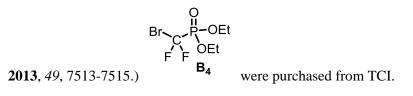
Asymmetric α-Electrophilic Difluoromethylation of β-Keto Esters by Phase Transfer Catalysis

Yakun Wang,^{*a} Shuaifei Wang, ^a Peiyong Qiu, ^a Lizhen Fang, ^a Ke Wang,^a Yawei Zhang,^a Conghui Zhang,^a and Ting Zhao^a

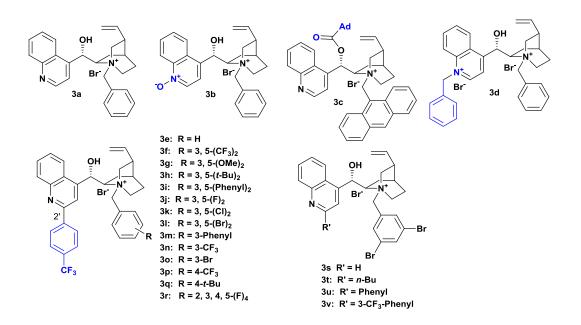
^a School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China. E-mail: 161072@xxmu.edu.cn. Fax: (+86)-0373-3029879

A. General Information	2-13
B. General proceduce for the <i>a</i> -difluoromethylation of β-keto esters	14-23
C. General proceduce for the O-difluoromethylation of β-keto ester 1f D. General proceduce for the derivatization of 1f	
F. HPLC spectra	67-85

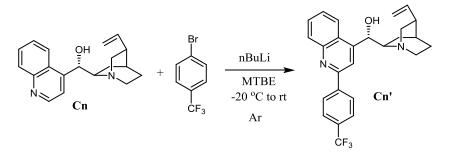

A. General Information:

Unless otherwise stated, all commercial reagents and solvents were used without further additional purification. Analytical TLC was visualized with UV light at 254 nm. Thin layer chromatography was carried out on TLC aluminum sheets with silica gel 60 F_{254} . Purification of reaction products was carried out with chromatography on silica gel 60 (200-300 mesh). ¹H NMR (400 MHz) spectra was obtained at 25 °C; ¹³C NMR (126 MHz) were recorded on a VARIAN INOVA-400M and AVANCE II 400 spectrometer at 25 °C. Chemical shifts are reported as δ (ppm) values relative to TMS as internal standard and coupling constants (J) in Hz. The enantiomeric excesses (*ee*) were determined by HPLC. HPLC analyses were performed on equipped with Diacel Chiralpak AD-H or OJ-H chiral column (0.46 cm × 25 cm), using mixtures of n-hexane/isopropyl alcohol as mobile phase, at 25 °C. Mass spectra are reported by using electron ionization and electrospray ionization techniques. Melting points were determined with a hot plate apparatus. Optical rotations were measured on a digital polarimeter with a sodium lamp at 15 °C. **Cat-1-Cat-4** were purchased from Sinocompound.

Materials:

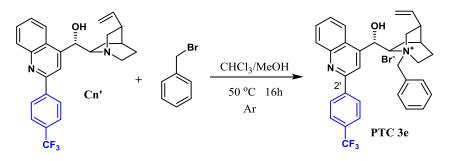

1. Difluoromethylation reagents

TMSCF₂Br and TMSCF₂Cl was purchased from innochem. HCF₂OTf (**B2**) was prepared according to the method of Hartwig (*Angew. Chem. Int. Ed.* 2013, 52, 1 – 5). Ph₃P⁺CF₂CO₂⁻ (B3) was prepared according to the method of Xiao's group (*Chem. Commun.*

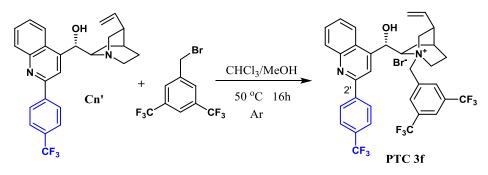

2. Phase transfer catalysts

Cinchona alkaloid catalysts 3a, 3b, 3c, 3d, 3k, 3s were easily prepared according to the previous papers (*Eur. J. Org. Chem.* 2010, 34, 6525–6530; *J. Org.Chem.* 2012, 77, 9601–9608. *J. Am. Chem. Soc*, 2015, 137, 5678-5681, *J. Org.Chem.* 2016, 81, 7042-7050,).

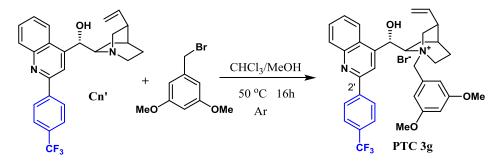
2.1 Synthesis of C-2' modified Catalysts


Synthesis of Cn'

Cn' was prepared partly according to Hintermann and Melchiorre's method (*Angew. Chem. Int. Ed.* **2007**, *46*, 5164–5167; *J. Am. Chem. Soc*, **2015**, *137*, 5678-5681). Cinchonine (5.88 g, 10 mmol) was suspended in 75mL of dry MTBE (dried over molecular sieves) and cooled to -20 °C under Ar. The organo-lithium compound was prepared in a separate flask by adding *n*-BuLi (21 mL, 52.5 mmol, 2.5 M) to a 15 mL MTBE solution of 4-bromobenzotrifluoride (11.26 g, 50 mmol). The organo-lithium compound was added at once to the vigorously stirred MTBE solution of cinchonine and stirred at -20 °C for 60 min. Then the mixture was warmed to ambient temperature and stirred over another 2 h. The reaction was quenched by dropwise addition of acetic acid (30 mL) with rapid stirring and cooling, followed by the addition of water (60 mL) and ethyl acetate (60 mL). Solid iodine (5 g) was added in several portions and the mixture shaken vigorously after each addition until all the solids had dissolved. A solution of sodium metabisulfite (Na₂S₂O₅, 2 g) in water (20 mL) was added to quench the excess of iodine. The mixture was made basic (pH = 10) with the addition of aqueous ammonia (concentrated, 28%) and shaken thoroughly. The aqueous phase was extracted with ethyl acetate twice and the collected organic phases were washed with brine and dried over Na_2SO_4 . After evaporation of the solvent, the crude product was purified by column chromatography on silica gel (EA/MeOH=9:1) to give the product **Cn'** as orange solid (4.35 g, 48% yield).

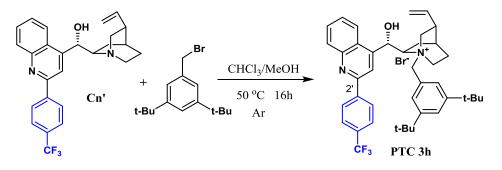

2.2 Synthesis of C-2' modified phase transfer catalysts

Preparation of PTC 3e

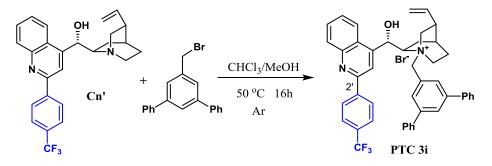

To a flame-dried flask equipped with a magnetic stirring bar and a reflux condenser was added Cn' (0.44 g, 1 mmol), CH₃CN (8 mL),CHCl₃ (6 mL) and benzyl bromide (0.22 g, 1.3 eq). The mixture was heated to 50 °C under Ar for 16 hours and then cooled to room temperature. After complete consumption of Cn' (inferred by TLC analysis) the solvent was evaporated under reduced pressure. Et₂O was added and the mixture was slowly concentrated under reduced pressure. The resulting suspension was stirred for 30 min and the precipitated solids were isolated by filtration, which was recrystallized from MeOH/Et₂O to afford the product **3e** (0.44 g, 71% yield) as a light yellow solid. m. p. 173-178 °C, $[\alpha]_D^{25}$ +82.3 (c 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.4 Hz, 1H), 8.33 (d, J = 7.7 Hz, 3H), 7.81 (d, J = 8.1 Hz, 2H), 7.65 – 7.60 (m, 2H), 7.20 – 7.01 (m, 5H), 6.76 (d, J = 5.7 Hz, 1H), 6.59 - 6.49 (m, 1H), 6.15 (d, J = 11.8 Hz, 1H), 5.85 (ddd, J = 17.4, 10.5, 7.1 Hz, 1H), 5.41 (d, J = 11.8 Hz, 1H), 5.30 - 5.10 (m, 2H), 4.46 (ddd, J = 12.4, 9.1, 2.3 Hz, 1H), 4.30 - 4.04 (m, 2H), 3.31 (t, J = 11.5 Hz, 1H), 2.76 (q, J = 10.1 Hz, 1H), 2.28 (q, J = 9.0 Hz, 1H), 2.18 - 1.99 (m, 1H), 1.75 (dt, J = 32.2, 12.0 Hz, 6H), 0.81 (t, J = 7.5 Hz, 1H). ¹³C NMR (101 MHz, $CDCl_3$) δ 154.61, 147.41, 145.20, 135.22, 134.00, 129.97 (d, J = 7.1 Hz), 128.67 (d, J = 3.4Hz), 127.92, 127.54, 126.83, 125.71 (d, J = 3.9 Hz), 124.11 (q, J = 275.5 Hz), 123.46, 118.18, 117.30, 66.95, 61.43, 56.25, 53.57, 38.07, 27.16, 23.77, 21.76. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.49 (s, 3F). HRMS Calcd. for [C₃₃H₃₂BrF₃N₂O-Br]⁺requires m/z 529.2461, found m/z 529.2463.

Preparation of PTC 3f

PTC 3f was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a light yellow solid (0.42 g, 56% yield). m. p. 203-207 °C, $[\alpha]_D^{25}$ +92.4 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.56 (d, *J* = 1.6 Hz, 2H), 8.49 – 8.33 (m, 4H), 8.22 (s, 1H), 8.16 – 8.09 (m, 1H), 7.89 – 7.71 (m, 4H), 6.63 (d, *J* = 2.5 Hz, 1H), 6.09 (ddd, *J* = 17.4, 10.4, 7.2 Hz, 1H), 5.59 – 5.44 (m, 1H), 5.43 – 5.22 (m, 3H), 4.56 (ddd, *J* = 11.7, 8.4, 2.7 Hz, 1H), 4.17 (dt, *J* = 9.9, 5.3 Hz, 2H), 3.69 – 3.47 (m, 1H), 3.13 (dt, *J* = 11.6, 9.1 Hz, 1H), 2.76 – 2.41 (m, 2H), 2.03 – 1.76 (m, 3H), 1.15 – 1.02 (m, 1H).¹³C NMR (101 MHz, CD₃OD) δ 155.18, 148.00, 146.18, 142.62, 136.16, 134.26, 132.19 (q, *J* = 33.7 Hz), 130.75, 129.87 (d, *J* = 12.6 Hz), 127.92, 127.90, 125.70 – 125.09 (m), 124.51, 123.83, 123.27, 121.81, 117.25, 116.73, 68.33, 65.89, 61.17, 56.53, 54.95, 37.49, 27.04, 23.29, 20.95. ¹⁹F NMR (376 MHz, CD₃OD) δ -63.99 (d, *J* = 10.5 Hz, 9F). HRMS Calcd. for [C₃₅H₃₀BrF₉N₂O-Br]⁺requires m/z 665.2209, found m/z 665.2214.

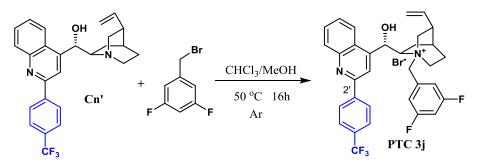

Preparation of PTC 3g

PTC 3g was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a yellow solid (0.45 g, 67% yield). m. p. 194-197 °C, $[\alpha]_D^{25}$ +98.3 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.49 – 8.27 (m, 4H), 8.18 – 8.05 (m, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.79 – 7.64 (m, 2H), 6.95 (d, *J* = 2.3 Hz, 2H), 6.71 – 6.54 (m, 2H), 6.06 (ddd, *J* = 17.4, 10.5, 7.2 Hz, 1H), 5.35 – 5.22 (m, 2H), 5.15 (d, *J* = 12.1 Hz, 1H), 4.99 (d, *J* = 12.1 Hz, 1H), 4.40 (td, *J* = 10.2, 9.4, 4.8 Hz, 1H), 4.19 – 4.01 (m, 2H), 3.84 (s, 6H), 3.70 (t, *J* = 11.5 Hz, 1H), 3.11 (dt, *J* = 11.9, 9.3 Hz, 1H), 2.63 – 2.42 (m, 2H), 1.98 – 1.70 (m, 3H), 1.16 – 0.96 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 161.31, 155.16, 148.00, 146.38, 142.66, 136.32, 131.83 – 130.32

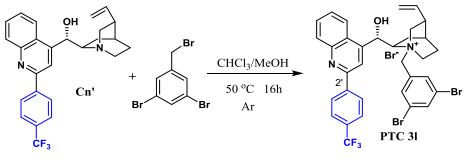

(m), 129.12, 127.92, 127.87, 125.64 – 125.40 (m), 124.29 (q, J = 271.4 Hz), 123.87, 123.21, 117.26, 116.60, 111.52, 101.76, 67.71, 65.94, 63.09, 56.90, 54.87, 54.70, 37.62, 26.98, 23.36, 20.96. ¹⁹F NMR (376 MHz, CD₃OD) δ -63.96 (s, 3F). HRMS Calcd. For $[C_{35}H_{36}BrF_3N_2O_3-Br]^+$ requires m/z 589.2673, found m/z 589.2668.

Preparation of PTC 3h

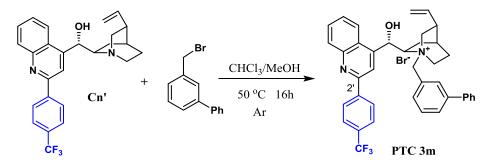
PTC 3h was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a white solid (0.32 g, 45% yield). m. p. 167-170 °C, $[\alpha]_D^{25}$ +77.6 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.44 – 8.24 (m, 3H), 8.19 – 8.10 (m, 1H), 7.94 (dd, *J* = 7.9, 1.9 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.66 (dd, *J* = 11.3, 1.7 Hz, 2H), 7.53 – 7.33 (m, 3H), 6.57 (s, 1H), 5.89 (ddd, *J* = 17.5, 10.4, 7.4 Hz, 1H), 5.59 – 5.37 (m, 2H), 5.24 – 4.95 (m, 2H), 4.52 (t, *J* = 10.8 Hz, 1H), 4.29 – 3.97 (m, 2H), 3.51 (t, *J* = 11.5 Hz, 1H), 2.91 (q, *J* = 7.1 Hz, 3H), 2.51 – 2.21 (m, 2H), 1.90 – 1.62 (m, 3H), 1.31 (s, 18H), 1.27 – 1.19 (m, 6H).¹³C NMR (101 MHz, CDCl₃) δ 154.96, 151.73, 151.66, 147.87, 145.64, 142.81, 135.61, 130.96 (q, *J* = 32.7 Hz),130.31, 129.41, 128.47, 127.96, 126.49, 125.64 (d, *J* = 4.0 Hz), 124.07, 123.53, 123.46 – 123.11 (m), 122.85, 118.10, 117.69, 70.54, 67.38, 65.45, 63.49, 56.45, 54.26, 45.90, 38.22, 35.00, 31.50, 29.70, 27.24, 24.02, 21.51, 11.33, 8.97. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.52 (s, 3F). HRMS Calcd. For [C₄₁H₄₈BrF₃N₂O-Br]⁺requires m/z 641.3713, found m/z 641.3710.


Preparation of PTC 3i

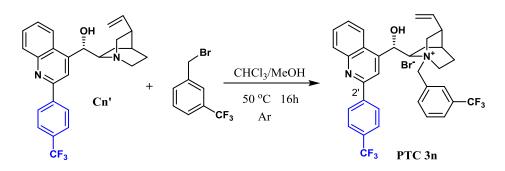
PTC 3i was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a white solid (0.58 g, 78% yield). m. p. 182-186 °C, $[\alpha]_D^{25}$ +145.3 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.38 (t, *J* = 7.0 Hz, 4H), 8.20 – 8.06 (m, 1H), 7.98 (d, *J* = 34.4 Hz, 3H),


7.88 – 7.67 (m, 8H), 7.53 – 7.29 (m, 6H), 6.65 (d, J = 11.4 Hz, 1H), 6.19 – 5.95 (m, 1H), 5.51 – 5.07 (m, 4H), 4.56 – 4.40 (m, 1H), 4.24 – 4.03 (m, 2H), 3.76 – 3.52 (m, 3H), 3.16 (d, J = 12.7 Hz, 1H), 2.79 – 2.36 (m, 2H), 2.02 – 1.63 (m, 4H), 1.26 (s, 2H), 1.13 – 0.76 (m, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 155.18, 148.00, 146.36, 142.67, 139.69, 139.67, 136.29, 130.90, 129.86, 128.76, 127.93, 127.75, 127.19, 126.98, 125.47 (d, J = 3.8 Hz), 125.45, 124.30 (q, J = 271.4 Hz), 123.87, 117.29, 116.60, 70.13, 67.83, 65.96, 62.93, 56.78, 54.79, 37.56, 29.41, 27.06, 23.37, 20.95. ¹⁹F NMR (376 MHz, CD₃OD) δ -63.94(s, 3H). HRMS Calcd. For [C₄₅H₄₀BrF₃N₂O-Br]⁺requires m/z 681.3087, found m/z 681.3084.

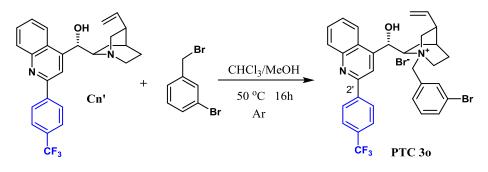
Preparation of PTC 3j


PTC 3j was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a white solid (0.53 g, 83% yield). m. p. 193-197 °C, $[\alpha]_D^{25}$ +101.0 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.42 (d, *J* = 8.4 Hz, 4H), 8.21 (d, *J* = 8.1 Hz, 1H), 7.96 – 7.70 (m, 4H), 7.57 – 7.48 (m, 2H), 7.24 (t, *J* = 2.4 Hz, 1H), 6.63 (d, *J* = 2.5 Hz, 1H), 6.10 (ddd, *J* = 17.3, 10.4, 7.1 Hz, 1H), 5.41 – 5.19 (m, 3H), 5.06 (d, *J* = 12.7 Hz, 1H), 4.46 (ddd, *J* = 11.9, 8.4, 2.7 Hz, 1H), 4.15 – 3.92 (m, 2H), 3.67 (t, *J* = 11.3 Hz, 1H), 3.25 – 3.07 (m, 1H), 2.77 – 2.39 (m, 2H), 1.90 (dd, *J* = 29.7, 15.9 Hz, 3H), 1.14 (q, *J* = 13.1, 9.4 Hz, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 164.41 (d, *J* = 12.8 Hz), 161.93 (d, *J* = 12.7 Hz), 155.29, 148.10, 146.31, 142.70, 136.19, 131.89 – 130.64 (m), 127.95, 127.92, 127.86, 123.92, 123.00, 117.26, 116.64, 105.72 (t, *J* = 25.6 Hz), 68.16, 68.14, 65.92, 61.70, 56.84, 54.89, 37.55, 26.94, 23.29, 20.92. ¹⁹F NMR (376 MHz, CD₃OD) δ -64.11(s, 3H), -109.72 (s, 2H). HRMS Calcd. For [C₃₃H₃₀BrF₅N₂O-Br]⁺requires m/z 565.2273, found m/z 565.2276.

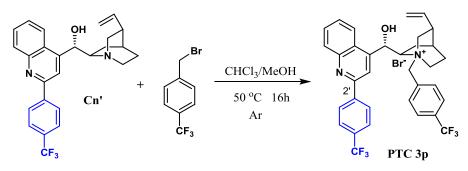
Preparation of PTC 31


PTC 3I was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a light yellow solid (0.60 g, 78% yield). m. p. 229-232 °C, $[\alpha]_D^{25}$ +101.0 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.40 (d, *J* = 8.6 Hz, 4H), 8.17 (dd, *J* = 8.0, 1.5 Hz, 1H), 8.05 (d, *J* = 1.7 Hz, 2H), 7.96 (d, *J* = 1.6 Hz, 1H), 7.91 – 7.70 (m, 4H), 6.60 (d, *J* = 2.5 Hz, 1H), 6.09 (ddd, *J* = 17.4, 10.4, 7.1 Hz, 1H), 5.37 – 5.18 (m, 3H), 5.03 (d, *J* = 12.4 Hz, 1H), 4.45 (ddd, *J* = 11.8, 8.5, 2.6 Hz, 1H), 4.20 – 3.99 (m, 2H), 3.60 (t, *J* = 11.3 Hz, 1H), 3.14 (dt, *J* = 11.8, 9.3 Hz, 1H), 2.76 – 2.45 (m, 2H), 2.02 – 1.80 (m, 3H), 1.19 – 1.02 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 155.30, 148.11, 146.29, 142.69, 136.19, 135.90, 135.28, 131.61, 130.02, 129.98 (d, *J* = 6.9 Hz), 127.89 (d, *J* = 6.8 Hz), 125.48, 123.91, 123.25, 122.94, 117.24, 116.69, 68.20, 65.89, 61.45, 56.73, 54.94, 37.57, 27.01, 23.30, 20.90. ¹⁹F NMR (376 MHz, CD₃OD) δ -64.08 (s, 3H). HRMS Calcd. For [C₃₃H₃₀Br₃F₃N₂O-Br]⁺requires m/z 685.0671, found m/z 685.0677.

