂₂H₂₀ONINa [M+Na]⁺: 464.0482, found: 464.0489.

(E)-2-(2,4-dimethoxy-6-(4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3sa)

The general procedure was applied to **1s** (21.9 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 39 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl

acetate = 5/1, v/v) afforded **3sa** as a white solid (16.0 mg, 43% yield). Melting point: 79.1–80.3°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.34 – 7.27 (m, 2H), 7.24 – 7.18 (m, 3H), 6.83 (d, *J* = 1.4 Hz, 1H), 6.59 (s, 2H), 6.46 (d, *J* = 2.3 Hz, 1H), 4.76 (s, 2H), 3.86 (s, 3H), 3.80 (s, 3H), 2.91 (s, 2H), 2.31 (d, *J* = 1.2 Hz, 3H), 1.63 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 161.5, 159.9, 157.8, 148.6, 147.8, 143.0, 139.3, 137.7, 132.6, 128.7, 128.2, 126.8, 123.6, 112.5, 109.6, 106.3, 97.2, 56.2, 55.5, 39.9, 23.3, 11.2. HRMS (ESI): m/z calcd for C₂₄H₂₅O₃NNa [M+Na]⁺: 398.1727, found: 398.1732.

2-(2,6-bis((E)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-(tert-butyl)oxazole (3ta)

The general procedure was applied to **1t** (20.1 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3ta** as a white solid (36.7 mg, 71% yield). Melting point: 88.2–90.4°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.37 – 7.30 (m, 3H), 7.25 – 7.12 (m, 10H), 6.70 (s, 1H), 6.55 (s, 2H), 4.76 (d, *J* = 7.3 Hz, 4H), 2.89 (s, 4H), 1.61 (s, 6H), 1.10 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ = 160.9, 159.4, 145.6, 143.0, 139.5, 137.7, 132.7, 129.2, 128.7, 128.2, 128.2, 126.8, 125.8, 120.4, 112.4, 40.2, 31.4, 28.8, 23.4. HRMS (ESI): m/z calcd for C₃₇H₃₉ONNa [M+Na]⁺:536.2924, found:536.2931.

2-(2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-phenyloxazole (3ua)

The general procedure was applied to 1u (22.1 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3ua** as a white solid (35.6 mg, 67% yield). Melting point: 103.4–104.8°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.59 (d, *J* = 7.5 Hz, 2H), 7.51 – 7.41 (m, 4H), 7.38 – 7.27 (m, 11H), 7.25 – 7.19 (m, 2H), 6.72 (s, 2H), 4.81 (s, 4H), 3.03 (s, 4H), 1.66 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ = 160.4, 151.2, 145.7, 142.9, 139.9, 137.7, 132.7, 129.5, 129.0, 128.7, 128.6, 128.4, 128.2, 128.1, 126.8, 125.0, 124.3, 122.9, 112.5, 40.4, 23.3. HRMS (ESI): m/z calcd for C₃₉H₃₅ONNa [M+Na]⁺: 556.2611, found: 556.2619.

2-(2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-(4-methoxyphenyl)oxazole (3va)

The general procedure was applied to 1v (25.1 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3va** as a white solid (34.7 mg, 62%)

yield). Melting point: 102.1–103.3°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.50 (d, *J* = 7.0 Hz, 2H), 7.47 – 7.40 (m, 3H), 7.34 – 7.25 (m, 9H), 7.25 – 7.19 (m, 2H), 6.87 (d, *J* = 7.8 Hz, 2H), 6.70 (d, *J* = 1.8 Hz, 2H), 4.80 (s, 4H), 3.82 (s, 3H), 3.01 (s, 4H), 1.64 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.8, 159.7, 151.2, 145.6, 142.9, 140.0, 137.7, 132.6, 129.4, 128.7, 128.6, 128.2, 126.8, 125.8, 125.2, 121.4, 121.0, 114.4, 112.5, 55.4, 40.4, 23.3. HRMS (ESI): m/z calcd for C₄₀H₃₇O₂NNa [M+Na]⁺:586.2717, found:586.2725.

