Asymmetric α-Electrophilic Difluoromethylation of β-Keto Esters by Phase Transfer Catalysis

Yakun Wang, ${ }^{\text {a }}$ Shuaifei Wang, ${ }^{a}$ Peiyong Qiu, ${ }^{\text {a }}$ Lizhen Fang, ${ }^{a}$ Ke Wang, ${ }^{\text {a }}$ Yawei Zhang, ${ }^{\text {a }}$ Conghui Zhang, ${ }^{\text {a }}$ and Ting Zhao ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China.
E-mail: 161072@xxmu.edu.cn. Fax: (+86)-0373-3029879

A. General Information 2-13
B. General proceduce for the \boldsymbol{a}-difluoromethylation of $\boldsymbol{\beta}$-keto esters 14-23
C. General proceduce for the \mathbf{O}-difluoromethylation of $\boldsymbol{\beta}$-keto ester $\mathbf{1 f}$ 23
D. General proceduce for the derivatization of $1 f$ 24
E. NMR spectra 25-66
F. HPLC spectra. 67-85

A. General Information:

Unless otherwise stated, all commercial reagents and solvents were used without further additional purification. Analytical TLC was visualized with UV light at 254 nm . Thin layer chromatography was carried out on TLC aluminum sheets with silica gel $60 \mathrm{~F}_{254}$. Purification of reaction products was carried out with chromatography on silica gel 60 (200-300 mesh). ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra was obtained at $25{ }^{\circ} \mathrm{C}$; ${ }^{13} \mathrm{C}$ NMR (126 MHz) were recorded on a VARIAN INOVA-400M and AVANCE II 400 spectrometer at $25^{\circ} \mathrm{C}$. Chemical shifts are reported as $\delta(\mathrm{ppm})$ values relative to TMS as internal standard and coupling constants (J) in Hz. The enantiomeric excesses (ee) were determined by HPLC. HPLC analyses were performed on equipped with Diacel Chiralpak AD-H or OJ-H chiral column ($0.46 \mathrm{~cm} \times 25$ cm), using mixtures of n-hexane/isopropyl alcohol as mobile phase, at $25^{\circ} \mathrm{C}$. Mass spectra are reported by using electron ionization and electrospray ionization techniques. Melting points were determined with a hot plate apparatus. Optical rotations were measured on a digital polarimeter with a sodium lamp at $15{ }^{\circ} \mathrm{C}$. Cat-1-Cat-4 were purchased from Sinocompound.

Materials:

1. Difluoromethylation reagents

$\mathbf{T M S C F}_{2} \mathbf{B r}$ and $\mathbf{T M S C F}_{2} \mathbf{C l}$ was purchased from innochem. $\mathrm{HCF}_{2} \mathrm{OTf}$ (B2) was prepared according to the method of Hartwig (Angew. Chem. Int. Ed. 2013, 52, 1 - 5). $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CF}_{2} \mathrm{CO}_{2}{ }^{-}(\mathrm{B} 3)$ was prepared according to the method of Xiao's group (Chem. Commun.

2013, 49, 7513-7515.)

were purchased from TCI.

2. Phase transfer catalysts

Cinchona alkaloid catalysts 3a, 3b, 3c, 3d, 3k, 3s were easily prepared according to the previous papers (Eur. J. Org. Chem. 2010, 34, 6525-6530; J. Org.Chem. 2012, 77, 9601-9608. J. Am. Chem. Soc, 2015, 137, 5678-5681, J. Org.Chem. 2016, 81, 7042-7050,).

3e: $\mathbf{R}=\mathbf{H}$

2.1 Synthesis of C-2' modified Catalysts

Synthesis of Cn'