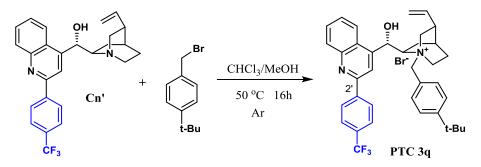
Preparation of PTC 3m


PTC 3m was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a light yellow solid (0.47 g, 69% yield). m. p. 239-242 °C, $[α]_D^{25}$ +138.4 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 8.31 (d, *J* = 8.0 Hz, 3H), 7.94 – 7.73 (m, 3H), 7.64 (t, *J* = 9.3 Hz, 2H), 7.53 (d, *J* = 7.4 Hz, 2H), 7.39 (dt, *J* = 13.0, 7.1 Hz, 3H), 7.16 (q, *J* = 7.7, 6.5 Hz, 1H), 7.00 (q, *J* = 7.9 Hz, 2H), 6.83 (dd, *J* = 20.4, 6.0 Hz, 1H), 6.59 (s, 1H), 6.33 (d, *J* = 11.9 Hz, 1H), 5.84 (ddd, *J* = 17.4, 10.4, 7.2 Hz, 1H), 5.59 (d, *J* = 11.8 Hz, 1H), 5.25 – 5.10 (m, 2H), 4.50 (ddd, *J* = 12.1, 9.0, 2.4 Hz, 1H), 4.28 – 4.01 (m, 2H), 3.35 (t, *J* = 11.6 Hz, 1H), 2.80 (q, *J* = 10.2 Hz, 1H), 2.38 – 2.04 (m, 2H), 1.82 – 1.61 (m, 3H), 1.53 – 1.17 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.52, 147.37, 145.11, 140.92, 140.88, 139.19, 135.15, 132.84, 132.03, 130.90 (q, *J* = 32.2 Hz), 129.99, 128.99, 128.56, 128.27, 127.91, 127.79, 127.56, 127.44, 126.99, 126.01 – 125.15 (m), 122.91, 118.26, 117.21, 67.11, 61.51, 56.40, 53.69, 38.09, 36.01, 29.70, 27.18, 23.77, 21.75, 11.40. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.48 (s, 3F) . HRMS Calcd. For [C₃₉H₃₆BrF₃N₂O-Br]⁺requires m/z 605.2774, found m/z 605.2778.

Preparation of PTC 3n

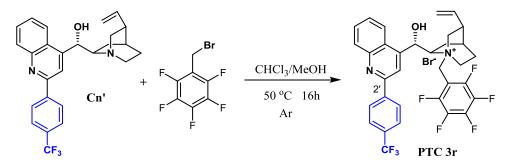

PTC 3n was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a light yellow solid (0.39 g, 58% yield). m. p. 223-226 °C, $[α]_D^{25}$ +103.5 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.50 – 8.32 (m, 4H), 8.28 – 8.14 (m, 2H), 8.08 (d, *J* = 7.8 Hz, 1H), 7.97 – 7.75 (m, 6H), 6.66 (d, *J* = 9.5 Hz, 1H), 6.11 (ddd, *J* = 17.4, 10.6, 7.2 Hz, 1H), 5.33 – 5.23 (m, 2H), 5.25 – 5.03 (m, 1H), 4.49 (ddd, *J* = 11.8, 8.5, 2.7 Hz, 1H), 4.25 – 4.03 (m, 2H), 3.76 – 3.53 (m, 1H), 3.16 – 2.99 (m, 1H), 2.74 – 2.38 (m, 2H), 1.99 – 1.78 (m, 3H), 1.20 – 1.07 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 155.31, 148.12, 146.36, 142.71, 137.43, 136.23, 131.11 (dd, *J* = 32.6, 19.6 Hz), 130.37 – 129.60 (m), 128.83, 127.95, 127.93, 127.85, 127.08, 123.93, 122.95, 117.25, 116.65, 68.10, 65.90, 62.23, 56.64, 54.75, 37.54, 27.08, 23.29, 20.89. ¹⁹F NMR (376 MHz, CD₃OD) δ -63.95 –64.04 (m, 3F), -64.04 –64.11 (m, 3F). HRMS Calcd. For [C₃₄H₃₁BrF₆N₂O-Br]⁺requires m/z 597.2335, found m/z 597.2339.

Preparation of PTC 30

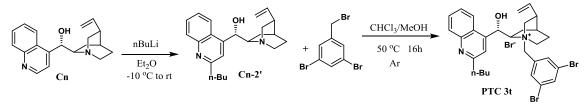

PTC 30 was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a light yellow solid (0.58 g, 85% yield). m. p. 229-234 °C, $[α]_D^{25}$ +105.2 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.50 – 8.31 (m, 4H), 8.22 (d, *J* = 8.2 Hz, 1H), 8.02 (s, 1H), 7.91 – 7.72 (m, 6H), 7.52 (td, *J* = 7.9, 1.7 Hz, 1H), 6.65 (s, 1H), 6.11 (ddd, *J* = 17.5, 10.5, 7.4 Hz, 1H), 5.36 – 5.23 (m, 2H), 5.20 – 4.96 (m, 2H), 4.45 (ddd, *J* = 11.8, 8.4, 2.7 Hz, 1H), 4.14 – 3.89 (m, 2H), 3.63 (t, *J* = 11.3 Hz, 1H), 3.13 (q, *J* = 9.9 Hz, 1H), 2.73 – 2.44 (m, 2H), 1.98 – 1.80 (m, 3H), 1.20 – 1.08 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 155.33, 148.14, 146.38, 142.71, 136.22 (d, *J* = 3.1 Hz), 133.46, 132.40, 130.72, 127.92, 127.82, 126.01 – 125.26 (m), 123.93, 123.25 – 122.05 (m), 117.23, 116.64, 68.01, 65.86, 62.29, 56.73, 54.74, 37.58, 27.06, 23.31, 20.87. ¹⁹F NMR (376 MHz, CD₃OD) δ -64.09 (s, 3F). HRMS Calcd. For $[C_{34}H_{31}Br_2F_3N_2O-Br]^+$ requires m/z 607.1566, found m/z 607.1570.

Preparation of PTC 3p

PTC 3p was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a yellow solid (0.44 g, 65% yield). m. p. 223-227 °C, $[\alpha]_D^{25}$ +102.6 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.43 (d, *J* = 8.5 Hz, 1H), 8.40 – 8.25 (m, 3H), 7.83 (dd, *J* = 14.5, 7.8 Hz, 4H), 7.61 (d, *J* = 8.3 Hz, 1H), 7.41 (d, *J* = 7.9 Hz, 2H), 7.01 (dt, *J* = 43.8, 7.5 Hz, 2H), 6.86 – 6.73 (m, 1H), 6.62 – 6.40 (m, 2H), 5.84 (ddd, *J* = 17.4, 10.4, 7.2 Hz, 1H), 5.46 (dd, *J* = 24.3, 11.8 Hz, 1H), 5.29 – 5.10 (m, 2H), 4.51 (ddd, *J* = 12.1, 8.9, 2.5 Hz, 1H), 4.32 – 4.03 (m, 2H), 3.23 – 3.03 (m, 2H), 2.66 (dd, *J* = 15.2, 6.5 Hz, 1H), 2.32 (q, *J* = 8.9 Hz, 1H), 2.11 (d, *J* = 52.3 Hz, 1H), 1.85 – 1.68 (m, 3H), 1.56 – 1.44 (m, 1H), 1.26 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 154.55, 147.36, 144.75, 142.83, 134.79, 134.41, 134.38, 132.80 – 131.64 (m), 131.01 (q, *J* = 32.1 Hz), 130.99, 130.14, 128.57, 127.90, 125.99 – 125.13 (m), 127.47, 123.32 (q, *J* = 271.0 Hz), 123.12, 118.51, 117.12, 67.51, 60.35, 56.54, 54.03, 45.96, 38.01, 29.71, 27.00, 23.72, 21.77, 11.35, 8.60. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.51(s, 3H), -63.10 (s, 3H). HRMS Calcd. For $[C_{34}H_{31}BrF_6N_2O-Br]^+$ requires m/z 597.2335, found m/z 597.2331.

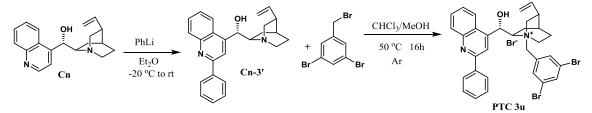

Preparation of PTC 3q

PTC 3q was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a white solid (0.47 g, 71% yield). m. p. 187-190 °C, $[\alpha]_D^{25}$ +83.1(*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.43 (d, *J* = 6.6 Hz, 3H), 8.35 (d, *J* = 8.2 Hz, 1H), 8.23 (d, *J* = 8.3 Hz, 1H), 7.95 - 7.76 (m, 4H), 7.73 - 7.56 (m, 4H), 6.73 - 6.57 (m, 1H), 6.26 - 5.90 (m, 1H), 5.30 - 5.23 (m, 1H), 5.16 - 4.95 (m, 2H), 4.51 - 4.31 (m, 1H), 4.16 - 3.85 (m, 2H), 3.74 - 3.51 (m, 1H), 2.76 - 2.43 (m, 2H), 2.01 - 1.75 (m, 4H), 1.38 (s, 9H), 1.10 (t, *J* = 7.3 Hz, 2H). ¹³C

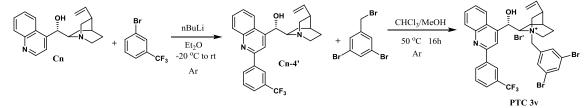

NMR (101 MHz, CD₃OD) δ 155.31, 153.77, 148.13, 146.53, 142.72, 136.33, 133.29, 131.82 – 130.38 (m), 130.02, 129.99 (d, *J* = 6.4 Hz), 127.95, 127.93, 127.81, 126.02, 125.50 (q, *J* = 3.7 Hz), 124.38, 123.97, 123.37 – 122.41 (m), 117.24, 116.56, 67.61, 65.86, 62.91, 56.63, 54.42, 37.60, 34.37, 30.22, 27.13, 23.33, 20.88, 8.04. ¹⁹F NMR (376 MHz, CD₃OD) δ -64.07 (s, 3F). HRMS Calcd. For [C₃₇H₄₀BrF₃N₂O-Br]⁺requires m/z 585.3087, found m/z 585.3082.

Preparation of PTC 3r

PTC 3r was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn'** as a white solid (0.61 g, 88% yield). m. p. 198-201 °C, $[α]_D^{25}$ +102.4(*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.44 (d, *J* = 7.3 Hz, 4H), 8.23 (d, *J* = 8.4 Hz, 1H), 7.85 (dd, *J* = 32.4, 7.9 Hz, 4H), 6.75 – 6.59 (m, 1H), 6.11 (ddd, *J* = 17.4, 10.6, 7.3 Hz, 1H), 5.36 – 5.24 (m, 3H), 5.17 (d, *J* = 13.7 Hz, 1H), 4.47 (t, *J* = 9.8 Hz, 1H), 4.24 (t, *J* = 10.4 Hz, 1H), 3.93 (q, *J* = 13.5, 12.2 Hz, 1H), 3.66 – 3.50 (m, 2H), 2.73 (q, *J* = 8.8 Hz, 1H), 2.52 (t, *J* = 12.1 Hz, 1H), 1.97 (dd, *J* = 16.3, 8.9 Hz, 4H), 1.48 – 1.14 (m, 5H), 1.09 – 0.90 (m, 2H).¹³C NMR (101 MHz, CD₃OD) δ 155.33, 148.17, 146.04, 142.68, 136.07, 131.05 (q, *J* = 33.1 Hz), 130.11, 129.97, 127.93, 127.75, 125.53, 125.49, 125.45, 124.26 (q, *J* = 271.0 Hz), 123.99, 117.30, 116.75, 103.56 – 101.84 (m),68.09, 66.21, 56.81, 55.23, 51.09, 37.79, 26.44, 23.40, 21.03. ¹⁹F NMR (376 MHz, CD₃OD) δ -64.08 (s, 3F), -136.80 (s, 1F), -151.31 (d, *J* = 4.7 Hz, 1F), -162.67 (d, *J* = 7.5 Hz, 1F). HRMS Calcd. For [C₃₃H₂₇BrF₈N₂O-Br]⁺requires m/z 619.1990, found m/z 619.1986.


Preparation of PTC 3t

Cn-2' was prepared according to Hintermann's method (*Angew. Chem. Int. Ed.* **2007**, *46*,) as white solid (2.10 g, 56% yield). **PTC 3t** was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn-2'** as a white solid (0.58 g, 86% yield). m. p. 215-218 °C, $[\alpha]_D^{25}$ +137.6 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J* = 5.9 Hz, 2H), 8.18


(ddd, J = 13.7, 8.2, 1.2 Hz, 3H), 8.01 (dd, J = 9.3, 1.7 Hz, 3H), 7.81 (dddd, J = 30.6, 8.3, 6.9, 1.3 Hz, 2H), 7.63 – 7.48 (m, 3H), 6.60 (d, J = 2.5 Hz, 1H), 6.08 (ddd, J = 17.4, 10.5, 7.1 Hz, 1H), 5.39 – 5.20 (m, 2H), 5.18 – 4.94 (m, 2H), 4.46 (ddd, J = 11.8, 8.5, 2.7 Hz, 1H), 4.12 – 3.84 (m, 2H), 3.72 - 3.55 (m, 1H), 3.15 (dt, J = 11.9, 9.4 Hz, 1H), 2.67 (q, J = 8.8 Hz, 1H), 2.58 – 2.37 (m, 1H), 2.00 – 1.83 (m, 3H), 1.35 – 1.27 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.91, 146.65, 143.89, 136.35, 135.02, 134.82, 130.85, 128.75, 128.00, 125.94, 123.47, 122.91, 121.78, 119.70, 118.46, 67.13, 65.53, 59.50, 56.42, 54.07, 39.24, 38.00, 32.55, 27.06, 23.70, 22.92, 21.76, 14.09. HRMS Calcd. For [C₃₀H₃₅Br₃N₂O-Br]+requires m/z 597.1111, found m/z 597.1115.

Preparation of PTC 3e

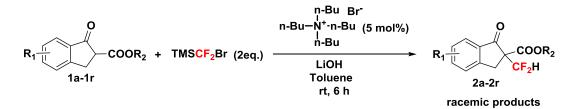
Cn-3' was prepared according to Hintermann's method (*Angew. Chem. Int. Ed.* **2007**, *46*, 5164 –5167) as white solid (0.55g, 21% yield). **PTC 3u** was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn-3'** as a white solid (0.58 g, 83% yield). m. p. 257-259 °C, $[\alpha]_D^{25}$ +127.3 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.31 (d, *J* = 5.9 Hz, 2H), 8.18 (ddd, *J* = 13.7, 8.2, 1.2 Hz, 3H), 8.01 (dd, *J* = 9.3, 1.7 Hz, 3H), 7.92 – 7.73 (m, 2H), 7.65 – 7.40 (m, 3H), 6.60 (d, *J* = 2.5 Hz, 1H), 6.08 (ddd, *J* = 17.4, 10.5, 7.1 Hz, 1H), 5.37 – 5.27 (m, 2H), 5.14 (d, *J* = 12.5 Hz, 1H), 5.00 (d, *J* = 12.6 Hz, 1H), 4.46 (ddd, *J* = 11.8, 8.5, 2.7 Hz, 1H), 4.11 – 3.84 (m, 2H), 3.68 – 3.50 (m, 1H), 3.14 (dd, *J* = 11.8, 9.2 Hz, 1H), 2.68 (t, *J* = 8.8 Hz, 1H), 2.58 – 2.44 (m, 1H), 1.99 – 1.83 (m, 3H), 1.34 – 1.26 (m, 1H), 1.20 – 1.06 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 157.27, 148.06, 145.92, 139.12, 136.17, 135.91, 135.23, 131.61, 129.87, 129.58, 129.53, 128.65, 127.36, 127.31, 123.60, 123.27, 122.64, 117.49, 116.64, 68.25, 65.76, 61.56, 56.75, 54.93, 37.51, 31.36, 26.97, 23.30, 22.32, 20.85, 13.05. HRMS Calcd. For [C₃₂H₃₁Br₃N₂O-Br]⁺requires m/z 617.0798, found m/z 617.0792.

Preparation of PTC 3v

Cn-4' was prepared according to Hintermann and Melchiorre's method (Angew. Chem. Int.

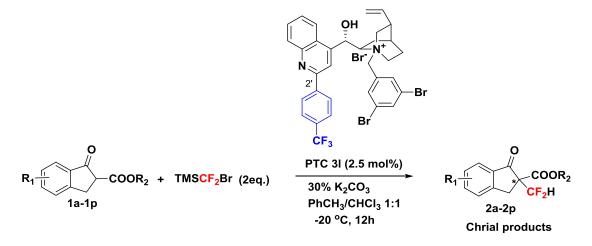
Ed. **2007**, *46*, 5164 –5167; *J. Am. Chem. Soc*, **2015**, *137*, 5678-5681) as light yellow solid (1.53g, 55% yield). . **PTC 3v** was synthesized by the same procedure as mentioned above for catalyst **3e** from **Cn-4'** as a white solid (0.60 g, 79% yield). m. p. 197-201 °C, $[\alpha]_D^{25}$ +118.0 (*c* 0.1, CHCl₃). ¹H NMR (400 MHz, CD₃OD) δ 8.54 (s, 1H), 8.47 (d, *J* = 7.5 Hz, 1H), 8.37 (d, *J* = 12.2 Hz, 2H), 8.23 (dt, *J* = 8.7, 2.0 Hz, 1H), 8.08 – 7.96 (m, 3H), 7.91 – 7.77 (m, 4H), 6.62 (d, *J* = 2.5 Hz, 1H), 6.10 (ddd, *J* = 17.4, 10.5, 7.2 Hz, 1H), 5.42 – 5.11 (m, 3H), 5.02 (d, *J* = 12.4 Hz, 1H), 4.55 – 4.43 (m, 1H), 4.18 – 3.90 (m, 2H), 3.61 (t, *J* = 11.4 Hz, 1H), 3.16 (q, *J* = 9.7 Hz, 1H), 2.78 – 2.45 (m, 2H), 2.04 – 1.81 (m, 3H), 1.20– 1.03 (m, 1H). ¹³C NMR (101 MHz, CD₃OD) δ 155.18, 148.12, 146.34, 140.04, 136.19, 135.90, 135.26, 133.30, 131.61, 130.78 (d, *J* = 11.4 Hz), 130.00 (d, *J* = 11.5 Hz), 129.59, 127.78, 125.90 (d, *J* = 3.9 Hz), 123.26, 122.86, 116.98, 116.62, 68.21, 65.92, 61.49, 56.75, 54.94, 37.54, 29.95, 26.97, 23.30, 20.89. ¹⁹F NMR (376 MHz, CD₃OD) δ -64.07 (s, 3F). HRMS Calcd. For [C₃₃H₃₀Br₃F₃N₂O-Br]+requires m/z 685.0671, found m/z 685.0676.

3. β-Keto esters:


β-keto esters 1a-1t were prepared according to the literature procedure (*Eur. J. Org. Chem.*2010, 34, 6525–6530; *Green Chemistry* 2016, 18, 5493-5499)

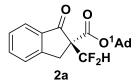
4. Commercial grade reagents and solvents:

Commercial grade reagents, bases and solvents were purchased from Sinoreagent, Meryer and Energy-Chemical without further purifications.

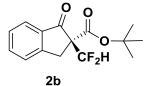

B. General proceduce for the *a*-difluoromethylation of β-keto esters:

Achiral α-difluoromethylation of β-keto esters

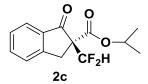
The reaction was conducted with substrate **1a-1r** (0.1 mmol) in the presence of tetrabutylammonium bromide (5 mol%) in toluene. Then TMSCF₂Br (0.2 mmol) was added slowly, and the reaction was stirred at room temperature for 6 h. After completion of the reaction (confirmed by TLC analysis), the mixture was diluted with EtOAc (30 mL), washed with water (3×20 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give **2a-2s**. The *ee* of the product was determined by chiral HPLC.


Asymmetric α-difluoromethylation of β-keto esters

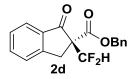
The reaction was conducted with β -keto esters **1a-1p** (0.1 mmol) in the presence of PTC **3l** (0.0025 mmol) in a mixture containing PhCH₃/CHCl₃ =1:1 (8 mL) and 30%K₂CO₃ (0.5 mL) at -20 °C. Then TMSCF₂Br (0.2 mmol) was added slowly,and the reaction was stirred at this temperature for 12 h. After the reaction was completed (confirmed by TLC analysis), the


mixture was diluted with EtOAc (30 mL), washed with water (3 \times 10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was subject to crude ¹⁹F-NMR to give the C/O isomer ratio (trifluoromethyl benzene 8 µL as internal standard). Subsequently, the residue was purified by flash chromatography (silica gel; petroleum ether/ethyl acetate=50:1–20:1) to afford the α -difluoromethylation products.