2-(2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)-5-(3-chlorophenyl)oxazole (3wa)

The general procedure was applied to 1w (25.5 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3wa** as a white solid (30.7 mg, 54% yield). Melting point: 107.8–109.9°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.52 (s, 1H), 7.45 – 7.35 (m, 5H), 7.25 – 7.19 (m, 10H), 7.16 (t, *J* = 7.1 Hz, 2H), 6.62 (s, 2H), 4.74 (s, 4H), 2.95 (s, 4H), 1.59 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 161.0, 149.8, 145.7, 142.8, 139.7, 137.6, 135.1, 132.8, 130.3, 129.7, 128.7, 128.6, 128.3, 128.3, 126.9, 124.8, 124.2, 123.8, 122.3, 112.6, 40.5, 23.3. HRMS (ESI): m/z calcd for C₃₉H₃₄ONNa [M+Na]⁺:590.2221, found:590.2227.

methyl 2-(2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)oxazole-5-carboxylate (3xa)

The general procedure was applied to 1x (20.3 mg, 0.1 mmol), 2a (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 39 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3xa** as a white solid (17.5 mg, 34% yield). Melting point: 91.1–92.3°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.82 (s, 1H), 7.48 – 7.39 (m, 3H), 7.34 – 7.30 (m, 3H), 7.29 (s, 1H), 7.25 – 7.19 (m, 6H), 6.55 (s, 2H), 4.80 (d, *J* = 4.2 Hz, 4H), 3.87 (s, 3H), 3.03 (s, 4H), 1.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 164.4, 158.3, 145.8, 142.6, 142.1, 139.0, 137.4, 134.9, 133.1, 130.0, 128.6, 128.3, 128.1, 127.0, 124.5, 112.8, 52.2, 40.6, 23.3. HRMS (ESI): m/z calcd for C₃₅H₃₄O₃NNa [M+Na]⁺:538.2353, found:538.2359.

2-(2,6-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)oxazole (3ya)

The general procedure was applied to **1y** (14.5 mg, 0.1 mmol), **2a** (39.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ya** as a white solid (32.8 mg, 72% yield). Melting point: 85.1–86.9°C; ¹ H NMR (400 MHz, CDCl₃): δ = 7.68 (s, 1H), 7.46 – 7.37 (m, 3H), 7.31 (t, *J* = 7.6 Hz, 4H), 7.25 – 7.19 (m, 7H), 6.56 (s, 2H), 4.80 (s, 4H), 2.98 (s, 4H), 1.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 161.4, 145.8, 142.8, 139.4, 138.4, 137.7, 132.8, 129.4, 128.7, 128.2, 128.1, 128.0, 126.8, 125.5, 112.6, 40.4, 23.3. HRMS (ESI): m/z calcd for C₃₃H₃₂ON [M+H]⁺:458.2478, found:458.2481.

2-(2,6-bis((*E*)-4-methyl-1-(p-tolyl)penta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ab)

The general procedure was applied to 1a (15.9 mg, 0.1 mmol), 2b (42.5 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%),
PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 17 h under Ar. Purification by

column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ab** as a colorless oil (33.1 mg, 66% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.43 – 7.35 (m, 3H), 7.21 – 7.09 (m, 8H), 6.80 (s, 1H), 6.55 (s, 2H), 4.79 (s, 4H), 3.00 (s, 4H), 2.35 (s, 6H), 2.22 (s, 3H), 1.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 148.3, 145.7, 143.0, 138.9, 136.4, 134.9, 132.5, 129.1, 128.9, 128.6, 128.0, 125.8, 123.6, 112.4, 40.4, 23.3, 21.3, 11.0. HRMS (ESI): m/z calcd for C₃₆H₃₈ON [M+H]⁺: 500.2948, found: 500.2949.

$\label{eq:22-(2,6-bis((E)-1-(4-methoxyphenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole} 22-(2,6-bis((E)-1-(4-methoxyphenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (2,6-bis((E)-1-(4-methoxyphenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (2,6-bis((E)-1-(4-methoxyphenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (2,6-bis((E)-1-(4-methoxyphenyl)-5-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (2,6-bis((E)-1-(4-methoxyphenyl)-5-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (2,6-bis((E)-1-(4-methoxyphenyl)-5-methylpenta-1,4-dien-2-yl)phenyl (2,0-2)(2,$

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2c** (46.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 18 h

under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ac** as a colorless oil (32.9 mg, 62% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.41 – 7.33 (m, 3H), 7.22 – 7.14 (m, 4H), 6.88 – 6.83 (m, 4H), 6.79 (d, *J* = 1.3 Hz, 1H), 6.51 (s, 2H), 4.79 (s, 4H), 3.81 (s, 6H), 2.97 (s, 4H), 2.26 (d, *J* = 1.2 Hz, 3H), 1.66 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.9, 158.5, 148.3, 145.9, 143.0, 138.1, 132.2, 130.4, 129.9, 129.2, 128.0, 125.8, 123.6, 113.6, 112.3, 55.3, 40.4, 23.4, 11.0. HRMS (ESI): m/z calcd for C₃₆H₃₇O₃NNa [M+Na]⁺: 554.2666, found: 554.2672.