Cn' was prepared partly according to Hintermann and Melchiorre's method (Angew. Chem. Int. Ed. 2007, 46, 5164 -5167; J. Am. Chem. Soc, 2015, 137, 5678-5681). Cinchonine (5.88 g, 10 mmol) was suspended in 75 mL of dry MTBE (dried over molecular sieves) and cooled to $-20^{\circ} \mathrm{C}$ under Ar. The organo-lithium compound was prepared in a separate flask by adding $n-\operatorname{BuLi}(21 \mathrm{~mL}, 52.5 \mathrm{mmol}, 2.5 \mathrm{M})$ to a 15 mL MTBE solution of 4-bromobenzotrifluoride $(11.26 \mathrm{~g}, 50 \mathrm{mmol})$. The organo-lithium compound was added at once to the vigorously stirred MTBE solution of cinchonine and stirred at $-20^{\circ} \mathrm{C}$ for 60 min . Then the mixture was warmed to ambient temperature and stirred over another 2 h . The reaction was quenched by dropwise addition of acetic acid (30 mL) with rapid stirring and cooling, followed by the addition of water (60 mL) and ethyl acetate (60 mL). Solid iodine (5 g) was added in several portions and the mixture shaken vigorously after each addition until all the solids had dissolved. A solution of sodium metabisulfite $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}, 2 \mathrm{~g}\right)$ in water (20 mL) was added to quench the excess of iodine. The mixture was made basic $(\mathrm{pH}=10)$ with the addition of aqueous ammonia (concentrated, 28%) and shaken thoroughly. The aqueous phase was extracted with ethyl acetate twice and the collected organic phases were washed with brine
and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of the solvent, the crude product was purified by column chromatography on silica gel $(\mathrm{EA} / \mathrm{MeOH}=9: 1)$ to give the product Cn^{\prime} as orange solid (4.35 g, 48\% yield).

2.2 Synthesis of C-2' modified phase transfer catalysts

Preparation of PTC 3e

To a flame-dried flask equipped with a magnetic stirring bar and a reflux condenser was added $\mathrm{Cn}^{\prime}(0.44 \mathrm{~g}, 1 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{CN}(8 \mathrm{~mL}), \mathrm{CHCl}_{3}(6 \mathrm{~mL})$ and benzyl bromide $(0.22 \mathrm{~g}, 1.3$ eq). The mixture was heated to $50{ }^{\circ} \mathrm{C}$ under Ar for 16 hours and then cooled to room temperature. After complete consumption of Cn' (inferred by TLC analysis) the solvent was evaporated under reduced pressure. $\mathrm{Et}_{2} \mathrm{O}$ was added and the mixture was slowly concentrated under reduced pressure. The resulting suspension was stirred for 30 min and the precipitated solids were isolated by filtration, which was recrystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to afford the product $3 \mathrm{e}(0.44 \mathrm{~g}, 71 \%$ yield $)$ as a light yellow solid. m. p. $173-178{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+82.3(c 0.1$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H})$, $7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.59-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddd}, J=17.4,10.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{ddd}, J=12.4,9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.04(\mathrm{~m}$, $2 \mathrm{H}), 3.31(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{q}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{q}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.75(\mathrm{dt}, J=32.2,12.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 154.61,147.41,145.20,135.22,134.00,129.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 128.67(\mathrm{~d}, J=3.4$ $\mathrm{Hz}), 127.92,127.54,126.83,125.71(\mathrm{~d}, J=3.9 \mathrm{~Hz}), 124.11(\mathrm{q}, \mathrm{J}=275.5 \mathrm{~Hz}), 123.46,118.18$, $117.30,66.95,61.43,56.25,53.57,38.07,27.16,23.77,21.76 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -62.49 (s, 3F). HRMS Calcd. for $\left[\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 529.2461$, found m / z 529.2463.

Preparation of PTC $3 f$

PTC $3 f$ was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a light yellow solid ($0.42 \mathrm{~g}, 56 \%$ yield). m. p. 203-207 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+92.4\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.56(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.49-8.33(\mathrm{~m}, 4 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.16$ $-8.09(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.71(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{ddd}, J=17.4,10.4,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.59-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.43-5.22(\mathrm{~m}, 3 \mathrm{H}), 4.56(\mathrm{ddd}, J=11.7,8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (dt, $J=9.9,5.3 \mathrm{~Hz}, 2 \mathrm{H}$), $3.69-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{dt}, J=11.6,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.41(\mathrm{~m}$, $2 \mathrm{H}), 2.03-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.02(\mathrm{~m}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 155.18$, $148.00,146.18,142.62,136.16,134.26,132.19$ (q, $J=33.7 \mathrm{~Hz}$), 130.75, 129.87 (d, $J=12.6$ $\mathrm{Hz}), 127.92,127.90,125.70-125.09(\mathrm{~m}), 124.51,123.83,123.27,121.81,117.25,116.73$, $68.33,65.89,61.17,56.53,54.95,37.49,27.04,23.29,20.95 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $-63.99(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 9 \mathrm{~F})$. HRMS Calcd. for $\left[\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{BrF}_{9} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 665.2209$, found $\mathrm{m} / \mathrm{z} 665.2214$.