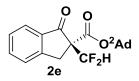
1-Adamantyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2a)


(Light yellow solid, 31.3 mg, 87% yield, 80% ee); m. p. 73-76 °C, $[\alpha]_D^{25}$ 73.6 (*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.7 Hz, 1H), 7.72 – 7.53 (m, 2H), 7.40 (t, *J* = 7.4 Hz, 1H), 6.54 (t, *J* = 55.4 Hz, 1H), 3.67 (d, *J* = 17.4 Hz, 1H), 3.49 (d, *J* = 17.4 Hz, 1H), 2.22 – 2.06 (m, 9H), 1.73 – 1.56 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.36 (d, *J* = 7.1 Hz), 164.37 (d, *J* = 11.6 Hz), 154.03, 135.90, 134.20 (d, *J* = 3.6 Hz), 127.89, 126.41, 125.13, 115.72 (d, *J* = 5.8 Hz), 83.91, 65.57 (dd, *J* = 23.0, 21.2 Hz), 40.97, 35.94, 30.86, 29.88. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.62 (dd, *J* = 286.5, 55.0 Hz, 1F), -128.78 (dd, *J* = 286.3, 55.9 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 12, 0.6 mL / min, 254 nm, τ_R (major) = 12.25 min, τ_R (minor) = 10.99 min. HRMS Calcd. for $[C_{21}H_{22}F_2O_3+Na]^+$ requires m/z 383.1435, found m/z 383.1438.

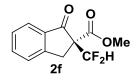
1-tert-butyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2b)


(Colorless oil, 22.0 mg, 78% yield, 67% ee); $[\alpha]_D^{25}$ 63.2 (*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.7 Hz, 1H), 7.66 (td, *J* = 7.5, 1.2 Hz, 1H), 7.55 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.44 – 7.35 (m, 1H), 6.54 (t, *J* = 55.4 Hz, 1H), 3.68 (d, *J* = 17.5 Hz, 1H), 3.50 (d, *J* = 17.5 Hz, 1H), 1.45 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) $\delta\delta$ 196.31 (d, *J* = 6.6 Hz), 164.75 (d, *J* = 11.4 Hz), 154.03, 135.95, 134.17 (d, *J* = 3.6 Hz), 127.94, 126.44, 125.17, 115.70 (dd, *J* = 246.5, 240.8 Hz), 83.91, 65.52 (dd, *J* = 23.0, 21.2 Hz), 27.77. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.65 (dd, *J* = 286.8, 55.1 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 99 / 1, 0.6 mL / min, 254 nm, τ_R (major) = 9.26 min, τ_R (minor) = 8.24 min. HRMS Calcd. for [C₁₅H₁₆F₂O₃+Na]⁺ requires m/z 305.0965, found m/z 305.0962.

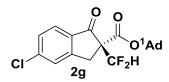
1-isopropyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2c)


(Colorless oil, 22.8 mg, 85% yield, 71% ee); $[\alpha]_D^{25}$ 56.3(*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.67 (td, *J* = 7.5, 1.2 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 1H), 6.59 (t, *J* = 55.3 Hz, 1H), 5.09 (p, *J* = 6.3 Hz, 1H), 3.71 (d, *J* = 17.6 Hz, 1H), 3.54 (d, *J* = 17.5 Hz, 1H), 1.26 (dd, *J* = 10.5, 6.3 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 195.95 (d, *J* = 7.0 Hz), 165.38 (d, *J* = 12.0 Hz), 153.98, 136.03, 134.08 (d, *J* = 3.6 Hz), 128.00, 126.47, 125.24, 117.97, 115.55 (d, *J* = 6.1 Hz), 113.12, 70.66, 66.90 – 59.15 (m), 29.81 (t, *J* = 2.7 Hz), 21.47 (d, *J* = 7.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -126.33 (dd, *J* = 287.1, 55.0 Hz, 1F), -129.11 (dd, *J* = 287.1, 55.6 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R (major) = 10.82 min, τ_R (minor) = 9.76 min. HRMS Calcd. for [C₁₄H₁₄F₂O₃+Na]⁺ requires m/z 291.0809, found m/z 291.0814.

Benzyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2d)

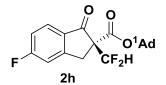

(Colorless oil, 24.6 mg, 78% yield, 67% ee); $[\alpha]_D^{25}$ 76.3(*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 7.7 Hz, 1H), 7.66 (td, *J* = 7.5, 1.2 Hz, 1H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.45 – 7.26 (m, 6H), 6.63 (t, *J* = 55.2 Hz, 1H), 5.32 – 5.08 (m, 2H), 3.73 (d, *J* = 17.4 Hz, 1H), 3.56 (d, *J* = 17.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.64 (d, *J* = 6.8 Hz), 165.82 (d, *J* = 12.1 Hz), 153.88, 136.20, 134.83, 134.03 (d, *J* = 3.6 Hz), 128.66, 128.51, 128.14, 127.87, 126.53, 125.35, 117.87, 115.45 (d, *J* = 6.1 Hz), 113.02, 68.07, 64.81 (dd, *J* = 24.2, 20.8 Hz), 31.35 – 28.68 (m). ¹⁹F NMR (376 MHz, CDCl₃) δ -125.86 (d, *J* = 287.5 Hz), -129.07 (d, *J* = 287.5 Hz). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R (major) = 41.58 min, τ_R (minor) = 27.07 min. HRMS Calcd. for $[C_{18}H_{14}F_2O_3+Na]^+$ requires m/z 339.0809, found m/z 339.0803.

2-Adamantyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2e)

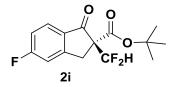

(White solid, 33.1 mg, 92% yield, 83% ee); m. p. 56-58 °C, $[\alpha]_D^{25}$ 77.5 (*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.67 (td, *J* = 7.5, 1.2 Hz, 1H), 7.58 (d, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.4 Hz, 1H), 6.66 (t, *J* = 55.3 Hz, 1H), 5.00 (t, *J* = 3.5 Hz, 1H), 3.74 (d, *J* = 17.5 Hz, 1H), 3.56 (d, *J* = 17.5 Hz, 1H), 2.05 – 1.48 (m, 14H). ¹³C NMR (101 MHz, CDCl₃) δ 196.10 (d, *J* = 6.9 Hz), 165.09 (d, *J* = 11.9 Hz), 153.95, 136.02, 134.19 (d, *J* = 3.6 Hz), 153.95, 136.02, 115.60 (d, *J* = 5.8 Hz), 113.17, 79.68, 65.13 (dd, *J* = 23.7, 21.1 Hz), 37.18, 36.13, 31.66 (d, *J* = 2.9 Hz), 26.99, 26.78. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.29 (dd, *J* = 287.2, 55.0 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R (major) = 14.81 min, τ_R (minor) = 10.54 min. HRMS Calcd. for $[C_{21}H_{22}F_2O_3+Na]^+$ requires m/z 383.1435, found m/z 383.1438.

Methyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2f)

(White wax, 21.4 mg, 89% yield, 81% ee); $[\alpha]_D^{25}$ 56.3 (*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.64 (m, 2H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 6.60 (t, *J* = 55.2 Hz, 1H), 3.89– 3.64 (m, 4H), 3.56 (d, *J* = 17.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 195.75 (d, *J* = 7.1 Hz), 166.43 (d, *J* = 12.1 Hz), 153.88, 136.19, 134.01 (d, *J* = 3.6 Hz), 128.12, 126.52, 125.33, 117.84, 115.42 (d, *J* = 6.2 Hz), 112.99, 64.61 (dd, *J* = 24.3, 20.8 Hz), 53.47, 29.91, 29.89, 29.86, 29.71. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.01 (dd, *J* = 287.6, 55.1 Hz, 1F), -129.29 (dd, *J* = 287.5, 55.2 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R (major) = 16.56 min, τ_R (minor) = 13.18 min. HRMS Calcd. for $[C_{12}H_{10}F_2O_3+Na]^+$ requires m/z 263.0496, found m/z 263.0493.

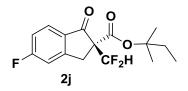

1-Adamantyl 2- difluoromethyl -5-chloro -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2g)

(White solid, 33.9 mg, 86% yield, 74% ee); m. p. 93-96 °C, $[\alpha]_D^{25}62.1(c \ 0.20, \text{CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.2 Hz, 1H), 7.59 – 7.50 (m, 1H), 7.43 – 7.32 (m, 1H), 6.52 (dd, J = 55.8, 54.9 Hz, 1H), 3.64 (d, J = 17.7 Hz, 1H), 3.47 (d, J = 17.6 Hz, 1H), 2.25 – 1.98 (m, 9H), 1.66 – 1.59 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.92 (d, J = 6.7 Hz), 163.99 (d, J = 11.4 Hz), 155.36, 142.67, 132.65 (d, J = 3.6 Hz), 128.84, 126.69, 126.17, 117.90, 115.48 (d, J = 6.0 Hz), 113.05, 84.25, 68.33 – 60.80 (m), 40.96, 35.92, 30.86. ¹⁹F NMR (376 MHz, CDCl₃) δ


-126.61 (d, J = 287.2 Hz, 1F), -128.64 (d, J = 287.2 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 99 / 1, 0.8 mL / min, 254 nm, τ_R (major) = 7.55 min, τ_R (minor) = 6.34 min. HRMS Calcd. for $[C_{21}H_{21}ClF_2O_3+Na]^+$ requires m/z 417.1045, found m/z 417.1047.

1-Adamantyl 2-difluoromethyl -5- fluorine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2h)

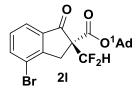
(Light yellow solid, 33.2 mg, 88% yield, 78% ee); m. p. 89-92 °C $[\alpha]_D^{25}69.7(c \ 0.20, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, J = 8.5, 5.2 Hz, 1H), 7.14 (dd, J = 8.3, 2.1 Hz, 1H), 7.04 (td, J = 8.6, 2.2 Hz, 1H), 6.52 (d, J = 55.4 Hz, 1H), 3.58 (d, J = 17.7 Hz, 1H), 3.40 (d, J = 17.7 Hz, 1H), 2.17 – 2.01 (m, 9H), 1.69 – 1.43 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.39 (d, J = 7.4 Hz), 168.04, 165.47, 163.11, 163.00, 155.95 (d, J = 10.6 Hz), 129.54 (d, J = 2.0 Hz), 126.55, 126.44, 116.92, 115.43 (d, J = 24.1 Hz), 114.53, 112.22 (d, J = 22.8 Hz), 83.15, 64.86 (dd, J = 22.8, 21.2 Hz), 39.95, 34.90, 29.84. ¹⁹F NMR (376 MHz, CDCl₃) δ -100.17 (s, 1F), -126.72 (d, J = 286.8 Hz, 1F), -128.72 (d, J = 287.1 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 99 / 1, 0.6 mL / min, 254 nm, τ_R (major) = 12.87 min, τ_R (minor) = 11.41 min. HRMS Calcd. for [C₂₁H₂₁F₃O₃+Na]⁺ requires m/z 401.1340, found m/z 401.1334.


1-tert-Butyl 2-difluoromethyl -5- fluorine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2i)

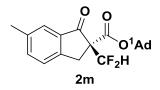
(Colorless oil, 26.4 mg, 88% yield, 63% ee); $[\alpha]_D^{25}$ 46.2(*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.78 (dd, *J* = 8.5, 5.3 Hz, 1H), 7.26 – 7.18 (m, 1H), 7.12 (td, *J* = 8.6, 2.2 Hz, 1H), 6.52 (dd, *J* = 55.8, 54.9 Hz, 1H), 3.67 (d, *J* = 17.7 Hz, 1H), 3.48 (d, *J* = 17.7 Hz, 1H), 1.46 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 194.34 (d, *J* = 6.9 Hz), 169.10, 166.53, 164.46 (d, *J* = 11.3 Hz), 156.97 (d, *J* = 10.6 Hz), 130.53 (d, *J* = 1.9 Hz), 127.60, 127.49, 117.93, 116.49 (d, *J* = 24.0 Hz), 113.27 (d, *J* = 22.8 Hz), 84.15, 65.82 (dd, *J* = 22.9, 21.3 Hz), 27.76. ¹⁹F NMR (376 MHz, CDCl₃) δ -100.10 (s, 1F) , -126.74 (d, *J* = 286.8 Hz, 1F), -128.65 (d, *J* = 286.8 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R

(major) = 9.85 min, τ_R (minor) = 8.84 min. HRMS Calcd. for $[C_{15}H_{15}F_3O_3+Na]^+$ requires m/z 323.0871, found m/z 323.0869.

1-tert-Pentyl 2-difluoromethyl -5- fluorine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2j)

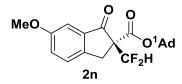

(Colorless oil, 25.4 mg, 81% yield, 55% ee); $[\alpha]_D^{25}$ 42.8(*c* 0.20, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 (dd, *J* = 8.5, 5.2 Hz, 1H), 7.22 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.12 (td, *J* = 8.6, 2.2 Hz, 1H), 6.53 (t, *J* = 55.4 Hz, 1H), 3.66 (d, *J* = 17.7 Hz, 1H), 3.49 (d, *J* = 17.6 Hz, 1H), 1.76 (q, *J* = 7.5 Hz, 2H), 1.43 (s, 6H), 0.85 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 194.39 (d, *J* = 7.2 Hz), 169.10, 166.52, 164.35 (d, *J* = 11.4 Hz), 156.96 (d, *J* = 10.6 Hz), 130.57, 127.53 (d, *J* = 10.9 Hz), 117.93, 116.50 (d, *J* = 24.2 Hz), 115.50 (d, *J* = 5.7 Hz), 113.26 (d, *J* = 22.9 Hz), 86.66, 69.64 - 62.48 (m), 33.50, 30.97 - 27.80 (m), 25.26, 25.19, 7.96. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -100.09 (s, 1F), -126.66 (d, *J* = 287.4 Hz, 1F), -128.65 (d, *J* = 287.4 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R (major) = 8.95 min, τ_R (minor) = 8.07 min. HRMS Calcd. for [C₁₆H₁₇F₃O₃+Na]⁺ requires m/z 337.1027, found m/z 337.1031.

1-Adamantyl 2-difluoromethyl-5-bromine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2k)

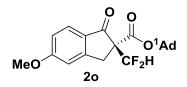

(White solid, 36.3 mg, 83% yield, 78% ee); m. p. 113-115 °C, $[a]_D^{25}$ 73.2(*c* 0.20, CHCl₃); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.74 (dt, *J* = 1.6, 0.8 Hz, 1H), 7.66 – 7.46 (m, 2H), 6.51 (dd, *J* = 55.7, 54.9 Hz, 1H), 3.65 (d, *J* = 17.7 Hz, 1H), 3.47 (d, *J* = 17.7 Hz, 1H), 2.26 – 1.87 (m, 8H), 1.69 – 1.49 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 195.13, 163.94 (d, *J* = 11.3 Hz), 155.43, 133.05 (d, *J* = 3.5 Hz), 131.67, 29.78, 126.21, 117.87, 115.45 (d, *J* = 6.0 Hz), 113.02, 84.27, 69.76 – 62.45 (m), 40.96, 35.91, 30.86. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -126.58 (d, *J* = 286.9 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R (major) = 12.25 min, τ_R (minor) = 10.99 min. HRMS Calcd. for $[C_{21}H_{21}BrF_2O_3+Na]^+$ requires m/z 461.0540, found m/z 461.0545.

1-Adamantyl 2-difluoromethyl-4-bromine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2l)

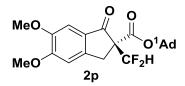
(White solid, 33.7 mg, 77% yield, 63% ee); m. p. 105-107 °C, $[\alpha]_D^{25}$ 67.8(*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.83 (dd, *J* = 7.8, 1.0 Hz, 1H), 7.72 (dd, *J* = 7.7, 0.9 Hz, 1H), 7.43 – 7.28 (m, 1H), 6.53 (dd, *J* = 55.7, 54.9 Hz, 1H), 3.61 (d, *J* = 18.0 Hz, 1H), 3.42 (d, *J* = 18.0 Hz, 1H), 2.18 – 1.97 (m, 8H), 1.71 – 1.47 (m, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 195.71 (d, *J* = 6.7 Hz), 163.86 (d, *J* = 11.3 Hz), 153.63, 138.66, 136.08 (d, *J* = 3.5 Hz), 129.66, 123.93, 121.83, 117.84, 115.42 (d, *J* = 6.1 Hz), 112.99, 84.35, 69.54 – 62.85 (m), 40.96, 35.92, 30.86. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.41 (d, *J* = 287.5 Hz, 1F), -128.51 (d, *J* = 287.5 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / i-PrOH = 99.5 / 0.5, 0.6 mL / min, 254 nm, τ R (major) = 21.04 min, τ R (minor) = 19.67 min. HRMS Calcd. for [C₂₁H₂₁BrF₂O₃+Na]⁺ requires m/z 461.0540, found m/z 461.0543.


1-Adamantyl 2-difluoromethyl-6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2m)

(White wax, 28.4 mg, 76% yield, 63% ee); $[\alpha]_D^{25}$ 54.8(*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (s, 1H), 7.51 – 7.38 (m, 2H), 6.53 (t, *J* = 55.5 Hz, 1H), 3.60 (d, *J* = 17.2 Hz, 1H), 3.44 (d, *J* = 17.3 Hz, 1H), 2.40 (s, 3H), 2.12 (dd, *J* = 28.6, 3.1 Hz, 9H), 1.67 – 1.55 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.40 (d, *J* = 7.2 Hz), 164.52 (d, *J* = 11.6 Hz), 151.52, 137.94, 137.22, 134.38 (d, *J* = 3.6 Hz), 126.05, 124.97, 118.17, 115.75 (d, *J* = 5.9 Hz), 113.33, 83.80, 65.86 (dd, *J* = 23.1, 21.1 Hz), 40.96, 35.95, 30.85, 29.94 – 28.85 (m), 21.03. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.66 (dd, *J* = 286.5, 55.2 Hz, 1F), -128.93 (dd, *J* = 286.5, 55.2 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_R (major) = 14.93 min, τ_R (minor) = 11.19 min. HRMS Calcd. for $[C_{22}H_{24}F_2O_3+Na]^+$ requires m/z 397.1591, found m/z 397.1594.

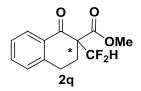

1-Adamantyl2-difluoromethyl-6-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate

(2n)

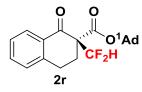


(Light yellow solid, 28.9 mg, 74% yield, 73% ee); m. p. 93-95 °C, $[\alpha]_D^{25}55.6(c \ 0.20, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 1H), 7.31 – 7.22 (m, 2H), 7.17 (d, J = 2.5 Hz, 1H), 6.53 (t, J = 55.5 Hz, 1H), 3.83 (s, 3H), 3.64 – 3.32 (m, 2H), 2.25 – 2.07 (m, 9H), 1.73 – 1.56 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 196.33 (d, J = 7.2 Hz), 164.47 (d, J = 11.5 Hz), 159.68, 147.13, 135.38 (d, J = 3.6 Hz), 125.50, 118.12, 115.70 (d, J = 5.8 Hz), 105.92, 83.86, 66.28 (dd, J = 23.1, 21.1 Hz), 55.62, 40.97, 35.95, 30.86, 29.25. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.65 (dd, J = 286.5, 55.1 Hz, 1F), -129.01 (dd, J = 286.5, 55.8 Hz, 1F). Chiralcel OJ-H column (250 × 4.6 mm), hexane / *i*-PrOH = 99 / 1, 1 mL / min, 254 nm, τ_R (major) = 8.88 min, τ_R (minor) = 11.28 min. HRMS Calcd. for $[C_{22}H_{24}F_2O_4+Na]^+$ requires m/z 413.1540, found m/z 413.1544.

1-Adamantyl 2-difluoromethyl-5-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (20)



(Light yellow solid, 29.2 mg, 75% yield, 63% ee); m. p. 103-105 °C, $[\alpha]_D^{25}54.3(c \ 0.20, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.5 Hz, 1H), 7.04 – 6.85 (m, 2H), 6.52 (t, J = 55.5 Hz, 1H), 3.91 (s, 3H), 3.61 (d, J = 17.4 Hz, 1H), 3.42 (d, J = 17.5 Hz, 1H), 2.23 – 2.03 (m, 9H), 1.63 – 1.47 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.25, 166.25, 164.71 (d, J = 11.5 Hz), 157.19, 127.29 (d, J = 3.7 Hz), 126.84, 118.23, 116.27, 115.81 (d, J = 5.3 Hz), 113.39, 109.37, 83.75, 65.81 (dd, J = 23.0, 20.8 Hz), 55.79, 40.99, 35.97, 30.86, 30.23 – 29.22 (m).¹⁹F NMR (376 MHz, CDCl₃) δ -126.89 (dd, J = 286.0, 55.8 Hz, 1F), -128.97 (dd, J = 286.0, 55.8 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 99 / 1, 0.6 mL / min, 254 nm, τ_R (major) = 11.73 min, τ_R (minor) = 15.87 min. HRMS Calcd. for $[C_{22}H_{24}F_2O_4+Na]^+$ requires m/z 413.1540, found m/z 413.1543. 1-Adamantyl 2-difluoromethyl-5,6-di-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (20)


2p was obtained by the same procedure as mentioned above for **2a-2p** using 25% KOH instead of 30% K₂CO₃ as the base. (Light yellow solid, 26.4 mg, 63% yield, 58% ee); m. p. 146-148 °C, $[\alpha]_D^{25}46.2(c \ 0.20, \text{CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.15 (s, 1H), 6.96 (s, 1H), 6.53 (t, *J* = 55.5 Hz, 1H), 4.00 (s, 3H), 3.91 (s, 3H), 3.56 (d, *J* = 17.2 Hz, 1H), 3.38 (d, *J* = 17.2 Hz, 1H), 2.20 – 2.05 (m, 9H), 1.72 – 1.61 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 194.67 (d, *J* = 7.3 Hz), 164.78 (d, *J* = 11.7 Hz), 156.48, 149.89 (d, *J* = 13.3 Hz), 126.83, 126.79, 118.22, 115.80 (d, *J* = 5.5 Hz), 113.38, 107.18, 105.07, 83.75, 65.89 (dd, *J* = 23.1, 20.9 Hz), 56.40, 56.11, 45.33, 41.00, 35.98, 30.86, 29.57. ¹⁹F NMR (376 MHz, CDCl₃) δ -126.79 (dd, *J* = 285.6, 55.1 Hz, 1F), -129.19 (dd, *J* = 285.6, 55.1 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.8 mL / min, 254 nm, τ_R (major) = 29.10 min, τ_R (minor) = 37.61 min. HRMS Calcd. for [C₂₃H₂₆F₂O₅+Na]⁺ requires m/z 443.1646, found m/z 443.1643.