2-(2,6-bis((*E*)-1-(4-(tert-butyl)phenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ad)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2d** (53.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 19 h under Ar.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ad** as a white solid (40.9 mg, 70% yield). Melting point: 112.6–114.7°C. ¹ H NMR (400 MHz, CDCl₃): δ = 7.44 – 7.33 (m, 7H), 7.22 (d, *J* = 8.0 Hz, 4H), 6.80 (s, 1H), 6.57 (s, 2H), 4.82 (s, 4H), 3.02 (s, 4H), 2.30 (m, 3H), 1.70 (s, 6H), 1.35 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.8, 149.6, 148.3, 145.8, 143.0, 138.9, 134.9, 132.5, 129.2, 128.4, 128.1, 125.7, 125.1, 123.6, 112.4, 40.5, 34.6, 31.5, 23.4, 11.1. HRMS (ESI): m/z calcd for C₄₂H₄₉ONNa [M+Na]⁺: 606.3706, found: 606.3710.

2-(2,6-bis((*E*)-1-(4-fluorophenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ae)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2e** (43.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 23 h under Ar. Purification by

column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ae** as a colorless oil (31.4 mg, 62% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.43 – 7.33 (m, 3H), 7.22 – 7.15 (m, 4H), 7.04 – 6.95 (m, 4H), 6.81 (d, *J* = 1.3 Hz, 1H), 6.51 (s, 2H), 4.76 (d, *J* = 8.7 Hz, 4H), 2.93 (s, 4H), 2.27 (d, *J* = 1.3 Hz, 3H), 1.63 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 161.8 (d, *J* = 244.6 Hz), 159.8, 148.4, 145.5, 142.8, 139.6, 133.7 (d, *J* = 3.2 Hz), 131.5, 130.2 (d, *J* = 7.8 Hz), 129.3, 128.2, 125.7, 123.6, 115.2 (d, *J* = 21.2 Hz), 112.5, 40.3, 23.3, 11.0. ¹⁹F NMR (376 MHz, CDCl₃): δ = -115.49. HRMS (ESI): m/z calcd for C₃₄H₃₂F₂ON [M+H]⁺: 508.2446, found: 508.2454.

2-(2,6-bis((E)-1-(4-chlorophenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3af)

The general procedure was applied to 1a (15.9 mg, 0.1 mmol), 2f (47.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7

mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 20 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3af** as a colorless oil (32.9 mg, 61% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.57 (d, *J* = 8.0 Hz, 4H), 7.46 – 7.38 (m, 3H), 7.34 (d, *J* = 8.0 Hz, 4H), 6.83 (s, 1H), 6.58 (s, 2H), 4.78 (d, *J* = 13.8 Hz, 4H), 2.96 (s, 4H), 2.28 (s, 3H), 1.64 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.6, 148.6, 145.2, 142.5, 141.6, 141.3, 131.4, 129.4, 129.0, 128.9, 128.3, 125.6, 125.3 (q, *J* = 3.7 Hz), 123.7, 112.8, 40.5, 23.3, 11.0. HRMS (ESI): m/z calcd for C₃₄H₃₁Cl₂ONNa [M+Na]⁺: 562.1675, found: 562.1676.

2-(2,6-bis((E)-4-methyl-1-(m-tolyl)penta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ag)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2g** (42.5 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 34 h under Ar. Purification by column

chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ag** as a colorless oil (31.5 mg, 63% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.43 – 7.33 (m, 3H), 7.21 (t, J = 7.7 Hz, 2H), 7.10 – 7.02 (m, 6H), 6.81 (s, 1H), 6.55 (s, 2H), 4.76 (s, 4H), 2.98 (s, 4H), 2.34 (s, 6H), 2.29 (s, 3H), 1.64 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.8, 148.3, 145.6, 143.0, 139.5, 137.8, 137.7, 132.7, 129.6, 129.1, 128.1, 127.5, 125.8, 125.7, 123.7, 112.5, 40.4, 23.2, 21.6, 11.0. HRMS (ESI): m/z calcd for C₃₆H₃₇ONNa [M+Na]⁺: 522.2767, found: 536.2777.