Preparation of PTC 3g

PTC 3g was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a yellow solid ($0.45 \mathrm{~g}, 67 \%$ yield). m. p. $194-197^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+98.3\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.49-8.27(\mathrm{~m}, 4 \mathrm{H}), 8.18-8.05(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79$ $-7.64(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.71-6.54(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{ddd}, J=17.4,10.5,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.35-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{td}, J$ $=10.2,9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.70(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dt}$, $J=11.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.16-0.96(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 161.31,155.16,148.00,146.38,142.66,136.32,131.83-130.32$
(m), 129.12, 127.92, 127.87, $125.64-125.40(\mathrm{~m}), 124.29(\mathrm{q}, ~ J=271.4 \mathrm{~Hz}), 123.87,123.21$, $117.26,116.60,111.52,101.76,67.71,65.94,63.09,56.90,54.87,54.70,37.62,26.98,23.36$, 20.96. ${ }^{19} \mathrm{~F} \quad \mathrm{NMR} \quad\left(376 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right) \quad \delta \quad-63.96 \quad(\mathrm{~s}, ~ 3 \mathrm{~F})$. HRMS Calcd. For $\left[\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 589.2673$, found $\mathrm{m} / \mathrm{z} 589.2668$.

Preparation of PTC 3h

PTC 3h was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a white solid $(0.32 \mathrm{~g}, 45 \%$ yield $)$. m. p. $167-170{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+77.6\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44-8.24(\mathrm{~m}, 3 \mathrm{H}), 8.19-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{dd}, J=11.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$, 5.89 (ddd, $J=17.5,10.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.37(\mathrm{~m}, 2 \mathrm{H}), 5.24-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=$ $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{q}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.51-$ $2.21(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 154.96,151.73,151.66,147.87,145.64,142.81,135.61,130.96(\mathrm{q}, J=32.7$ $\mathrm{Hz}), 130.31,129.41,128.47,127.96,126.49,125.64$ (d, $J=4.0 \mathrm{~Hz}$), 124.07, 123.53, 123.46 123.11 (m), 122.85, 118.10, 117.69, 70.54, 67.38, 65.45, 63.49, 56.45, 54.26, 45.90, 38.22, $35.00,31.50,29.70,27.24,24.02,21.51,11.33,8.97 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.52(\mathrm{~s}$, 3F). HRMS Calcd. For $\left[\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 641.3713$, found $\mathrm{m} / \mathrm{z} 641.3710$.

Preparation of PTC 3i

PTC 3i was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a white solid $(0.58 \mathrm{~g}, 78 \%$ yield $)$. m. p. $182-186^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+145.3\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.38(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 8.20-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=34.4 \mathrm{~Hz}, 3 \mathrm{H})$,
$7.88-7.67(\mathrm{~m}, 8 \mathrm{H}), 7.53-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.65(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-5.95(\mathrm{~m}, 1 \mathrm{H}), 5.51$ $-5.07(\mathrm{~m}, 4 \mathrm{H}), 4.56-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.16(\mathrm{~d}, J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.63(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 2 \mathrm{H}), 1.13-0.76(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 155.18,148.00,146.36,142.67,139.69,139.67,136.29,130.90$, $129.86,128.76,127.93,127.75,127.19,126.98,125.47(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 125.45,124.30(\mathrm{q}, J=$ 271.4 Hz), 123.87, 117.29, 116.60, 70.13, 67.83, 65.96, 62.93, 56.78, 54.79, 37.56, 29.41, 27.06, 23.37, 20.95. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-63.94(\mathrm{~s}, 3 \mathrm{H})$. HRMS Calcd. For $\left[\mathrm{C}_{45} \mathrm{H}_{40} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 681.3087$, found $\mathrm{m} / \mathrm{z} 681.3084$.