1-Methyl 2- difluoromethyl -1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (2q)

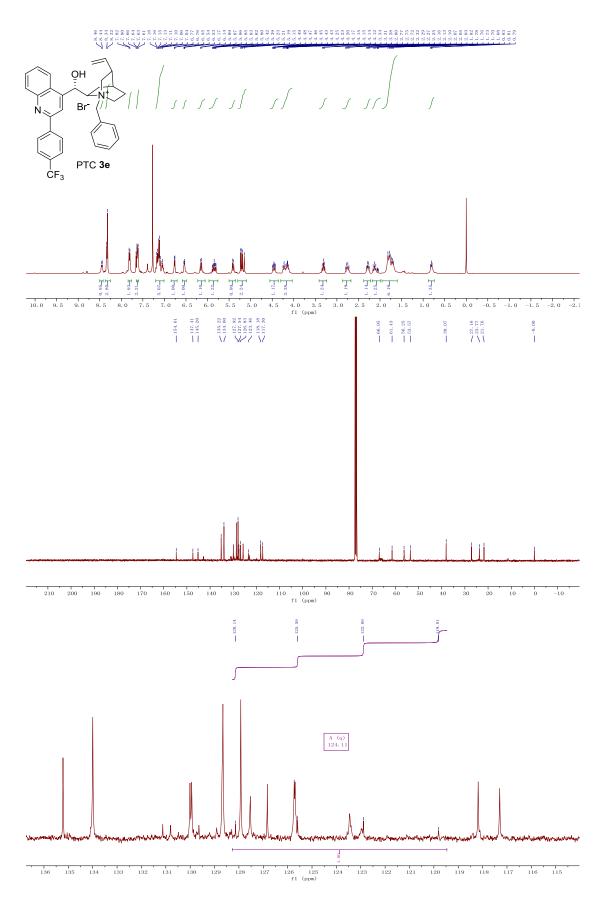
2q was obtained by the same procedure as mentioned above for **2a-2p** using 25% KOH instead of 30% K₂CO₃ as the base. (colourless oil, 18.5 mg, 73% yield, 19% ee); $[\alpha]_D^{25}5.3(c \ 0.20, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 7.9, 1.4 Hz, 1H), 7.53 (td, J = 7.5, 1.4 Hz, 1H), 7.38 – 7.26 (m, 2H), 6.61 (t, J = 55.3 Hz, 1H), 3.75 (s, 3H), 3.46 – 3.23 (m, 1H), 3.04 (dt, J = 17.3, 4.6 Hz, 1H), 2.67 (dt, J = 13.9, 4.4 Hz, 1H), 2.46 (ddd, J = 13.9, 11.6, 5.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 190.01 (d, J = 6.0 Hz), 166.78 (d, J = 9.0 Hz), 143.56, 134.56, 130.99 (d, J = 2.7 Hz), 128.94, 128.24, 126.99, 118.24, 115.78, 113.33, 66.67 – 55.83 (m), 53.28, 24.97, 23.08. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.32 (d, J = 283.3 Hz, 1F), -131.82 (d, J = 283.2 Hz, 1F). HPLC conditions: Chiralcel AD-H column (250 × 4.6 mm), hexane / *i*-PrOH = 99 / 1, 0.8 mL / min, 254 nm, τ_R (major) = 16.58 min, τ_R (minor) = 12.52 min. HRMS Calcd. for $[C_{13}H_{12}F_2O_3+Na]^+$ requires m/z 277.0652, found m/z 277.0655.

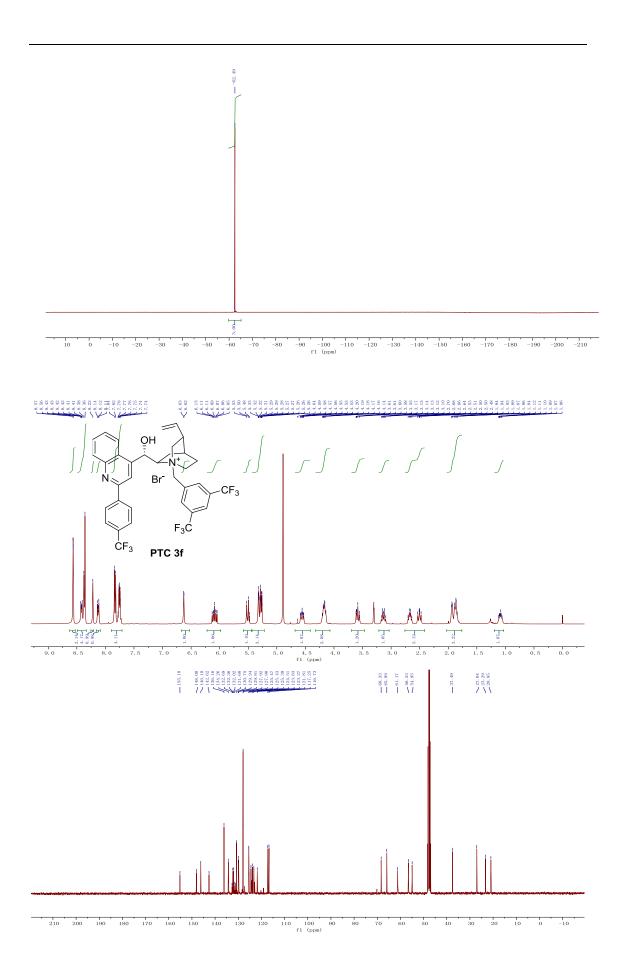
1-Adamantyl 2- difluoromethyl -1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (2r)

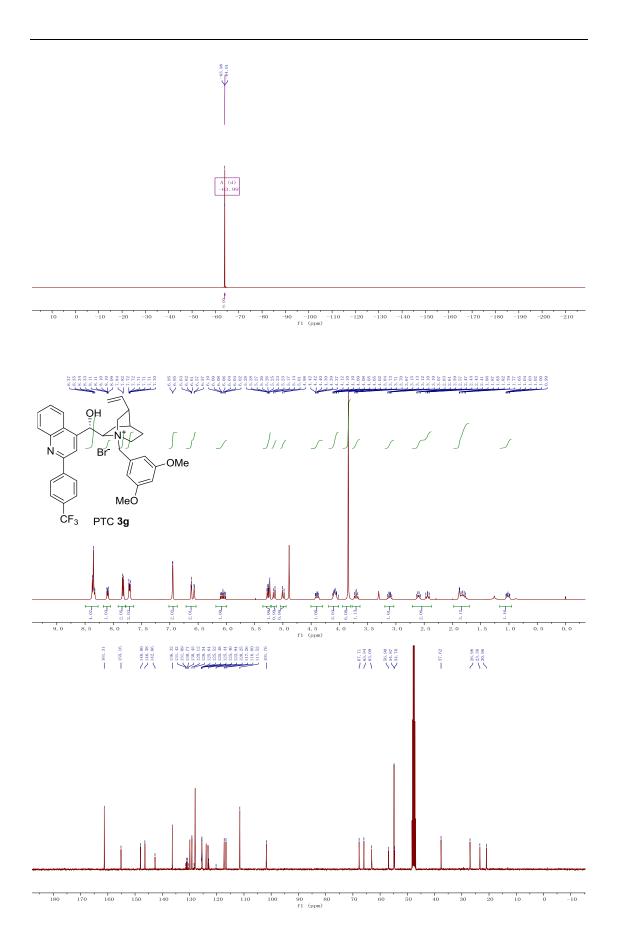
2r was obtained by the same procedure as mentioned above for **2a-2p** using 25% KOH instead of 30% K₂CO₃ as the base. (colourless oil, 25.0 mg, 67% yield, 47% ee); $[\alpha]_D^{25}10.5(c \ 0.20, CHCl_3)$; ¹¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.51 (td, *J* = 7.5, 1.5 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.24 (s, 1H), 6.53 (t, *J* = 55.4 Hz, 1H), 3.33 (ddd, *J* = 17.1, 11.8, 5.1 Hz, 1H), 3.01 (ddd, *J* = 17.2, 5.1, 3.6 Hz, 1H), 2.60 (ddd, *J* = 13.9, 5.1, 3.5 Hz, 1H), 2.40 (ddd, *J* = 13.9, 11.8, 5.2 Hz, 1H), 2.20 – 2.02 (m, 9H), 1.68 – 1.53 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 190.60 (d, *J* = 5.8 Hz), 164.99 (d, *J* = 8.3 Hz), 143.31, 134.19, 131.36 (d, *J* = 2.4 Hz), 128.82, 128.02, 126.87, 118.47, 116.02, 113.57, 83.93, 61.41 (t, *J* = 21.0 Hz), 40.97, 35.93, 30.81, 25.09, 23.38. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -127.41 (d, *J* = 282.7 Hz, 1F), -132.08 (d, *J* = 282.7 Hz, 1F). HPLC conditions: Chiralcel OJ-H column (250 × 4.6 mm), hexane / *i*-PrOH = 99.5 / 0.5, 1 mL / min, 254 nm, τ_R (major) = 9.89 min, τ_R (minor) = 11.43 min. HRMS Calcd. for $[C_{22}H_24F_2O_3+Na]^+$ requires m/z 397.1591, found m/z 397.1588.

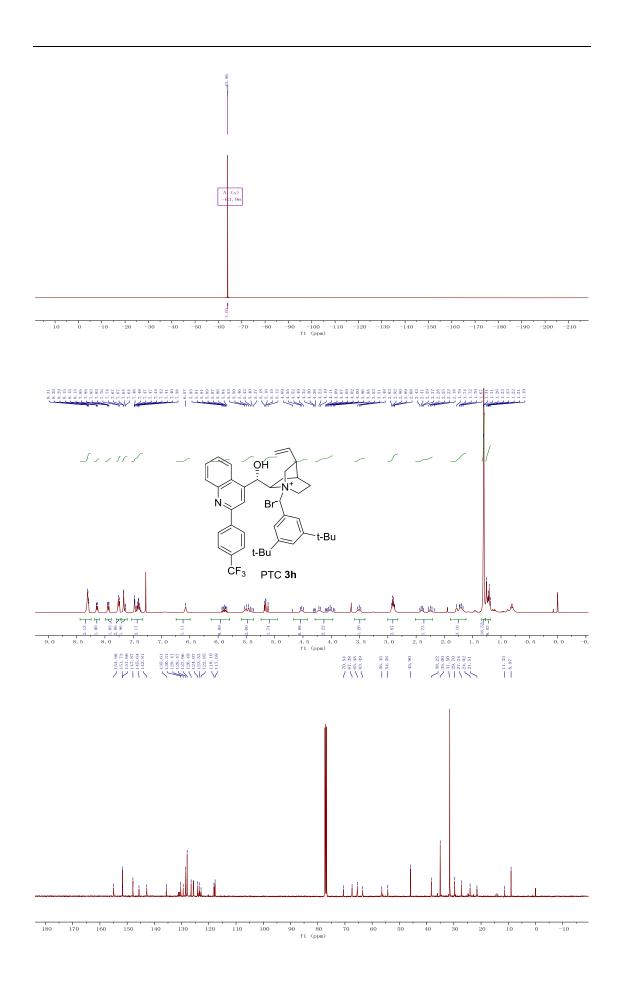
C. General proceduce for the O-difluoromethylation of β-keto ester 1f

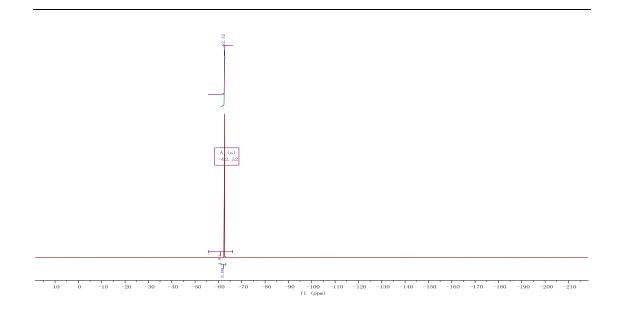
The reaction was conducted with β -keto esters **1f** (0.3 mmol) in the presence of KHF₂ (1.8 mmol) in a mixture containing CH2Cl2/H2O =1:1 (0.4 mL) in pressure tubing at rt. Then TMSCF₂Br (0.9 mmol) was added slowly, and the reaction was stirred at this 60 $^{\circ}$ C for 12 h. After the reaction was completed (confirmed by TLC analysis), the mixture was diluted with EtOAc (30 mL), washed with water (3×10 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was subject to crude ¹⁹F-NMR to give the C/O isomer ratio (trifluoromethyl benzene 8 µL as internal standard). Subsequently, the residue was purified by flash chromatography (silica gel; petroleum ether/ethyl acetate=20:1) to afford the O-difluoromethylation product 2f'. (colourless oil, 56.2 mg, 78% yield). ¹H NMR (400 MHz, $CDCl_3$) δ 7.67 – 7.56 (m, 1H), 7.50 – 7.38 (m, 3H), 7.12 ((t, J = 55.4 Hz, 1H), 3.85 (s, 3H), 3.71 (s, 3H)) 2H). ¹³C NMR (101 MHz, CDCl₃) δ 163.9, 156.1, 141.5, 138.5, 129.3, 127.3, 124.4, 121.0, 119.2,

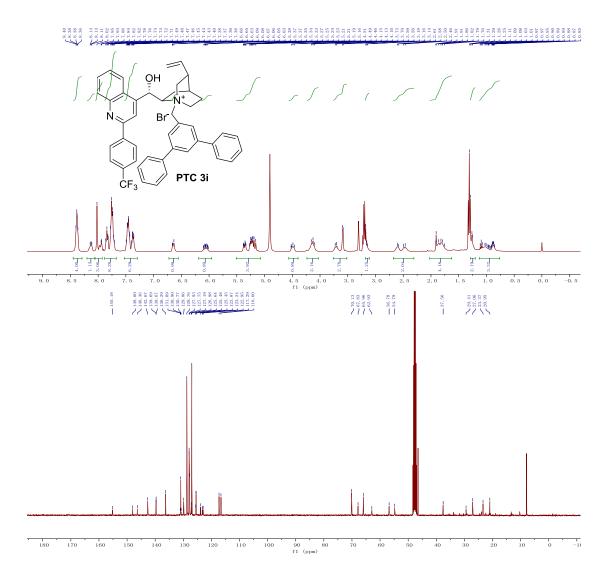

116.9, 116.6, 114.0, 51.8, 36.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -81.61(s, 1F), -81.81(s, 1F). HRMS Calcd. for $[C_{12}H_{10}F_2O_3+Na]^+$ requires m/z 263.0496, found m/z 263.0491.

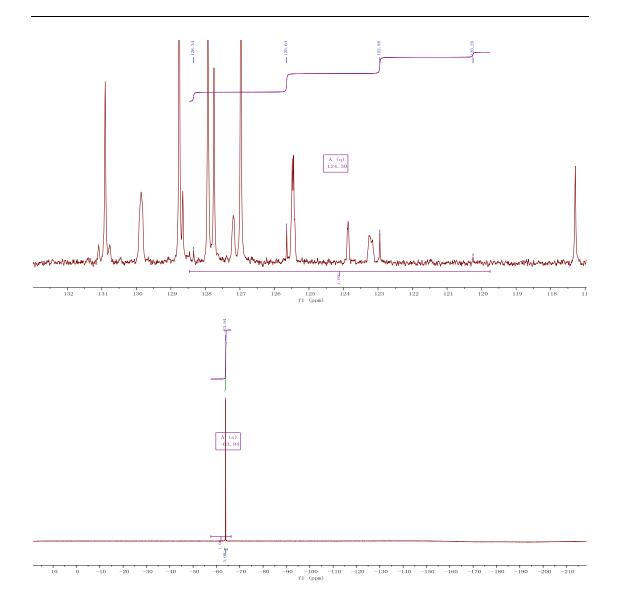

D. General proceduce for the derivatization of 1f

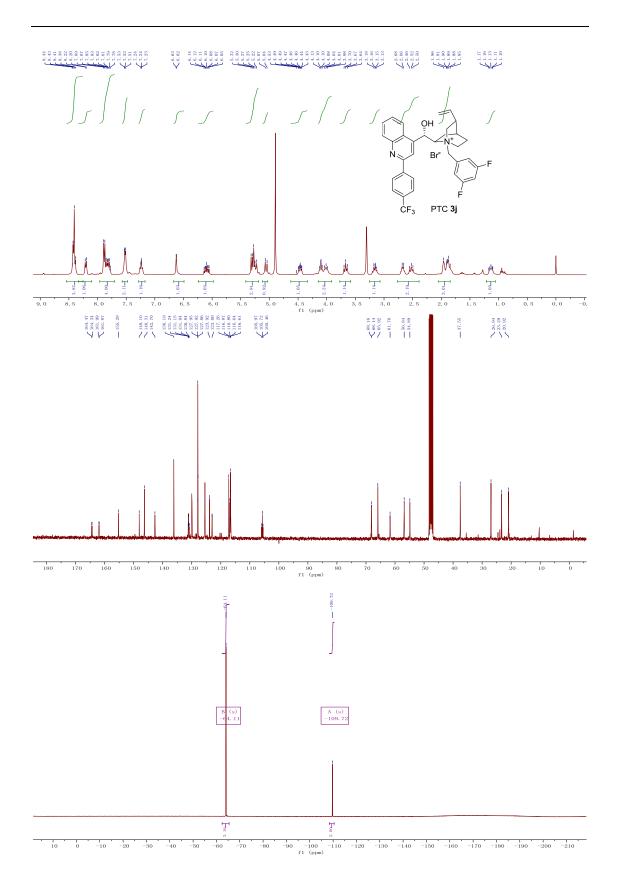

The difluoromethylated compound **1f** (48.0 mg, 0.2 mmol) in anhydrous THF (1 mL) was added slowly to the mixture of lithium aluminum hydride (17.3 mg, 0.45 mmol) in anhydrous THF (1 mL) at 0 °C. After stirring for another 1 hour at the same temperature, the reaction was allowed to warm to room temperature and stirred for another 5 h. After that, the reaction was quenched by the dropwise addition of EtOAc followed by a 10% HCl. After vigorous stirring for another 20 min, the resulting mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel column chromatography (PE/EtOAc = 3:1) to give product **4f** (colourless oil, 32.1 mg, 75% yield, dr> 20:1). $[\alpha]_D^{25}$ +95.6 (*c* 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, *J* = 6.9, 1.7 Hz, 1H), 7.37 – 7.22 (m, 3H), 6.28 (t, *J* = 55.7 Hz, 1H), 5.31 (s, 1H), 3.89 (d, *J* = 11.4 Hz, 1H), 3.62 (dd, *J* = 11.4, 1.8 Hz, 1H), 3.24 (d, *J* = 16.8 Hz, 1H), 2.69 (d, *J* = 16.8 Hz, 1H), 2.04 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.4, 140.4, 129.2, 125.0 (d, *J* = 16.6 Hz), 127.4, 121.3, 118.9, 116.5, 78.8, 64.0 (dd, *J* = 5.8, 4.1 Hz), 54.5 (t, *J* = 17.1 Hz), 33.5 (dd, *J* = 5.0, 3.6 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -126.58 (dd, *J* = 285.3, 55.8 Hz, 1F), -130.09 (dd, *J* = 285.3, 55.8 Hz, 1F). HRMS Calcd. for [C₁₁H₁₂F₂O₂+Na]⁺ requires m/z 237.0703, found m/z 237.0710.