2-(2,6-bis((*E*)-1-(3-methoxyphenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ah)

The general procedure was applied to 1a (15.9 mg, 0.1 mmol), 2h (46.5 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 24 h under Ar. Purification by

column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ah** as a colorless oil (31.3 mg, 59% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.44 – 7.33 (m, 3H), 7.22 (t, J = 7.9 Hz, 2H), 6.85 – 6.76 (m, 7H), 6.55 (s, 2H), 4.78 (s, 4H), 3.79 (s, 6H), 2.98 (s, 4H), 2.28 (s, 3H), 1.65 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.8, 159.5, 148.4, 145.5, 143.0, 139.8, 139.2, 132.5, 129.2, 129.2, 128.1, 125.8, 123.6, 121.2, 113.9, 112.6, 112.5, 55.2, 40.5, 23.3, 11.0. HRMS (ESI): m/z calcd for C₃₆H₃₇O₃NNa [M+Na]⁺: 554.2666, found: 554.2672.

2-(2,6-bis((E)-1-(3-chlorophenyl)-4-methylpenta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ai)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2i** (47.5 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 24 h under Ar. Purification by column

chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ai** as a colorless oil (29.7 mg, 55% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.45 – 7.33 (m, 3H), 7.25 – 7.17 (m, 6H), 7.11 (d, *J* = 7.3 Hz, 2H), 6.83 (s, 1H), 6.50 (s, 2H), 4.76 (d, *J* = 16.7 Hz, 4H), 2.94 (s, 4H), 2.30 (s, 3H), 1.63 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.6, 148.6, 145.2, 142.6, 141.0,

139.5, 134.1, 131.2, 129.5, 129.3, 128.7, 128.2, 126.9, 126.8, 125.7, 123.8, 112.8, 40.4, 23.2, 11.0. HRMS (ESI): m/z calcd for C₃₄H₃₁ONCl₂Na [M+Na]⁺: 562.1675, found: 562.1681.

2-(2,6-bis((E)-4-methyl-1-(o-tolyl)penta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3aj)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2j** (42.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 60 h under Ar. Purification by column

chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3aj** as a colorless oil (13.5 mg, 27% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.44 – 7.39 (m, 1H), 7.35 (s, 1H), 7.34 (d, *J* = 1.5 Hz, 1H), 7.18 – 7.13 (m, 8H), 6.85 (d, *J* = 1.3 Hz, 1H), 6.54 (s, 2H), 4.64 (s, 2H), 4.60 (s, 2H), 2.82 (s, 4H), 2.33 (d, *J* = 0.8 Hz, 3H), 2.23 (s, 6H), 1.53 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.8, 148.5, 144.8, 143.0, 140.5, 137.2, 136.7, 131.4, 129.8, 129.1, 128.9, 128.4, 127.1, 126.0, 125.5, 123.8, 112.8, 40.2, 22.9, 20.1, 11.1. HRMS (ESI): m/z calcd for C₃₆H₃₇ONNa [M+Na]⁺: 522.2767, found: 522.2769.

2-(2,6-bis((*E*)-4-methyl-1-(thiophen-2-yl)penta-1,4-dien-2-yl)phenyl)-5-methyloxazole (3ak)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2k** (40.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 42 h under Ar. Purification by column

chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3ak** as a colorless oil (16.9 mg, 35% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.41 – 7.32 (m, 3H), 7.23 (dd, *J* = 5.0, 1.3 Hz, 2H), 7.00 – 6.94 (m, 4H), 6.75 (s, 1H), 6.68 (s, 2H), 4.76 (s, 4H), 3.11 (s, 4H), 2.24 (s, 3H), 1.72 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.5, 148.7, 145.7, 141.7, 140.3, 137.8, 129.5, 128.2, 127.8, 126.9, 125.4, 125.3, 123.7, 111.9, 41.3, 23.4, 11.0. HRMS (ESI): m/z calcd for C₃₀H₂₉ONS₂Na [M+Na]⁺: 506.1583, found: 506.1588.

2-(2,6-bis((*E*)-1-phenylprop-1-en-2-yl)phenyl)-5-methyloxazole (3al)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2l** (29.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 13 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3al** as a white solid (28.2 mg, 72% yield). Melting point: 104.6–105.5°C. ¹ H NMR (400 MHz, CDCl₃): δ = 7.44 – 7.38 (m, 1H), 7.32 – 7.27 (m, 5H), 7.21 – 7.13 (m, 7H), 6.74 (d, *J* = 1.3 Hz, 1H), 6.33 (s, 2H), 2.23 (d, *J* = 1.2 Hz, 3H), 1.97 (d, *J* = 1.5 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.8, 148.5, 147.2, 138.2, 138.1, 129.8, 129.7, 129.0, 128.2, 127.2, 126.5, 125.6, 123.6, 19.8, 11.0. HRMS (ESI): m/z calcd for C₂₈H₂₅ONNa [M+Na]⁺: 414.1828, found: 414.1837.