Preparation of PTC 3j

PTC 3j was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a white solid $(0.53 \mathrm{~g}, 83 \%$ yield $)$. m. p. $193-197{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+101.0\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 8.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.70(\mathrm{~m}, 4 \mathrm{H})$, $7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{ddd}, J=17.3$, $10.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.19(\mathrm{~m}, 3 \mathrm{H}), 5.06(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=11.9,8.4,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.15-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.39(\mathrm{~m}$, $2 \mathrm{H}), 1.90(\mathrm{dd}, J=29.7,15.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{q}, J=13.1,9.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 164.41(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 161.93(\mathrm{~d}, J=12.7 \mathrm{~Hz}), 155.29,148.10,146.31,142.70$, $136.19,131.89-130.64(\mathrm{~m}), 127.95,127.92,127.86,123.92,123.00,117.26,116.64,105.72$ $(\mathrm{t}, J=25.6 \mathrm{~Hz}), 68.16,68.14,65.92,61.70,56.84,54.89,37.55,26.94,23.29,20.92 .{ }^{19} \mathrm{~F} \mathrm{NMR}$ $\left(376 \mathrm{MHz}, \quad \mathrm{CD}_{3} \mathrm{OD}\right) \delta-64.11(\mathrm{~s}, ~ 3 \mathrm{H}),-109.72(\mathrm{~s}, ~ 2 \mathrm{H})$. HRMS Calcd. For $\left[\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{BrF}_{5} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 565.2273$, found $\mathrm{m} / \mathrm{z} 565.2276$.

Preparation of PTC 31

PTC 31 was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a light yellow solid ($0.60 \mathrm{~g}, 78 \%$ yield $)$. m. p. $229-232{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+101.0\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 8.17(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.70(\mathrm{~m}, 4 \mathrm{H}), 6.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (ddd, $J=17.4,10.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37-5.18(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{ddd}, J$ $=11.8,8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dt}, J=11.8,9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.76-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.02(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) $\delta 155.30,148.11,146.29,142.69,136.19,135.90,135.28,131.61,130.02,129.98(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}), 127.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 125.48,123.91,123.25,122.94,117.24,116.69,68.20$, $65.89,61.45,56.73,54.94,37.57,27.01,23.30,20.90 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-64.08$ $(\mathrm{s}, 3 \mathrm{H})$. HRMS Calcd. For $\left[\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{Br}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 685.0671$, found m / z 685.0677.

Preparation of PTC 3m

PTC 3m was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a light yellow solid $(0.47 \mathrm{~g}, 69 \%$ yield $)$. m. p. $239-242{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+138.4\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.94-7.73(\mathrm{~m}, 3 \mathrm{H}), 7.64(\mathrm{t}$, $J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{dt}, J=13.0,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.16(\mathrm{q}, J=7.7,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.00(\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{dd}, J=20.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddd}, J=17.4,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25-5.10(\mathrm{~m}$, $2 \mathrm{H}), 4.50(\mathrm{ddd}, J=12.1,9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ $(\mathrm{q}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.17(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.52,147.37,145.11,140.92,140.88,139.19,135.15,132.84,132.03$, 130.90 (q, $J=32.2 \mathrm{~Hz}$), 129.99, 128.99, 128.56, 128.27, 127.91, 127.79, 127.56, 127.44, 126.99, 126.01-125.15 (m), 122.91, 118.26, 117.21, 67.11, 61.51, 56.40, 53.69, 38.09, 36.01, 29.70, 27.18, 23.77, 21.75, 11.40. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.48$ (s, 3F) . HRMS Calcd. For $\left[\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 605.2774$, found $\mathrm{m} / \mathrm{z} 605.2778$.