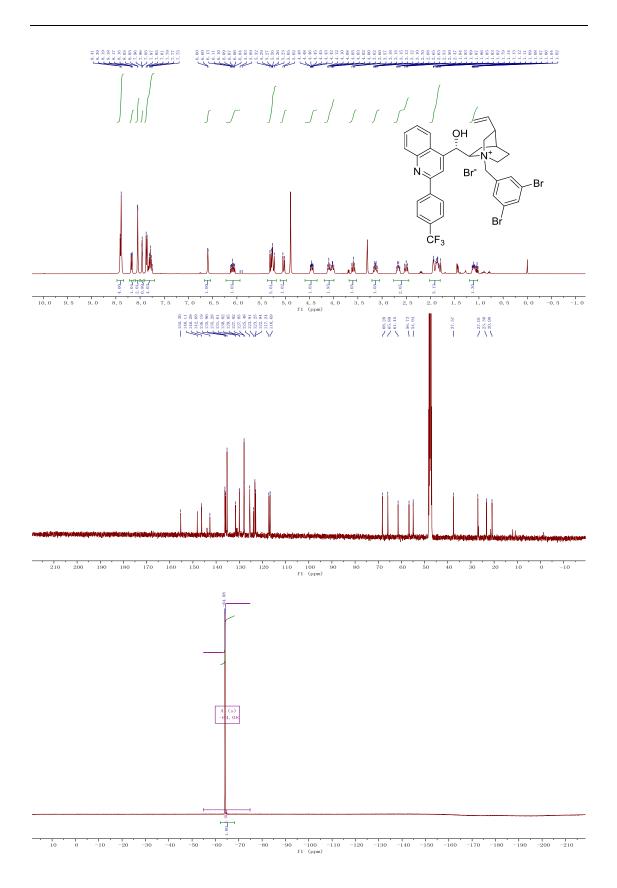

The difluoromethylated compound 1f (48.0 mg, 0.2 mmol) was added slowly to anhydrous cyclohexylamine (0.3 mL) at 120 °C. After stirring for another 3 hour at the same temperature, the reaction was allowed to cool down to room temperature. After that, the reaction was quenched by the dropwise addition of EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated in vacuum. The residue was purified by silica gel column chromatography (PE/EtOAc =10:1) to give product **5f** (light yellow solid, 32.1 mg, 84% yield, 80% ee); m. p.78-81 °C, $[\alpha]_D^{25}$ +57.3(c 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.61 (m, 2H), 7.54 (d, J = 7.7 Hz, 1H), 7.41 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 6.12 (t, J = 55.7 Hz, 1H), 4.03 (d, J = 18.2 Hz, 1H), 3.95 – 3.67 (m, 1H), 3.46 (d, J = 18.2 Hz, 1H), 2.03 – 1.90 (m, 1H), 1.91 - 1.51 (m, 4H), 1.47 - 1.11 (m, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 200.8 (d, J = 5.7Hz), 162.0 (d, J = 2.4 Hz), 154.1, 136.6, 134.7 (d, J = 2.2 Hz), 127.9, 126.6, 124.8, 120.8 - 110.2 (m), 64.3 (d, J = 19.9 Hz), 49.0, 32.6, 32.5, 29.9, 29.9, 25.5, 24.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -121.39 (dd, J = 279.4, 55.3 Hz), -124.86 (dd, J = 279.4, 55.3 Hz). HPLC conditions: Chiralcel OJ-H column (250 × 4.6 mm), hexane / *i*-PrOH = 98 / 2, 0.6 mL / min, 254 nm, τ_{R} (major) = 12.29 min, $\tau_{\rm R}$ (minor) = 15.84 min. HRMS Calcd. for $[C_{17}H_{19}F_2O_2+Na]^+$ requires m/z 330.1282, found m/z 330.1289.