2-(2,6-bis((*E*)-1-phenylhex-1-en-2-yl)phenyl)-5-methyloxazole (3am)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2m** (39.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 17

h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3am** as a colorless oil (30.4 mg, 64% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.47 (t, *J* = 8.4 Hz, 1H), 7.39 – 7.30 (m, 6H), 7.26 – 7.20 (m, 6H), 6.81 (s, 1H), 6.43 (s, 2H), 2.38 – 2.32 (m, 4H), 2.31 (s, 3H), 1.42 – 1.32 (m, 4H), 1.31 – 1.20 (m, 4H), 0.83 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.7, 148.2, 145.7, 143.2, 138.3, 130.1, 129.3, 128.8, 128.2, 127.7, 126.5, 126.5, 123.5, 31.8, 30.5, 22.9, 14.0, 11.0. HRMS (ESI): m/z calcd for C₃₄H₃₇ONNa [M+Na]⁺: 498.2767, found: 498.2764.

2-(2,6-bis((*E*)-1-phenylhex-1-en-2-yl)phenyl)-5-methyloxazole (3an)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2n** (52.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 19 h under Ar.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3an** as a colorless oil (39.1 mg, 68% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.84 – 7.78 (m, 6H), 7.67 (s, 2H), 7.54 – 7.39 (m, 7H), 7.35 (dd, *J* = 8.5, 1.7 Hz, 2H), 6.82 (d, *J* = 1.3 Hz, 1H), 6.57 (s, 2H), 2.41 (d, *J* = 8 Hz, 4H), 2.31 (d, *J* = 1.2 Hz, 3H), 1.46 – 1.36 (m, 4H), 1.30 – 1.22 (m, 4H), 0.83 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.8, 148.3, 145.8, 143.6, 135.8, 133.5, 132.3, 130.2, 129.4, 128.0, 127.7, 127.6, 127.5, 127.4, 126.6, 126.1, 125.7, 123.6, 31.9, 30.6, 22.9, 14.0, 11.1. HRMS (ESI): m/z calcd for C₄₂H₄₁ONNa [M+Na]⁺: 598.3080, found: 598.3085.

2-(2,6-bis((*E*)-1,5-diphenylpent-1-en-2-yl)phenyl)-5-methyloxazole (3ao)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2o** (55.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 21 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3ao** as a white solid (36.0 mg, 60% yield). Melting point: 57.9–59.8°C. ¹ H NMR (400 MHz, CDCl₃): δ = 7.41 – 7.34 (m, 1H), 7.25 – 7.17 (m, 5H), 7.17 – 7.03 (m, 13H), 7.01 – 6.96 (m, 4H), 6.71 (s, 1H), 6.34 (s, 2H), 2.45 (t, *J* = 7.6 Hz, 4H), 2.33 (t, *J* = 7.6 Hz, 4H), 2.18 (s, 3H), 1.69 – 1.57 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.6, 148.3, 145.5, 142.5, 142.3, 138.0, 130.6, 129.5, 128.8, 128.5, 128.3, 128.2, 127.8, 126.5, 125.7, 123.5, 35.8, 31.5, 30.0, 11.0. HRMS (ESI): m/z calcd for C₄₄H₄₁ONNa [M+Na]⁺: 622.3080, found: 622.3083.

2-(2,6-bis((*E*)-1,5,5-triphenylpent-1-en-2-yl)phenyl)-5-methyloxazole (3ap)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2p** (74.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 20 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 20/1, v/v) afforded **3ap** as a white solid (52.6 mg, 70% yield). Melting point: 130.4–131.9°C. ¹ H NMR (400 MHz, CDCl₃): $\delta = \delta$ 7.43 – 7.35 (m, 1H), 7.24 (s, 1H), 7.21 – 7.11 (m, 15H), 7.10 – 7.03 (m, 12H), 7.00 (d, J = 6.7 Hz, 4H), 6.67 (s, 1H), 6.35 (s, 2H), 3.77 (t, J = 7.6 Hz, 2H), 2.38 – 2.27 (m, 4H), 2.19 – 2.04 (m, 7H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.4$, 148.1, 145.5, 144.8, 142.2, 137.9, 130.7, 129.4, 128.6, 128.4, 128.2, 127.9, 127.8, 126.6, 126.5, 126.1, 123.5, 51.2, 34.2, 30.6, 11.0. HRMS (ESI): m/z calcd for $C_{56}H_{49}ONNa [M+Na]^+$: 774.3706, found: 774.3712.