Preparation of PTC 3n

PTC 3n was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a light yellow solid $(0.39 \mathrm{~g}, 58 \%$ yield $)$. m. p. $223-226{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+103.5\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.50-8.32(\mathrm{~m}, 4 \mathrm{H}), 8.28-8.14(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.97-7.75(\mathrm{~m}, 6 \mathrm{H}), 6.66(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{ddd}, J=17.4,10.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.33-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.25-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{ddd}, J=11.8,8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.03$ $(\mathrm{m}, 2 \mathrm{H}), 3.76-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.16-2.99(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.78(\mathrm{~m}, 3 \mathrm{H})$, $1.20-1.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 155.31,148.12,146.36,142.71,137.43$, $136.23,131.11(\mathrm{dd}, J=32.6,19.6 \mathrm{~Hz}), 130.37-129.60(\mathrm{~m}), 128.83,127.95,127.93,127.85$, $127.08,123.93,122.95,117.25,116.65,68.10,65.90,62.23,56.64,54.75,37.54,27.08,23.29$, 20.89. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-63.95-64.04$ (m, 3F), -64.04-64.11 (m, 3F). HRMS Calcd. For $\left[\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{BrF}_{6} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 597.2335$, found $\mathrm{m} / \mathrm{z} 597.2339$.

Preparation of PTC 3o

PTC 30 was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a light yellow solid $(0.58 \mathrm{~g}, 85 \%$ yield $)$. m. p. $229-234{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+105.2\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.50-8.31(\mathrm{~m}, 4 \mathrm{H}), 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.91$ $-7.72(\mathrm{~m}, 6 \mathrm{H}), 7.52(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{ddd}, J=17.5,10.5,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.36-5.23(\mathrm{~m}, 2 \mathrm{H}), 5.20-4.96(\mathrm{~m}, 2 \mathrm{H}), 4.45$ (ddd, $J=11.8,8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-$ $3.89(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{q}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.98-$ $1.80(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 155.33,148.14,146.38$, $142.71,136.22(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 133.46,132.40,130.72,127.92,127.82,126.01-125.26(\mathrm{~m})$, $123.93,123.25-122.05(\mathrm{~m}), 117.23,116.64,68.01,65.86,62.29,56.73,54.74,37.58,27.06$, 23.31, 20.87. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD)} \delta-64.09$ ($\mathrm{s}, ~ 3 \mathrm{~F}$). HRMS Calcd. For $\left[\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 607.1566$, found $\mathrm{m} / \mathrm{z} 607.1570$.

Preparation of PTC 3p

PTC 3p was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a yellow solid ($0.44 \mathrm{~g}, 65 \%$ yield). m. p. $223-227^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+102.6$ (c 0.1, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.40-8.25(\mathrm{~m}, 3 \mathrm{H}), 7.83(\mathrm{dd}, J=14.5$, $7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dt}, J=43.8,7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.86-6.73$ (m, 1H), $6.62-6.40(\mathrm{~m}, 2 \mathrm{H}), 5.84$ (ddd, $J=17.4,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (dd, $J=$ $24.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.10(\mathrm{~m}, 2 \mathrm{H}), 4.51$ (ddd, $J=12.1,8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.03(\mathrm{~m}$, $2 \mathrm{H}), 3.23-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{dd}, J=15.2,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{q}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J$ $=52.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 154.55,147.36,144.75,142.83,134.79,134.41,134.38,132.80-131.64(\mathrm{~m})$, 131.01 (q, $J=32.1 \mathrm{~Hz}$), 130.99, 130.14, 128.57, 127.90, 125.99 - 125.13 (m), 127.47, 123.32 $(\mathrm{q}, J=271.0 \mathrm{~Hz}), 123.12,118.51,117.12,67.51,60.35,56.54,54.03,45.96,38.01,29.71$, 27.00, 23.72, 21.77, 11.35, 8.60. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.51(\mathrm{~s}, 3 \mathrm{H})$, -63.10 (s, 3H) . HRMS Calcd. For $\left[\mathrm{C}_{34} \mathrm{H}_{31} \mathrm{BrF}_{6} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 597.2335$, found $\mathrm{m} / \mathrm{z} 597.2331$.