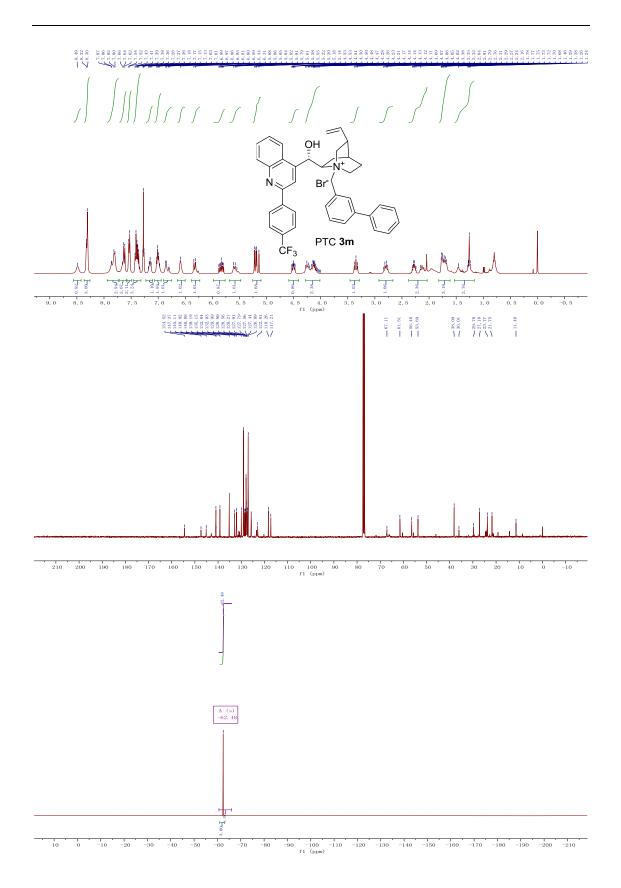

E. NMR spectra

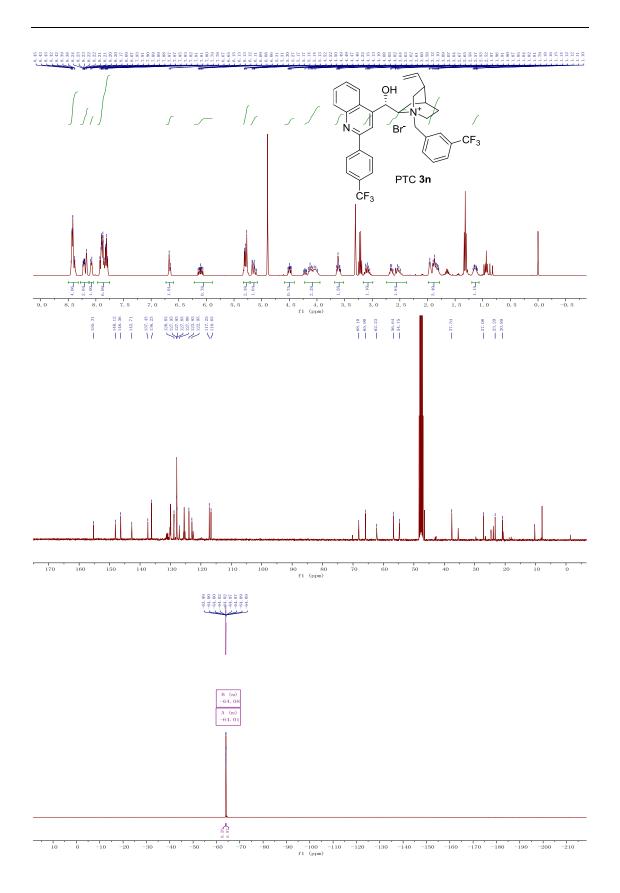


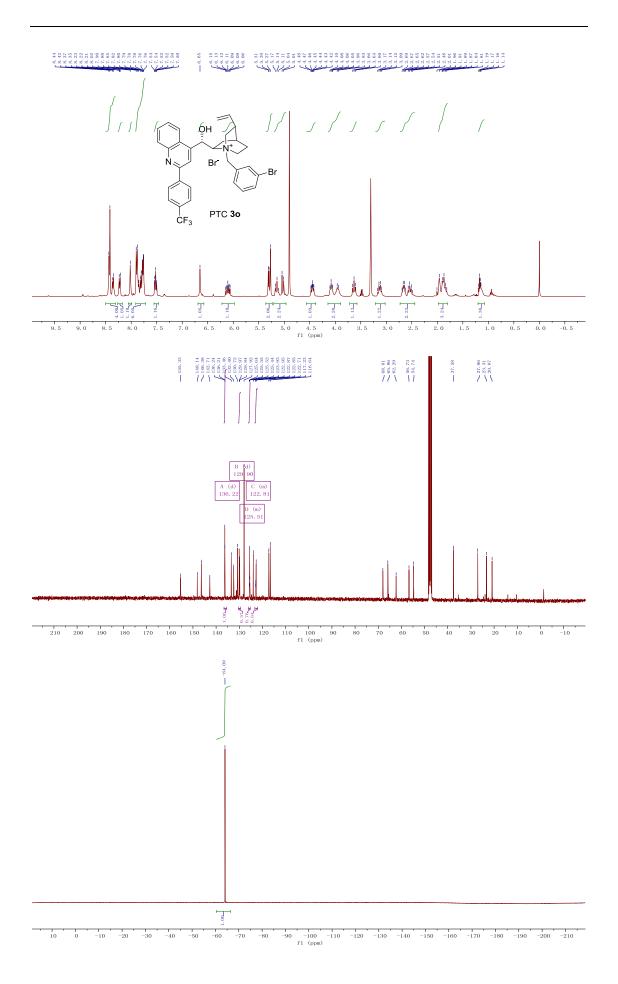


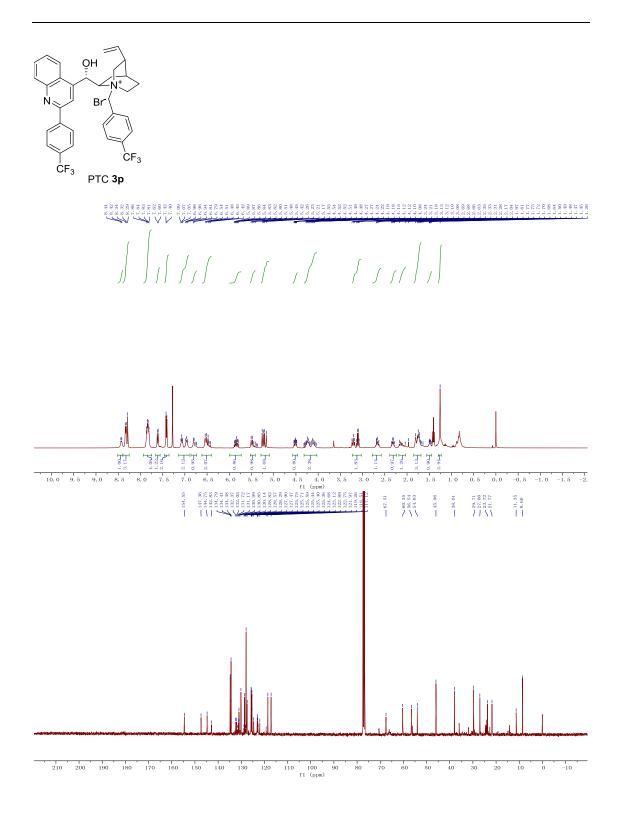


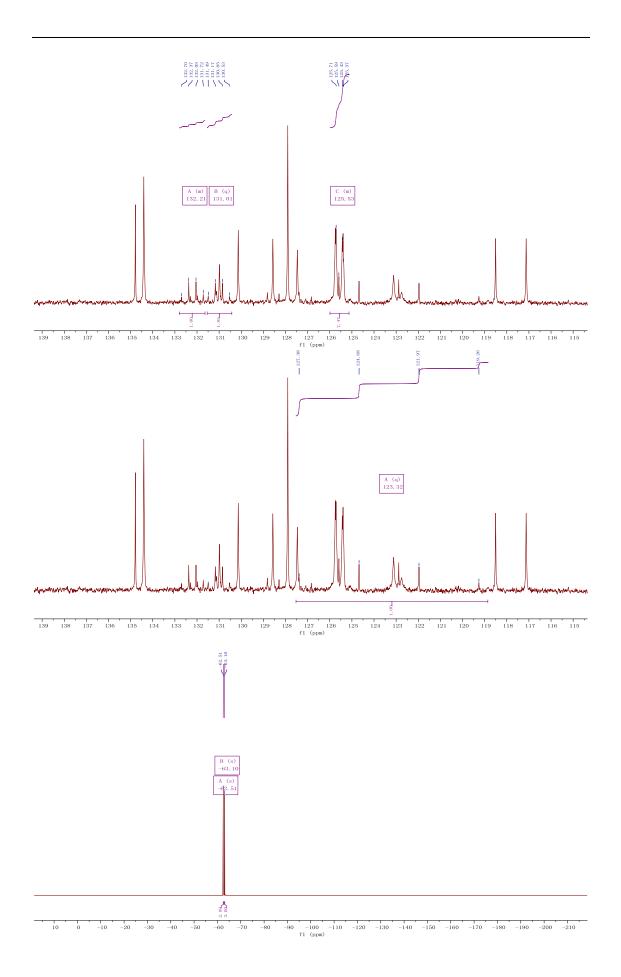


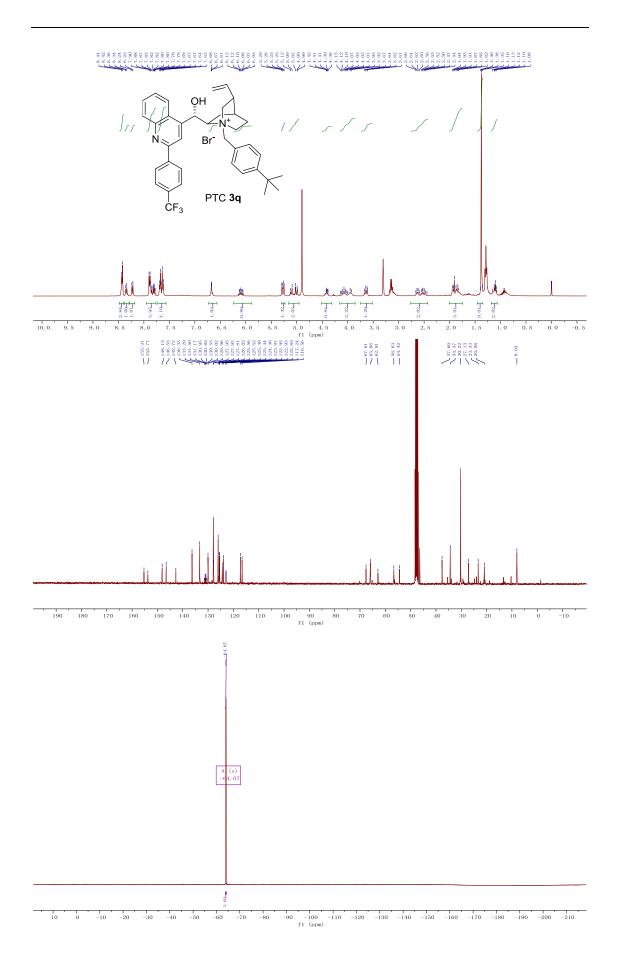


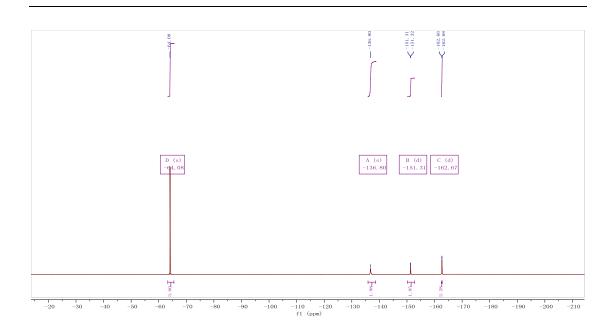


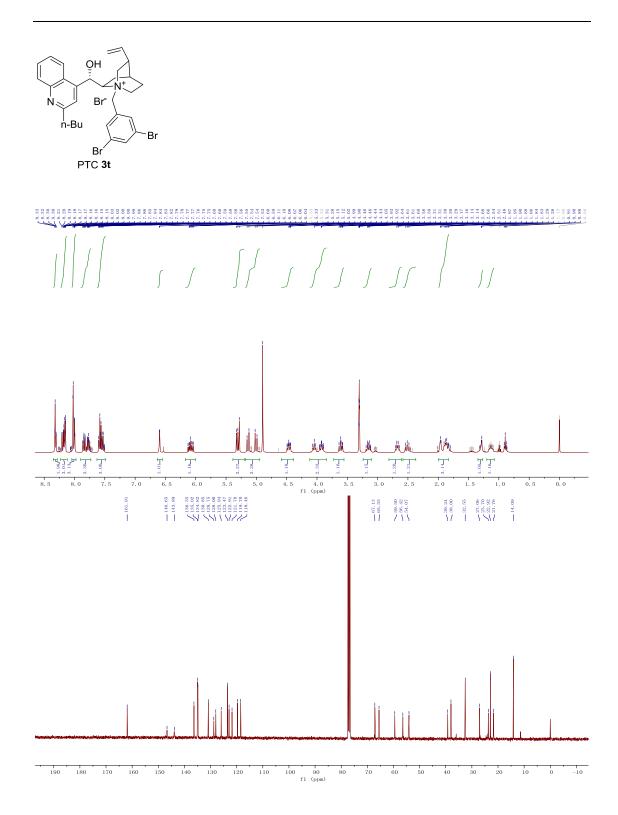


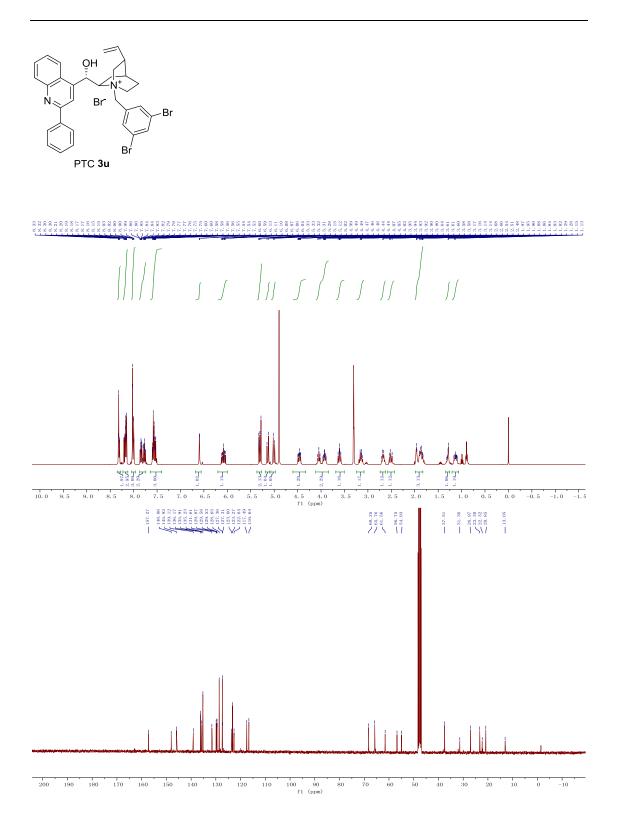


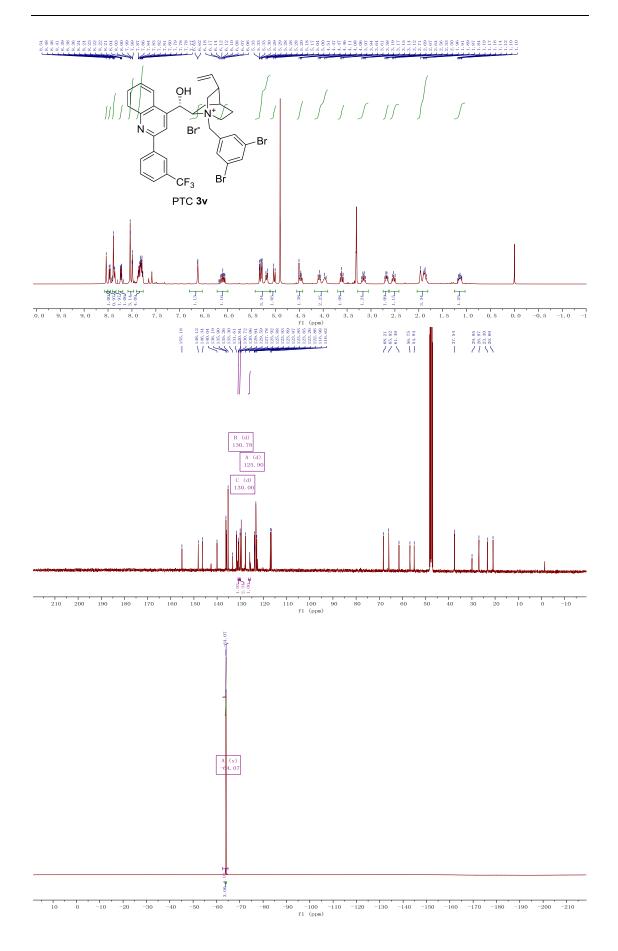


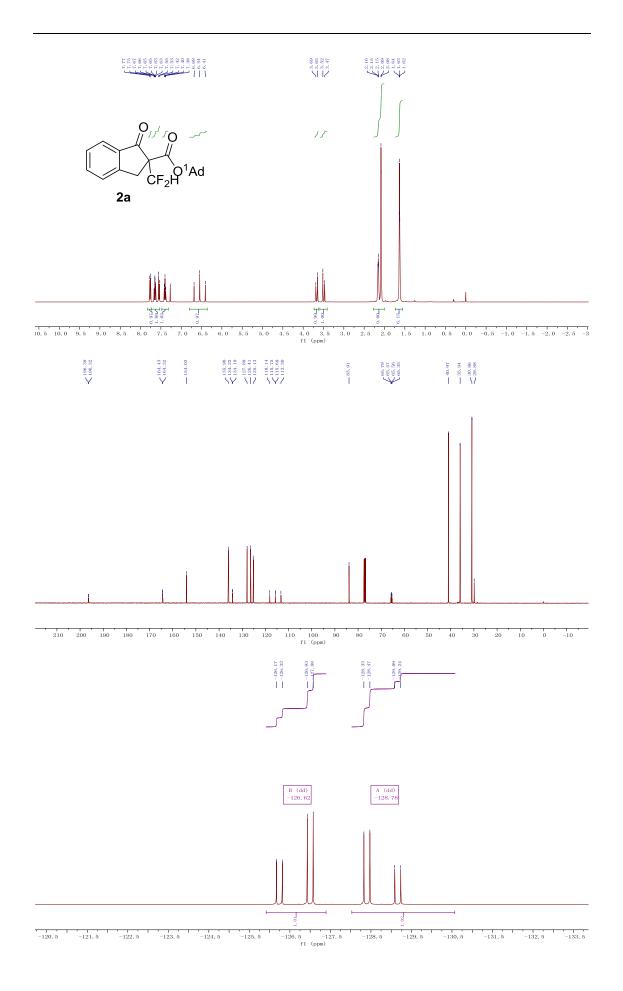


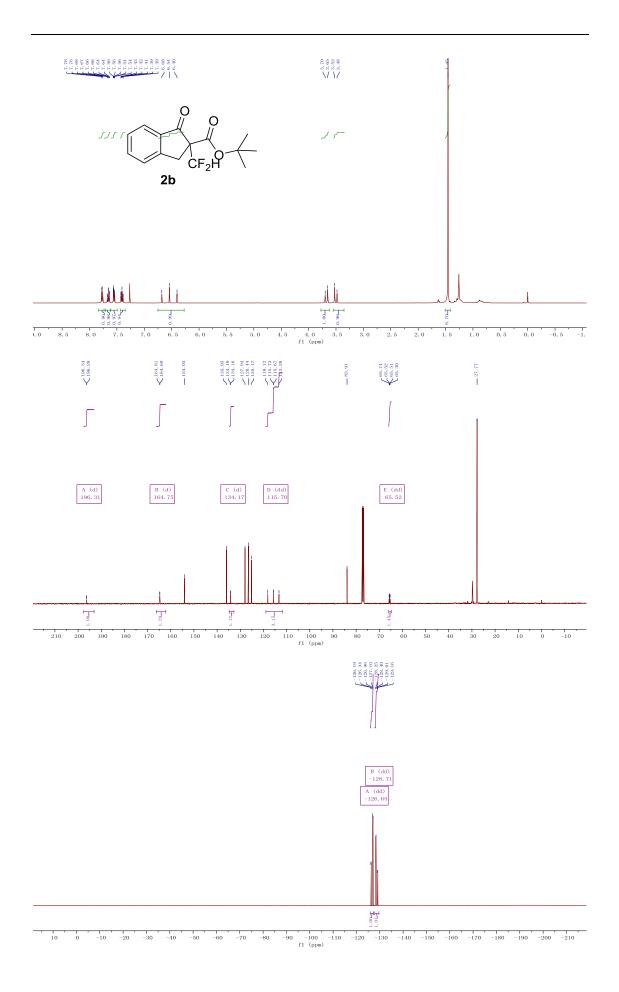


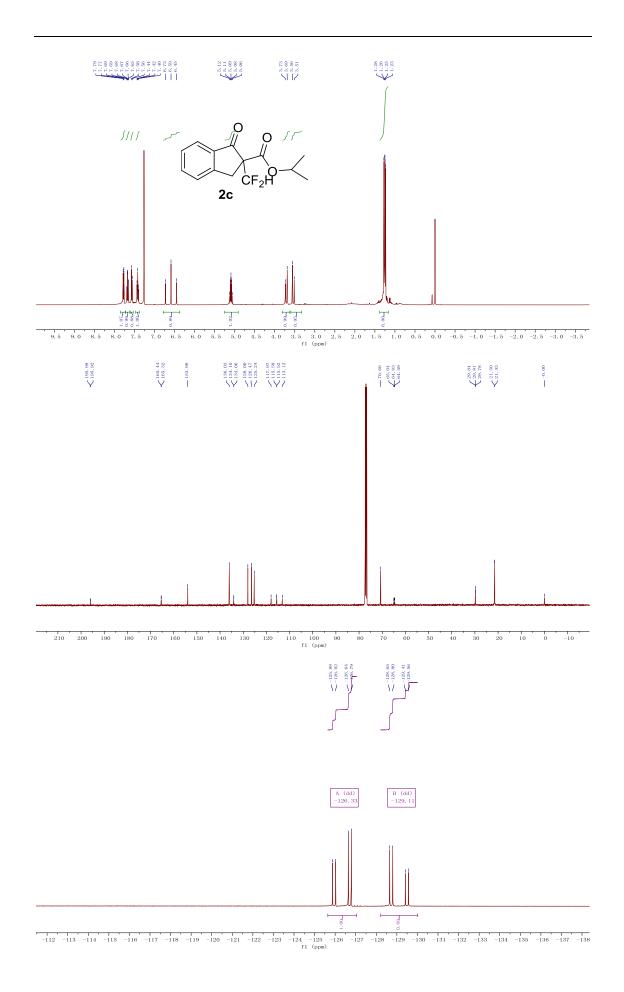


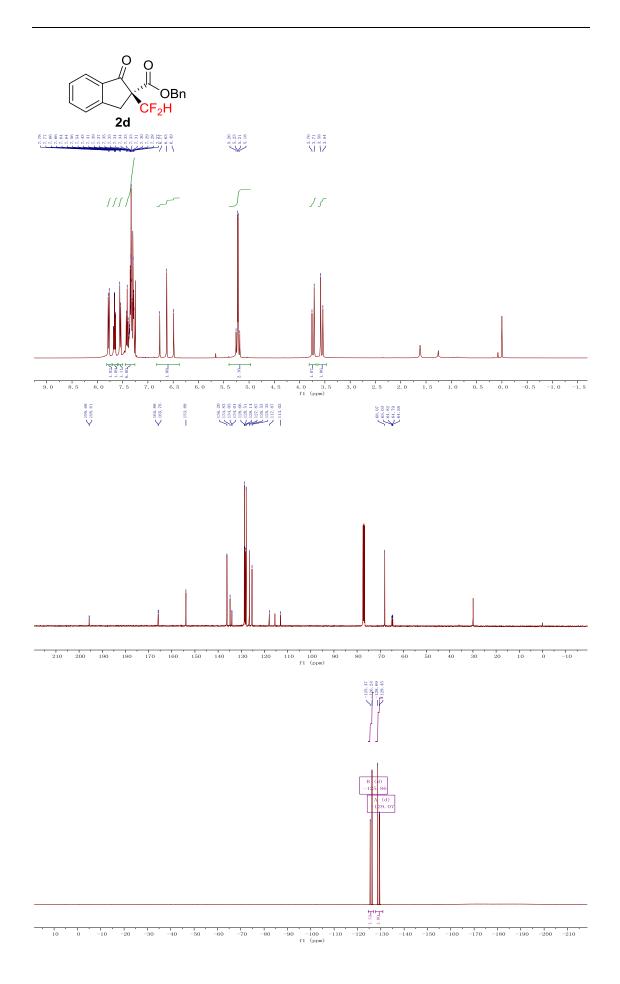


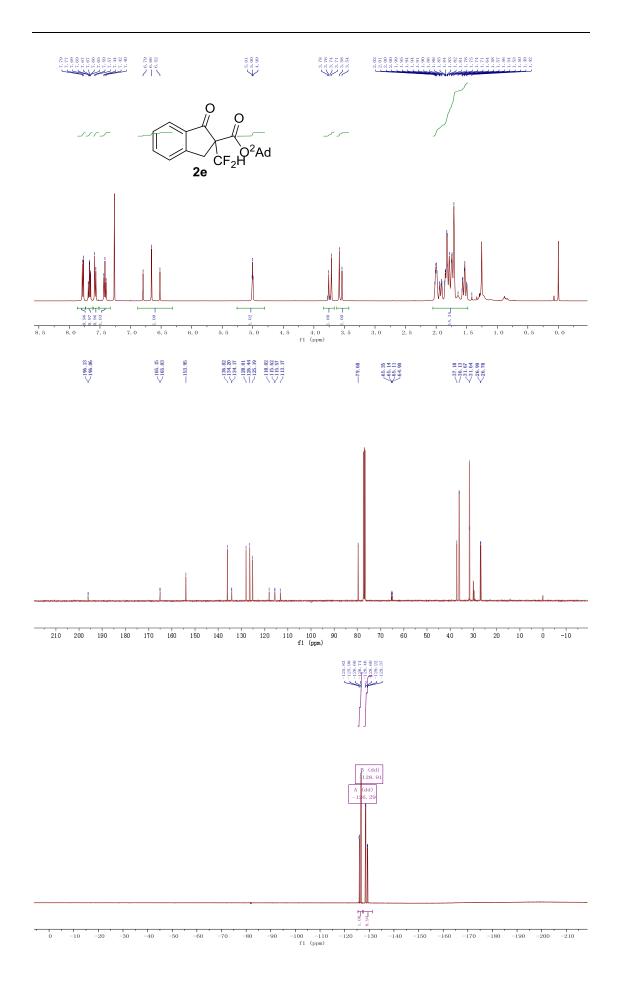


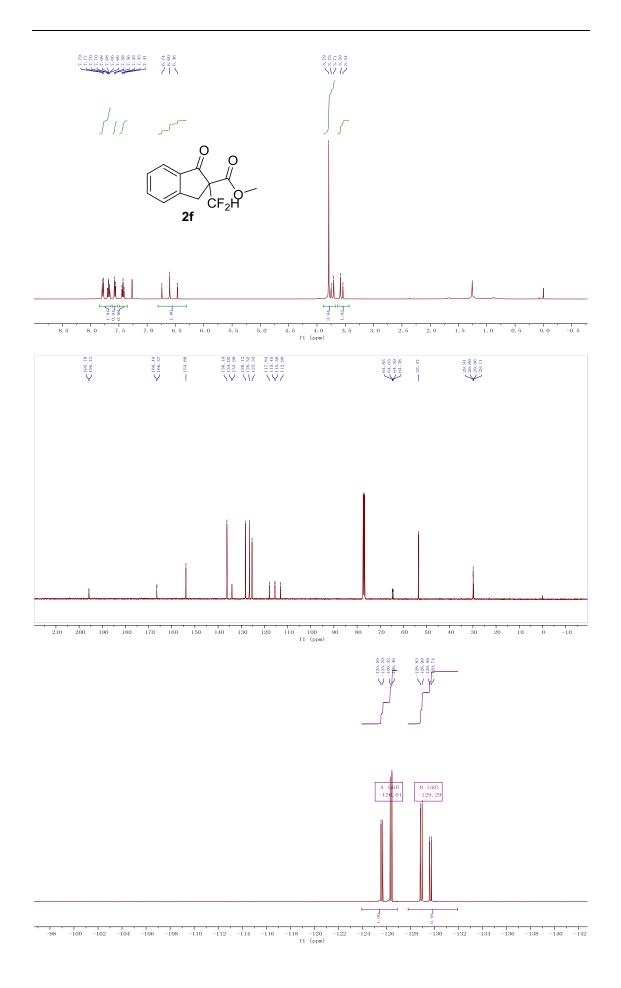


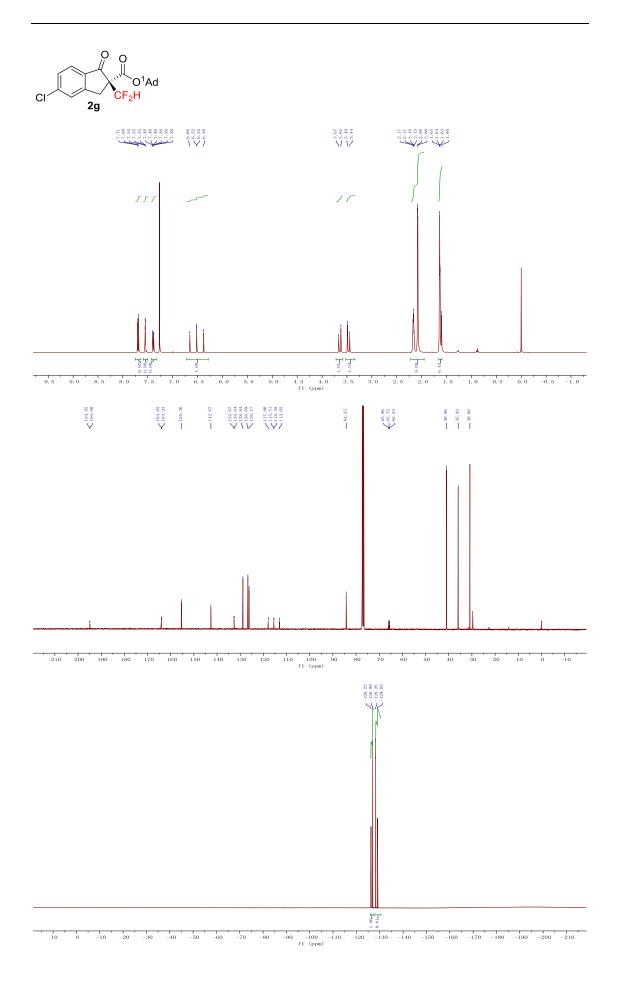


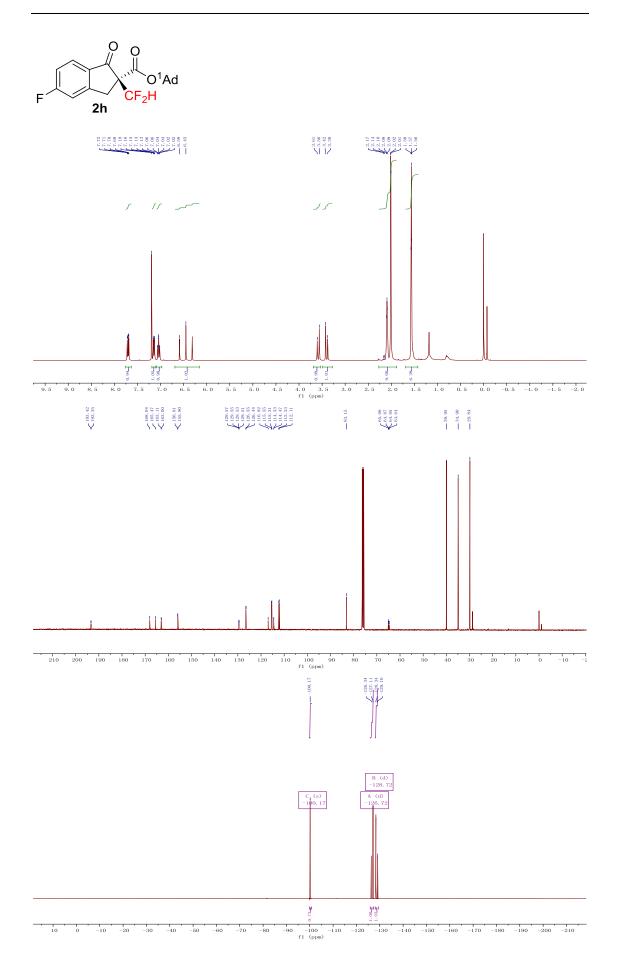


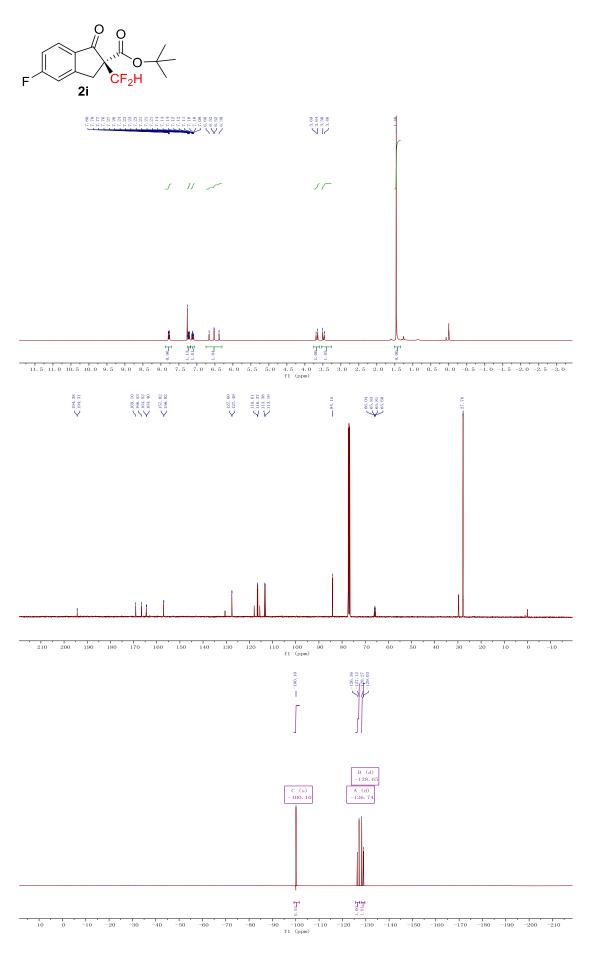


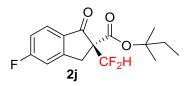


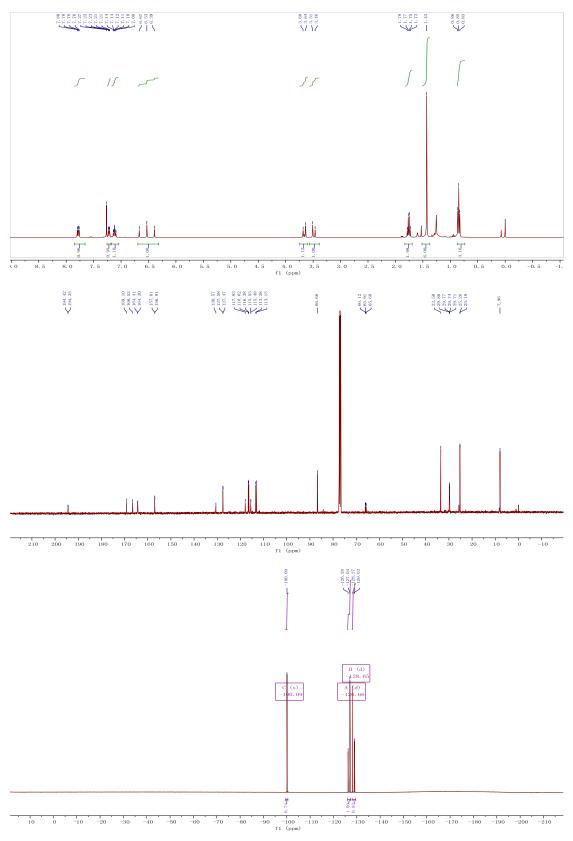