2-(2,6-bis((E)-4-methoxy-1-phenylbut-1-en-2-yl)phenyl)-5-methyloxazole (3aq)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2q** (40.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 100 °C for 20 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 5/1, v/v) afforded **3aq** as a colorless oil (29.7 mg, 62% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.51 – 7.45 (m, 1H), 7.39 – 7.28 (m, 6H), 7.25 – 7.18 (m, 6H), 6.78 (s, 1H), 6.46 (s, 2H), 3.37 (t, *J* = 7.2 Hz, 4H), 3.23 (s, 6H), 2.66 (t, *J* = 7.3 Hz, 4H), 2.28 (d, *J* = 1.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.4, 148.5, 145.0, 138.9, 137.7, 132.1, 129.5, 128.8, 128.3, 127.9, 126.8, 126.6, 123.6, 70.8, 58.6, 32.5, 11.1. HRMS (ESI): m/z calcd for C₃₂H₃₃O₃NNa [M+Na]⁺: 502.2353, found: 502.2357.

2-(2,6-bis((E)-1-phenyl-4-(3-phenylpropoxy)but-1-en-2-yl)phenyl)-5-methyloxazole (3ar)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2r** (66.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 36 h under Ar. Purification by column

chromatography on silica gel (petroleum ether/ethyl acetate = 5/1, v/v) afforded **3ar** as a colorless oil (37.1 mg, 54% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.37 – 7.31 (m, 1H), 7.25 – 7.19 (m, 5H), 7.18 – 7.09 (m, 11H), 7.09 – 7.01 (m, 6H), 6.66 (s, 1H), 6.35 (s, 2H), 3.29 (t, *J* = 7.2 Hz, 4H), 3.19 (t, *J* = 6.4 Hz, 4H), 2.58 – 2.48 (m, 8H), 2.16 (s, 3H), 1.75 – 1.65 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.5, 148.5, 145.1, 142.2, 139.2, 137.8, 132.0, 129.5 128.9, 128.6, 128.4, 128.3, 128.0, 126.8, 126.5, 125.8, 123.6, 70.0, 68.9, 32.6, 32.5, 31.5, 11.1. HRMS (ESI): m/z calcd for C₄₈H₄₉O₃NNa [M+Na]⁺: 710.3605, found: 710.3609.

2-(2,6-bis((*E*)-5-(methoxymethoxy)-1-phenylpent-1-en-2-yl)phenyl)-5-methyloxazole (3as)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2s** (51.0 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 17 h under Ar. Purification by column

chromatography on silica gel (petroleum ether/ethyl acetate = 5/1, v/v) afforded **3as** as a colorless oil (36.3 mg, 64% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.49 – 7.43 (m, 1H), 7.38 – 7.28 (m, 6H), 7.24 – 7.15 (m, 6H), 6.78 (s, 1H), 6.40 (s, 2H), 4.48 (s, 4H), 3.41 (t, *J* = 6.5 Hz, 4H), 3.26 (s, 6H), 2.41 (t, *J* = 8 Hz, 4H), 2.28 (s, 3H), 1.71 – 1.58 (m, 4H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.6, 148.4, 145.4, 141.9, 137.9, 130.9, 129.5, 128.8, 128.2, 127.7, 126.7, 126.6, 123.5, 96.4, 67.6, 55.2, 28.6, 28.4, 11.0. HRMS (ESI): m/z calcd for C₃₆H₄₁O₅NNa [M+Na]⁺: 590.2877, found: 590.2881.