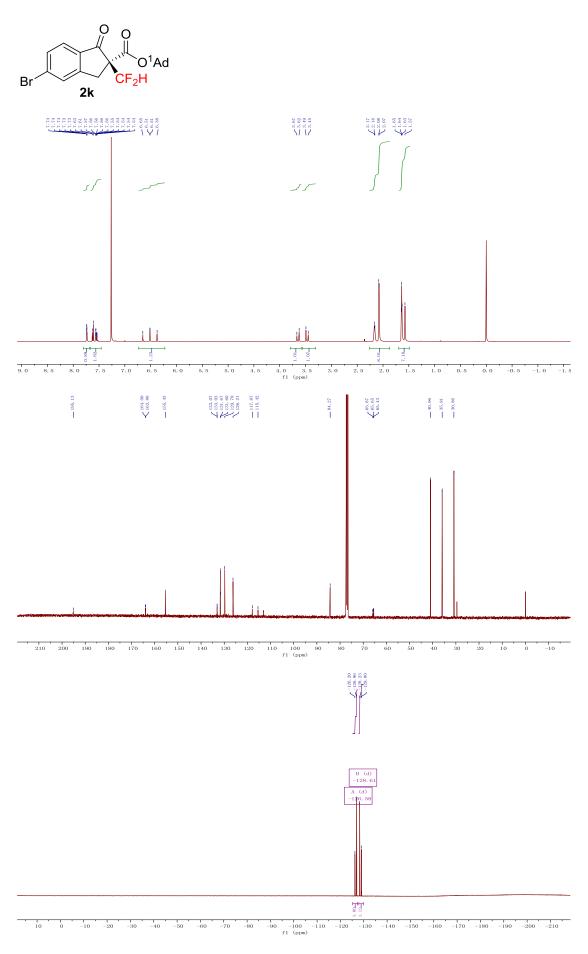


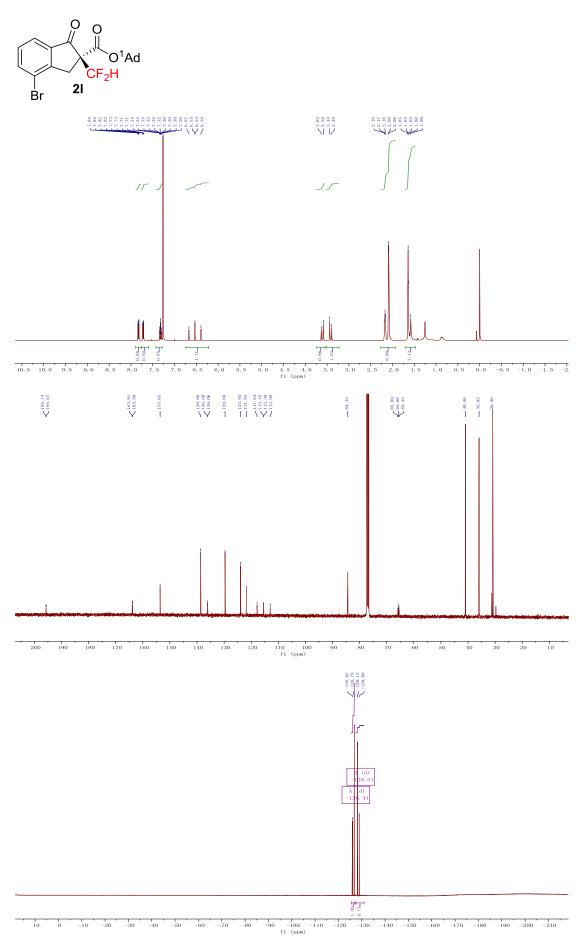


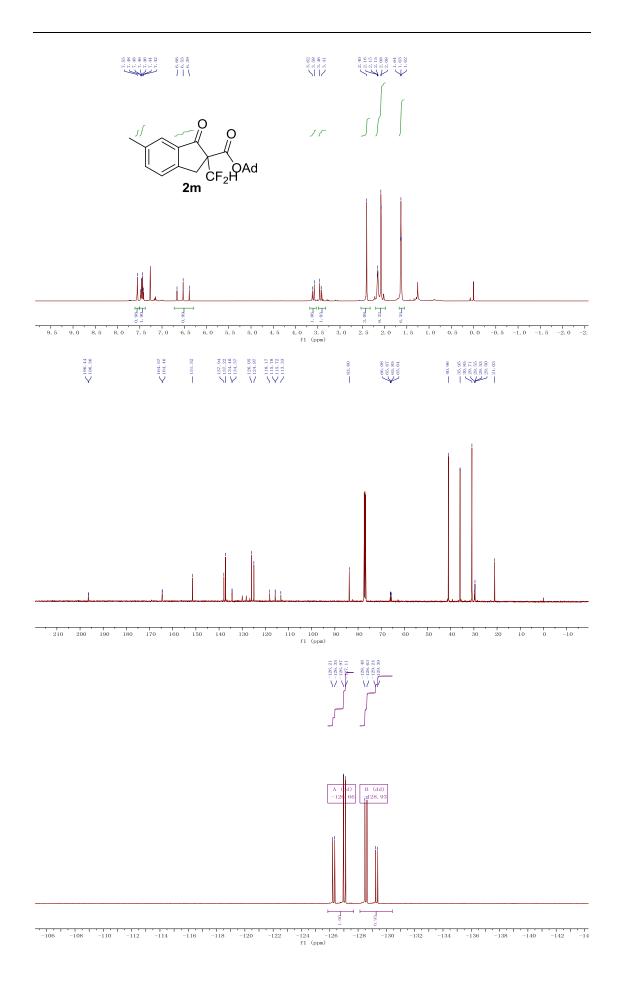


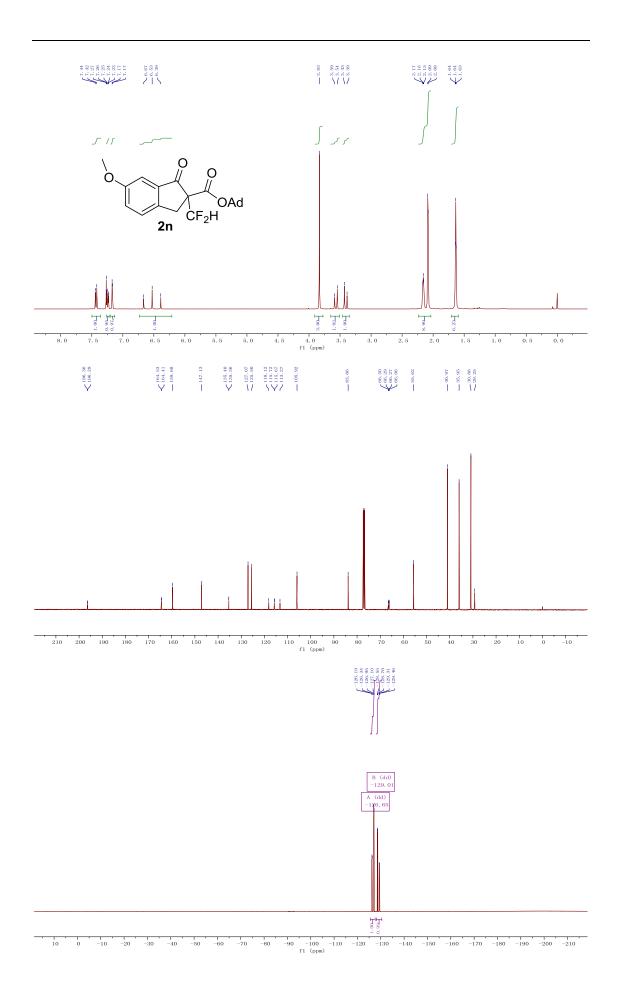


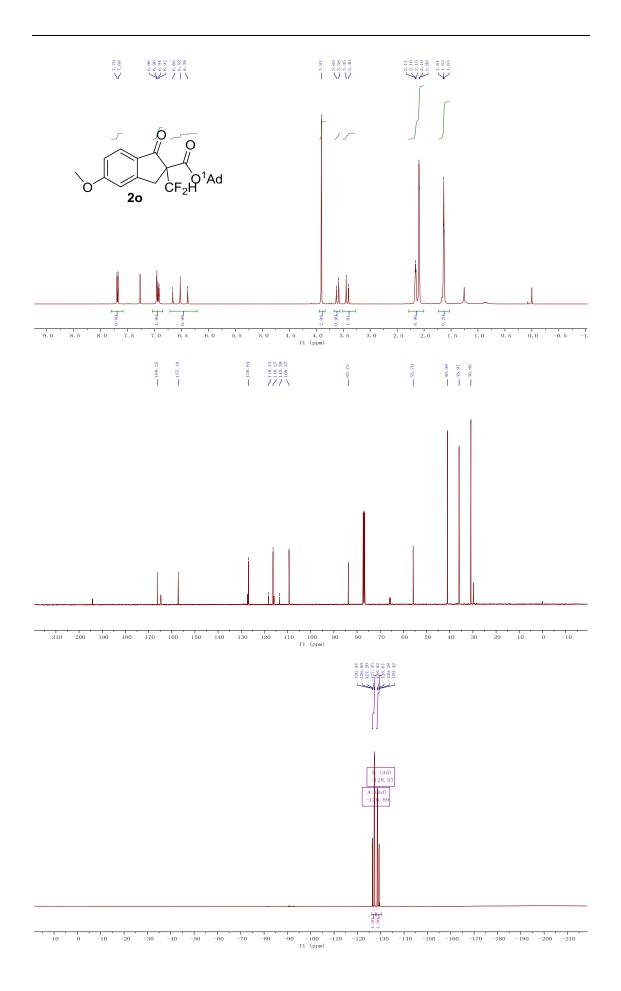


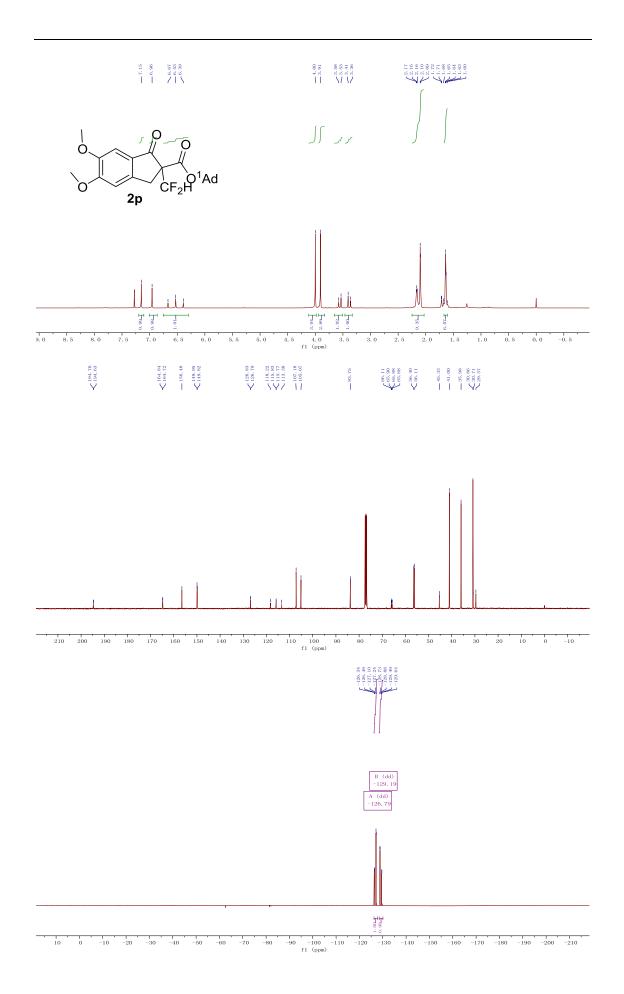


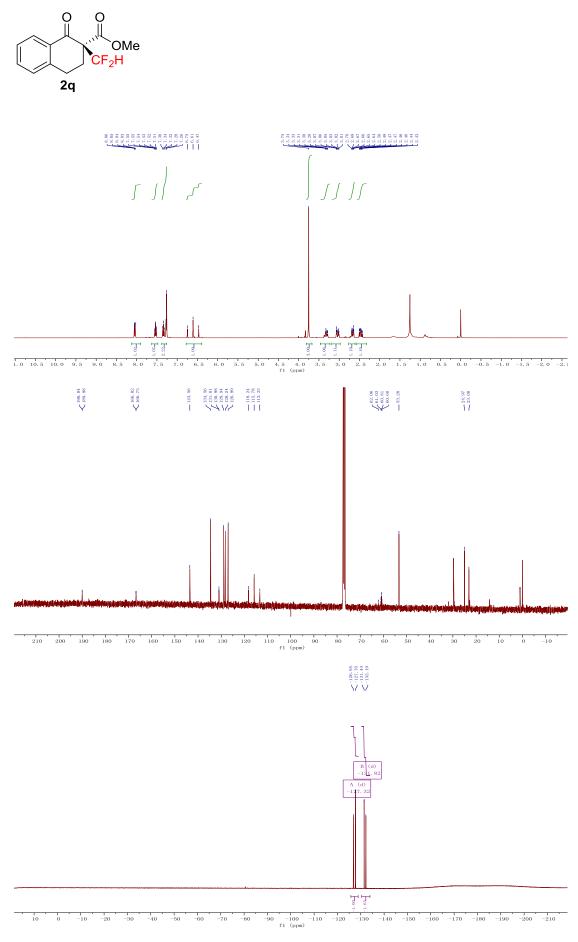


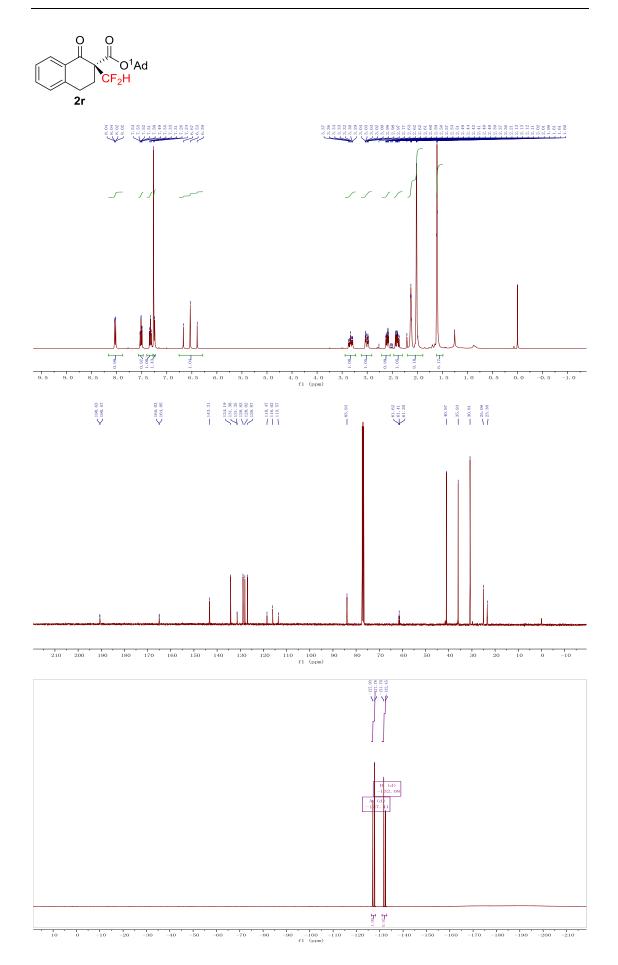


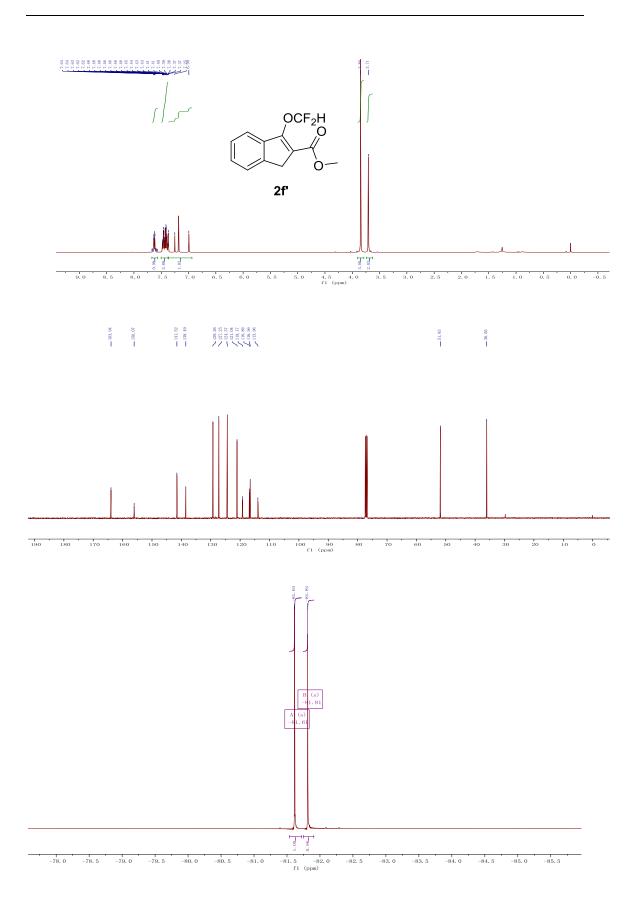


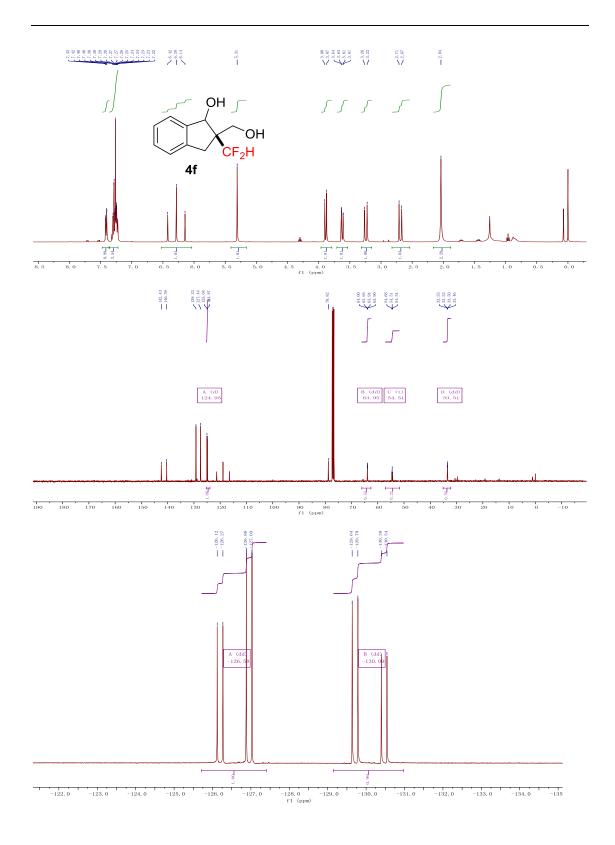


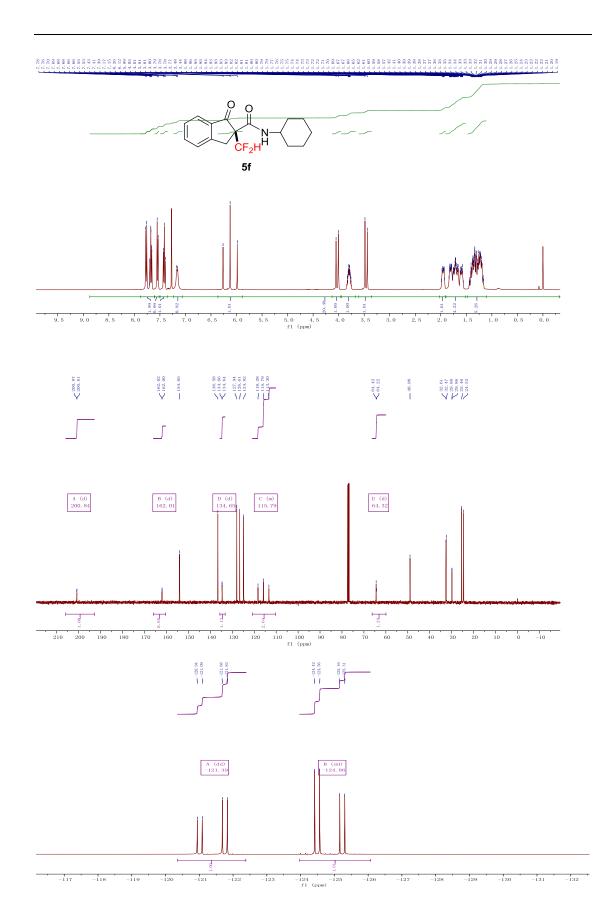


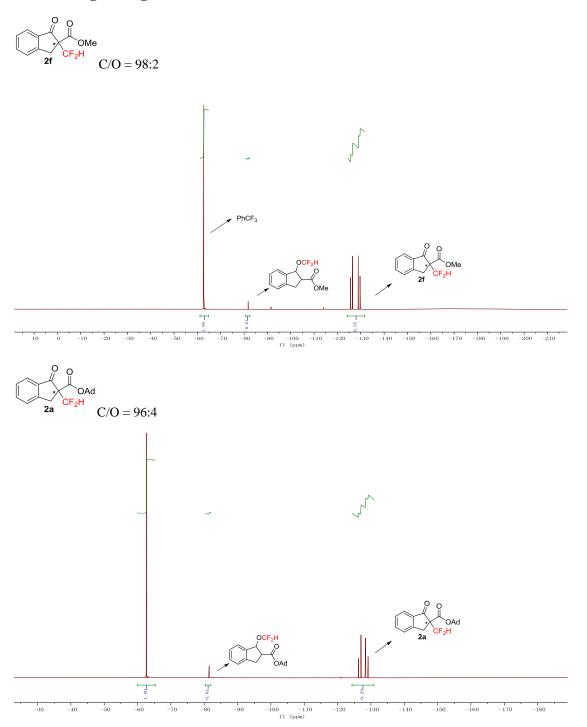


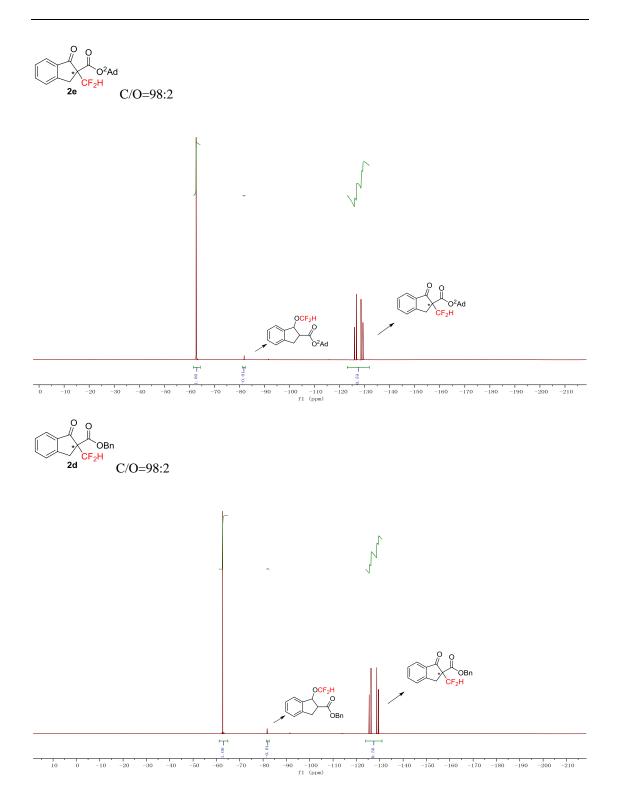


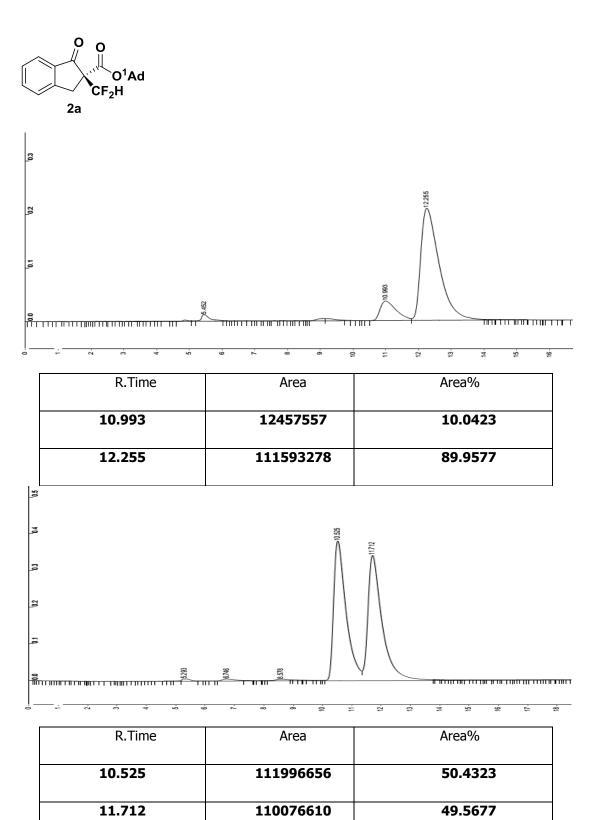


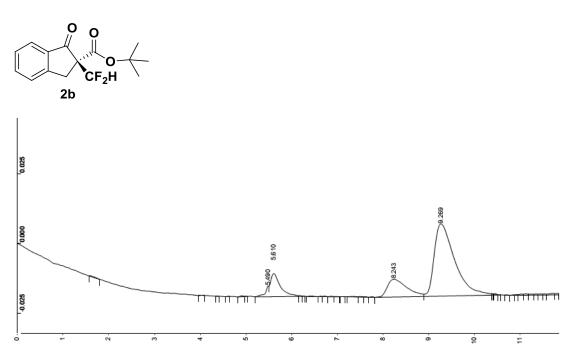


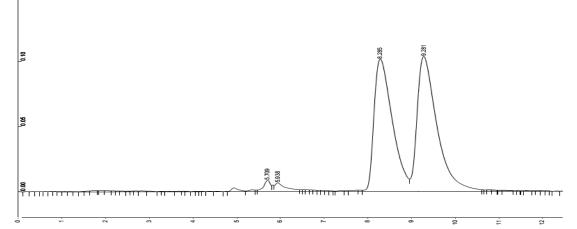




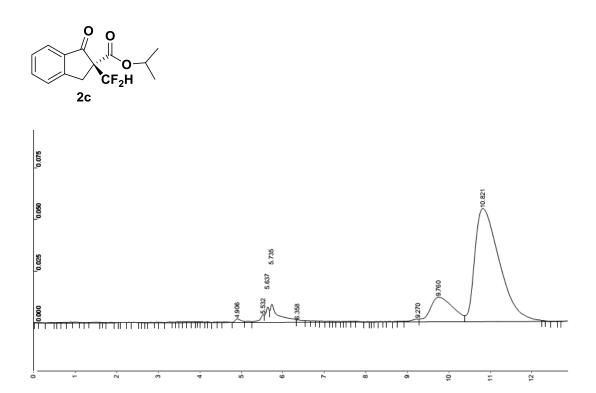


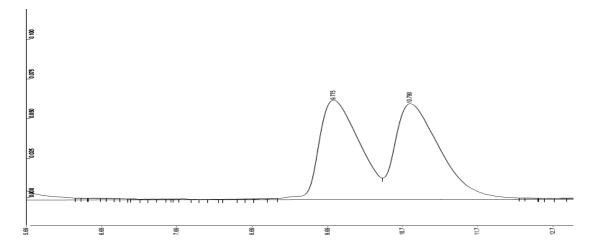


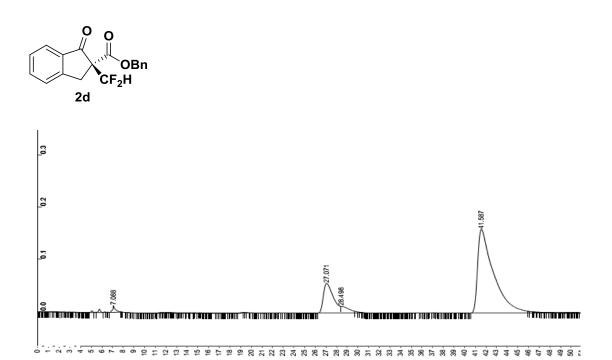

Copies of some representative ¹⁹F NMR spectras of crude mixtures for determining the high C/O selectivities



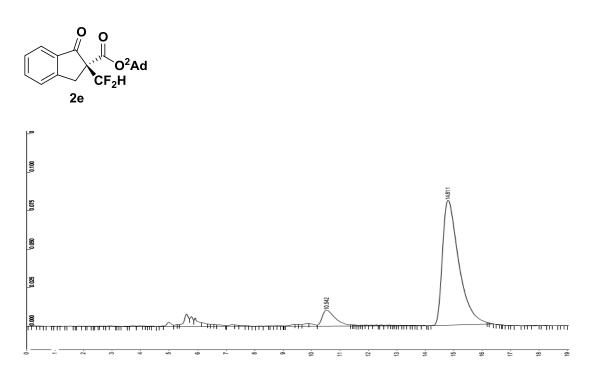
F. HPLC spectra



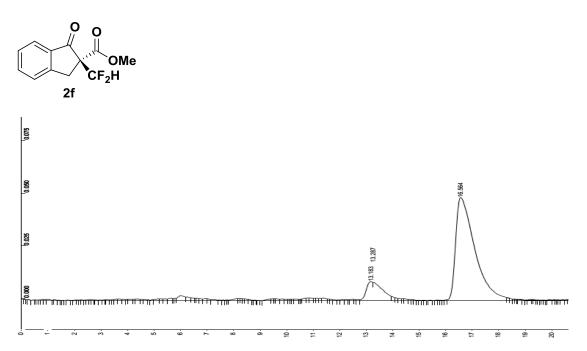

R.Time	Area	Area%
8.243	1869104	16.4870
9.269	8630407	83.5130


Area	Area%
29545488	49.4394
30215528	50.5606

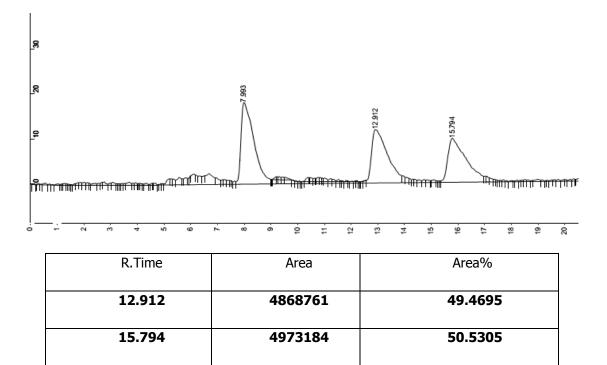
R.Time	Area	Area%
9.760	4522232	14.5
10.821	26665575	85.5

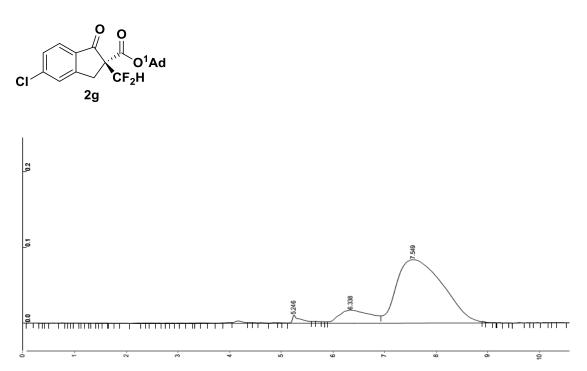

R.Time	Area	Area%
9.775	23246980	49.8020
10.790	23436495	50.1980
10.790	23430495	50.1980

R.Time	Area	Area%
27.071	37587524	16.5043
41.587	1901563003	83.4957

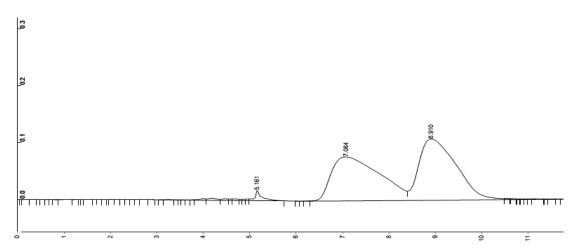


Area	Area%
60007588	48.0550
64865137	51.9450
	60007588

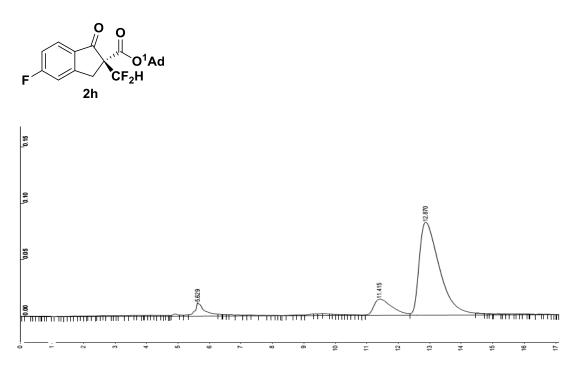



R.Time	Area	Area%
10.542	3751933	8.5030
14.811	40388455	91.4970
	N	
	11.012	16.7.47
		\bigwedge
29 29 20	6289	
		דור ההווהה הראה האורה הראה האורה ההווהה הראה האורה הראה הרא
ં ં ં નં નં નં	6. 12.11.00.88.	13. 16. 15. 19. 13.

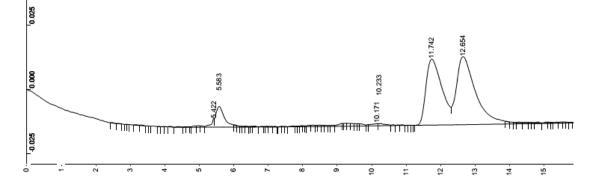
R.Time	Area	Area%
11.012	10293782	49.8800
16.747	10343311	50.1200



Area	Area%
2767981	10.0130
24874784	89.9830
	2767981



R.Time	Area	Area%
6.338	7370727	12.9815
7.549	49407973	87.0185

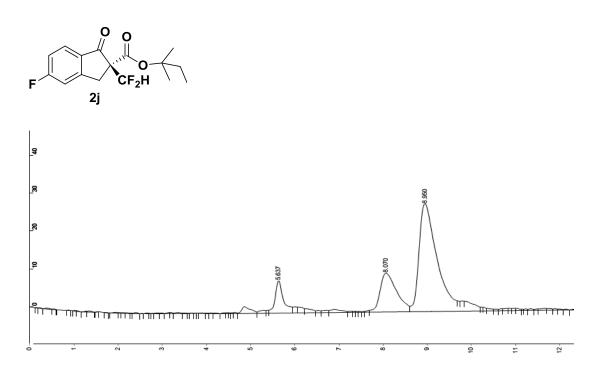


Area	Area%
56007124	48.3482
59834053	51.6518
	56007124

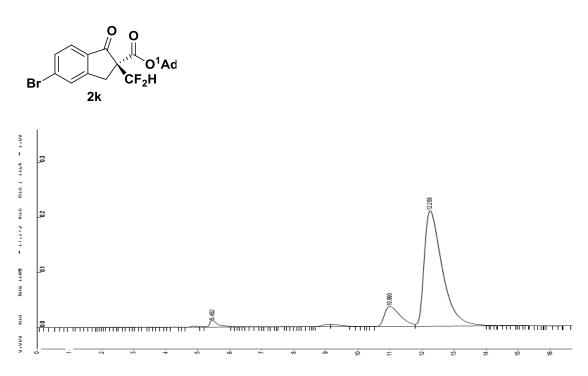


Area	Area%
5795442	10.9630
47068208	89.0370
	5795442

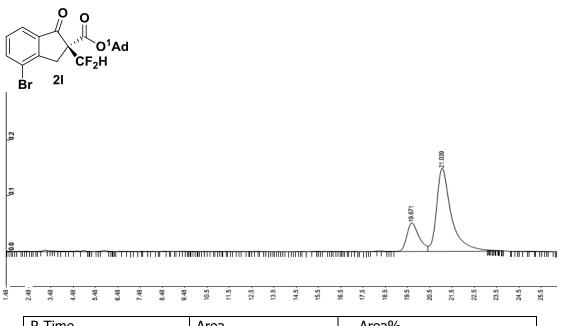
0.050



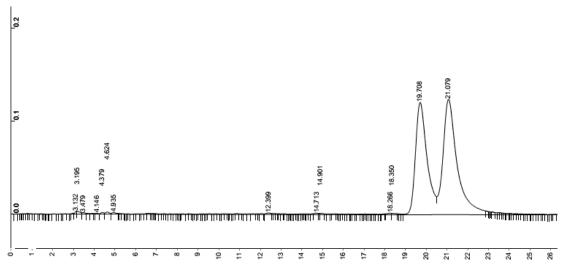
R.Time	Area	Area%
11.742	8173717	49.5360
12.664	8326842	50.4640


R.Time	Area	Area%
8.842	2123787	18.4700
9.854	9374789	81.5300
500 0		
ğ Ş		9000
S 00		
8 1		
	n 4 in in	1. 10 9 8 1

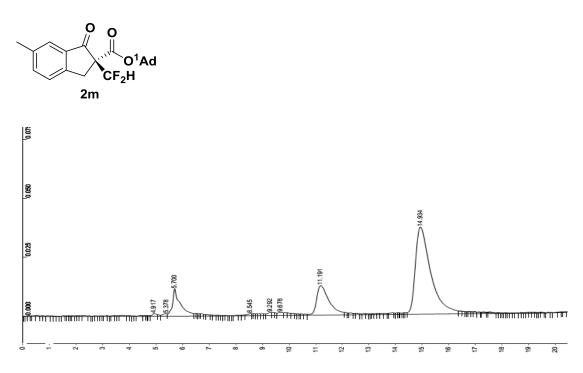
8.2541
7459
1

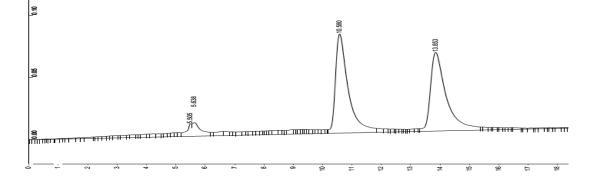

R.Time	Area	Area%
8.070	2675207	22.4970
8.950	9215830	77.5030
0, 15	I	
0; q		→7.831 →8.874
47		
500,	2	
8 1111 1111 111 11 11 11 11 11 11 11 11 1	······································	
	۱ ف ښ ک	

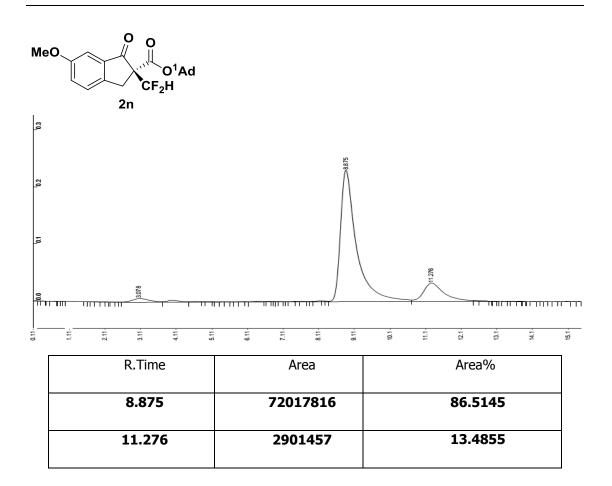
R.Time	Area	Area%
7.831	27569514	50.1542
8.874	27399988	49.8458

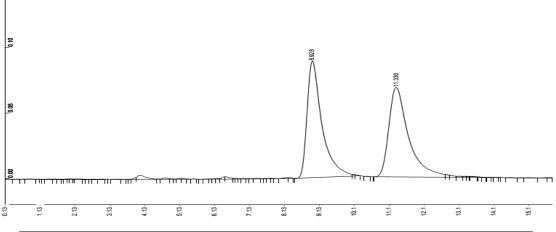


R.Time	Area	Area%
10.993	12457557	10.9180
12.225	101643532	89.0820
1		>11.464
		\bigwedge
	5.751	
╓ ╷╶╓╢╴┽╿╓┼┼╢╢╢╢╢╖╴╓╷		
	ு க் க் க்	10. 13. 15.

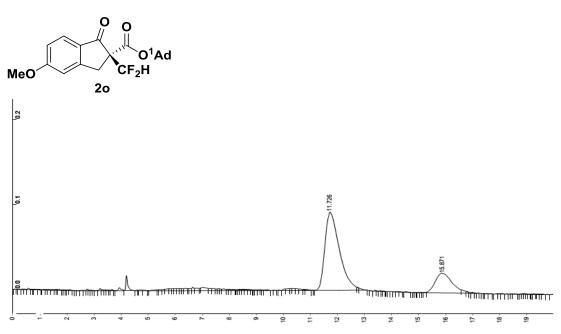

R.Time	Area	Area%
11.464	11138592	49.0050
13.001	11848280	50.9950


R.Time	Area	Area%
19.671	15587770	18.4970
21.039	68684112	81.5030

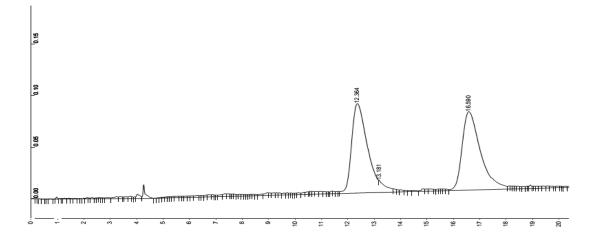

R.Time	Area	Area%
19.708	46621080	48.4320
21.079	49639811	51.5680

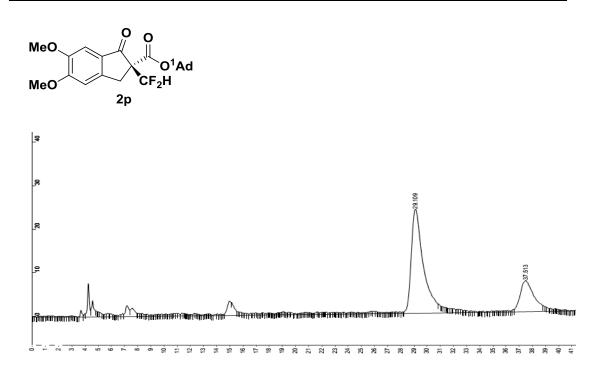


R.Time	Area	Area%
11.191	4053561	18.4970
14.934	17861133	81.5030

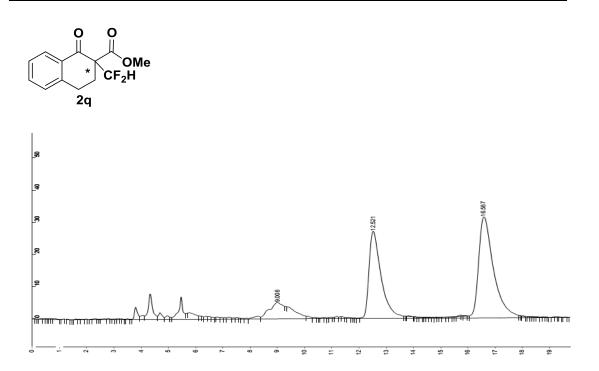


R.Time	Area	Area%
10.580	24099084	50.6655
13.853	23465992	49.3345

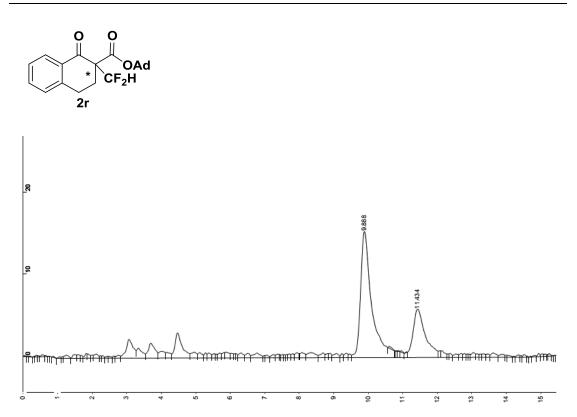



R.Time	Area	Area%
8.928	26371764	49.2052
11.330	27223720	50.7948

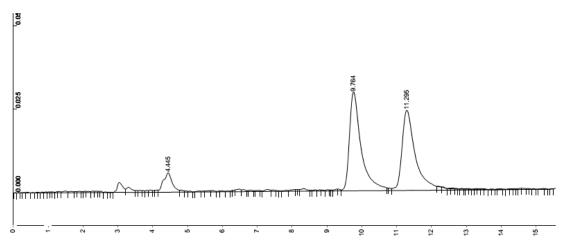
R.Time	Area	Area%
11.726	34553488	81.5340
15.871	7825750	18.4660



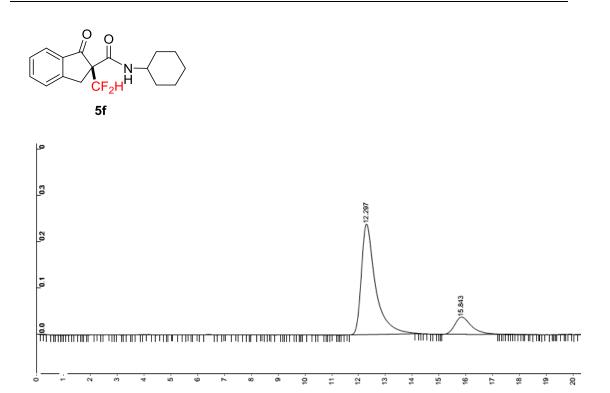
R.Time	Area	Area%
12.364	35083132	49.5391
16.590	35741678	50.4690


R.Time	Area	Area%
29.109	15066944	78.9550
37.513	4016007	21.0450
R		
41 274 1		28 55 V
<u>9</u>		
ערונוענענענענעעעעעעעעעעעעעעעעעעעעעעעעעע	ווזיונון און און און און און און און און און א	יאסיראויזיאיזאיזאיזאיזאיזאיזאיזאיזאיזאיזאיזאיזא
1 0 0 8 4 9 9 1	113. 113. 114. 115. 114. 114. 114. 114. 114. 114	4 3 3 3 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5

R.Time	Area	Area%
29.260	9602190	49.9027
36.637	9639634	50.0973



R.Time	Area	Area%
12.521	8872778	40.4638
16.587	130549153	59.5362
8		12.064
<u>_</u>		\wedge
9		545 ()
۹ هر		
<u>-</u> ה ווווו ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה 		
e		


R.Time	Area	Area%
12.064	18567074	49.3390
15.443	19064564	50.6610

R.Time	Area	Area%
9.888	3594220	73.2851
11.434	1310215	26.7149

R.Time	Area	Area%
9.764	6917868	50.7367
11.295	6712840	49.2633

R.Time	Area	Area%	
12.297	87857488	89.9150	
15.843	9854226	10.0850	
-		12.344	
		V 15.880	
350			
	ר הרות ברבת שלים ברעיר ברעיר ב עת מתחות הברות שלים אות שלים ברות		נדדר ארד ה רונות אורד הידר הידר אורד ה רונות לולדו

R.Time	Area	Area%
12.344	31520598	50.7528
15.880	30585528	49.2472