2-(2,6-bis((E)-4-(1,3-dioxan-2-yl)-1-phenylbut-1-en-2-yl)phenyl)-5-methyloxazole (3at)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2t** (54.0 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 19 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1, v/v) afforded **3at** as a white solid (39.0 mg, 66%)

yield). Melting point: 93.4–95.1°C. ¹ H NMR (400 MHz, CDCl₃): δ = 7.43 (t, *J* = 7.7 Hz, 1H), 7.35 – 7.27 (m, 6H), 7.23 – 7.15 (m, 6H), 6.74 (s, 1H), 6.35 (s, 2H), 4.40 (t, *J* = 5.2 Hz, 2H), 4.00 (dd, *J* = 11.5, 4.8 Hz, 4H), 3.62 (t, *J* = 11.3 Hz, 4H), 2.50 (t, *J* = 7.6 Hz, 4H), 2.26 (s, 3H), 2.07 – 1.94 (m, 2H), 1.77 – 1.63 (m, 4H), 1.26 (d, *J* = 12.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.5, 148.2, 145.3, 141.5, 137.9, 130.9, 129.4, 128.8, 128.2, 127.6, 126.9, 126.5, 123.4, 102.0, 66.9, 33.7, 26.5, 25.9, 11.1. HRMS (ESI): m/z calcd for C₃₈H₄₂O₅N [M+H]⁺: 592.3057, found: 592.3067.

di-tert-butyl

4,4'-((1*E*,1'*E*)-(2-(5-methyloxazol-2-yl)-1,3-phenylene)bis(2-phenylethene-1,1-diyl))bis(piperi dine-1-carboxylate) (3au)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2u** (71.3 mg, 2.5 equiv), Cp*Rh(CH₃CN)₃(SbF₆)₂ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 100 °C for 26 h under Ar. Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1,

v/v) afforded **3au** as a white solid (40.8 mg, 56% yield). Melting point: 156.7–157.9 °C. ¹ H NMR (400 MHz, CDCl₃): $\delta = 7.44 - 7.39$ (m, 1H), 7.35 - 7.29 (m, 4H), 7.27 (s, 1H), 7.26 - 7.20 (m, 3H), 7.10 (d, J = 7.5 Hz, 4H), 6.78 (d, J = 1.4 Hz, 1H), 6.42 (s, 2H), 4.21 - 3.92 (m, 4H), 2.82 (tt, J = 12.1, 3.2 Hz, 2H), 2.56 (t, J = 12.8 Hz, 4H), 2.29 (d, J = 1.3 Hz, 3H), 1.61 (d, J = 12.7 Hz, 4H), 1.40 (s, 22H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.8, 154.9, 148.1, 144.1, 143.7, 137.5, 132.1, 128.9, 128.6, 128.3, 128.1, 128.1, 126.8, 123.1, 79.4, 43.9, 39.2, 31.0, 28.6, 11.0. HRMS (ESI): m/z calcd for C₄₆H₅₅O₅N₃Na [M+Na]⁺: 752.4034, found: 752.4040.$

2-(2,6-bis((*E*)-1,2-diphenylvinyl)phenyl)-5-methyloxazole (3av)

The general procedure was applied to **1a** (15.9 mg, 0.1 mmol), **2v** (44.5 mg, 2.5 equiv), $Cp*Rh(CH_3CN)_3(SbF_6)_2$ (5.9 mg, 7 mol%), PhOCH₂COOH (22.8 mg, 1.5 equiv), MnO₂ (2.6 mg, 0.3 equiv) in toluene (1.0 mL) at 80 °C for 30 h under Ar. Purification by column chromatography on silica gel (petroleum

ether/ethyl acetate = 8/1, v/v) afforded **3av** as a colorless oil (15.4 mg, 30% yield). ¹ H NMR (400 MHz, CDCl₃): δ = 7.51 – 7.40 (m, 3H), 7.17 – 7.06 (m, 12H), 7.04 – 6.95 (m, 8H), 6.65 (s, 2H), 6.32 (s, 1H), 1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.0, 147.9, 146.4, 141.8, 139.9, 137.5, 130.7, 130.1, 129.6, 129.4, 128.0, 127.9, 126.8, 126.8, 123.0, 10.5. HRMS (ESI): m/z calcd for C₃₈H₃₀ON [M+H]⁺: 516.2322, found: 516.2324.

(4*E*,4'*E*)-4,4'-(2-(5-methyloxazol-2-yl)-1,3-phenylene)bis(5-phenylpent-4-en-1-ol) (4)

¹ H NMR (400 MHz, CDCl₃): δ = 7.49 (t, *J* = 7.7 Hz, 1H), 7.38 – 7.28 (m, 6H), 7.25 – 7.19 (m, 2H), 7.16 (d, *J* = 7.5 Hz, 4H), 6.81 (s, 1H), 6.38 (s, 2H), 3.46 (t, *J* = 6.3 Hz, 4H), 2.45 (t, *J* = 7.5 Hz, 4H), 2.31 (s, 3H), 1.67 – 1.54 (m, 7.10 m), 1.67 – 1.54 (m).

4H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.1$, 148.9, 145.5, 141.8, 137.8, 131.0, 129.9, 128.8, 128.3, 127.7, 126.8, 126.5, 123.0, 62.3, 31.3, 28.1, 11.1. HRMS (ESI): m/z calcd for C₃₂H₃₄O₃N [M+H]⁺: 480.2533, found: 480.2530.

2-(2,6-bis((*E*)-4,5-dibromo-4-methyl-1-phenylpent-1-en-2-yl)phenyl)-5-methyloxazole (5)

Melting point: 126.1–127.8 °C. ¹ H NMR (400 MHz, CDCl₃): δ = 7.54 (s, 3H), 7.35 (t, *J* = 7.5 Hz, 4H), 7.25 – 7.19 (m, 6H), 6.96 (s, 1H), 6.71 (s, 2H), 3.68 – 3.58 (m, 4H), 3.15 – 2.96 (m, 4H), 2.41 (s, 3H), 1.56 (d, J = 2.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 159.2, 149.0, 149.0, 145.2, 137.5,

137.4, 136.6, 130.0, 130.0, 129.0, 129.0, 128.9, 128.5, 127.1, 125.9, 123.8, 123.8, 66.6, 66.5, 45.1, 42.4, 30.6, 30.6, 11.3.

(*E*)-5-methyl-2-(2-(4-methyl-1-phenylpenta-1,4-dien-2-yl)-5-(phenylethynyl)phenyl)oxazole (6)

¹ H NMR (400 MHz, CDCl₃): δ = 7.99 (s, 1H), 7.51 – 7.38 (m, 3H), 7.32 – 7.21 (m, 8H), 7.20 – 7.13 (m, 1H), 6.76 (s, 1H), 6.53 (s, 1H), 4.56 (d, *J* = 25.5 Hz, 2H), 3.07 (s, 2H), 2.25 (s, 3H), 1.49 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ =160.3, 149.2, 143.2, 142.8, 140.5, 137.8, 132.6, 132.3, 131.8, 130.9, 128.8, 128.5, 128.4, 126.9, 126.5, 124.4, 123.3, 122.4, 112.6, 90.3, 88.7, 40.5, 23.2,

11.2.

2-(2,6-bis((*E***)-4-methyl-1-phenylpenta-1,4-dien-2-yl)phenyl)oxazole-5-carboxylic acid** (7)

Melting point: 124.1–125.8 °C. ¹ H NMR (400 MHz, CDCl₃): δ = 7.88 (s, 1H), 7.47 – 7.33 (m, 3H), 7.25 – 7.12 (m, 9H), 6.51 (s, 2H), 4.75 (d, *J* = 6.2 Hz, 4H), 2.99 (s, 4H), 1.62 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 165.3, 161.6, 145.9, 142.6, 141.7, 138.8, 137.3, 136.3, 133.3, 130.2, 128.6, 128.3, 128.2, 127.0, 124.2, 112.9, 40.7, 23.3.

3,5-bis((*E*)-4-methyl-1-phenylpenta-1,4-dien-2-yl)-4-(5-methyloxazol-2-yl)-*N*-(prop-2-yn-1-yl)benzamide (8)

¹ H NMR (400 MHz, CDCl₃): $\delta = 7.73$ (s, 2H), 7.36 – 7.29 (m, 4H), 7.28 – 7.21 (m, 6H), 6.84 (s, 1H), 6.60 (s, 2H), 6.30 (s, 1H), 4.74 (d, J = 13.1 Hz, 4H), 4.30 (s, 2H), 2.96 (s, 4H), 2.32 (s, 1H), 2.29 (s, 3H), 1.61 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.7$, 158.8, 148.9, 146.1, 142.6, 139.0, 137.5, 134.3, 133.3, 128.7, 128.3, 127.0, 126.7, 123.9, 112.9, 79.5, 72.2, 40.2, 30.1, 23.2, 11.1.

10. ¹H, ¹³C and ¹⁹F NMR spectra

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

7.60 7.55 7.50 7.45 7.40 7.35 7.30 7.25 7.20 7.15 7.10 7.05 7.00 6.95 6.90 6.85 6.80 6.75 6.70 6.65 6.60 6.55 6.50 6.45 6.40 6.35 f1 (ppm)

 $\mathcal{L}^{7.232}_{7.220}$ $\chi^{7.108}_{7.092}$ -6.584