Preparation of PTC 3q

PTC 3q was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}^{\prime}$ as a white solid ($0.47 \mathrm{~g}, 71 \%$ yield). m. p. $187-190{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+83.1\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.43(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 8.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.73-7.56(\mathrm{~m}, 4 \mathrm{H}), 6.73-6.57(\mathrm{~m}, 1 \mathrm{H}), 6.26-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.30$ $-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.16-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.16-3.85(\mathrm{~m}, 2 \mathrm{H}), 3.74-3.51(\mathrm{~m}$, $1 \mathrm{H}), 2.76-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 155.31,153.77,148.13,146.53,142.72,136.33,133.29,131.82$ $-130.38(\mathrm{~m}), 130.02,129.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}), 127.95,127.93,127.81,126.02,125.50(\mathrm{q}, J=$ $3.7 \mathrm{~Hz}), 124.38$, 123.97, 123.37 - 122.41 (m), 117.24, 116.56, 67.61, 65.86, 62.91, 56.63, $54.42,37.60,34.37,30.22,27.13,23.33,20.88,8.04 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-64.07$ ($\mathrm{s}, 3 \mathrm{~F}$). HRMS Calcd. For $\left[\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{BrF}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 585.3087$, found $\mathrm{m} / \mathrm{z} 585.3082$.

Preparation of PTC 3r

PTC 3r was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}{ }^{\prime}$ as a white solid $(0.61 \mathrm{~g}, 88 \%$ yield $)$. m. p. $198-201{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+102.4\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 8.44(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=32.4$, $7.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.75-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.11(\mathrm{ddd}, J=17.4,10.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.24(\mathrm{~m}, 3 \mathrm{H})$, $5.17(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{t}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=13.5$, $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.50(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ $(\mathrm{dd}, J=16.3,8.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.48-1.14(\mathrm{~m}, 5 \mathrm{H}), 1.09-0.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 155.33,148.17,146.04,142.68,136.07,131.05(\mathrm{q}, J=33.1 \mathrm{~Hz}), 130.11,129.97$, $127.93,127.75,125.53,125.49,125.45,124.26(\mathrm{q}, ~ J=271.0 \mathrm{~Hz}), 123.99,117.30,116.75$, $103.56-101.84(\mathrm{~m}), 68.09,66.21,56.81,55.23,51.09,37.79,26.44,23.40,21.03 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-64.08(\mathrm{~s}, 3 \mathrm{~F}),-136.80(\mathrm{~s}, 1 \mathrm{~F}),-151.31(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{~F}),-162.67(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS Calcd. For $\left[\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{BrF}_{8} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 619.1990$, found m / z 619.1986.

Preparation of PTC 3t

Cn-2' was prepared according to Hintermann's method (Angew. Chem. Int. Ed. 2007, 46,) as white solid ($2.10 \mathrm{~g}, 56 \%$ yield). PTC 3t was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}-\mathbf{2}^{\prime}$ as a white solid ($0.58 \mathrm{~g}, 86 \%$ yield). m. p. $215-218{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{25}+137.6\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.31(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.18$
(ddd, $J=13.7,8.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 8.01(\mathrm{dd}, J=9.3,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.81(\mathrm{dddd}, J=30.6,8.3,6.9$, $1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{ddd}, J=17.4,10.5,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.39-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.18-4.94(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{ddd}, J=11.8,8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-$ $3.84(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{dt}, J=11.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.91,146.65,143.89,136.35,135.02,134.82,130.85,128.75,128.00,125.94,123.47$, $122.91,121.78,119.70,118.46,67.13,65.53,59.50,56.42,54.07,39.24,38.00,32.55,27.06$, 23.70, 22.92, 21.76, 14.09. HRMS Calcd. For $\left[\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]+$ requires m/z 597.1111, found $\mathrm{m} / \mathrm{z} 597.1115$.

Preparation of PTC 3e

Cn-3' was prepared according to Hintermann's method (Angew. Chem. Int. Ed. 2007, 46, $5164-5167)$ as white solid ($0.55 \mathrm{~g}, 21 \%$ yield). PTC 3u was synthesized by the same procedure as mentioned above for catalyst $\mathbf{3 e}$ from $\mathbf{C n}-\mathbf{3 '}^{\prime}$ as a white solid ($0.58 \mathrm{~g}, 83 \%$ yield). m. p. 257-259 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+127.3\left(c 0.1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.31(\mathrm{~d}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.18$ (ddd, $J=13.7,8.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}), 8.01(\mathrm{dd}, J=9.3,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.92-7.73$ $(\mathrm{m}, 2 \mathrm{H}), 7.65-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{ddd}, J=17.4,10.5,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.37-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=11.8$, $8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=11.8,9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.68(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.20-$ $1.06(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 157.27, 148.06, 145.92, 139.12, 136.17, $135.91,135.23,131.61,129.87,129.58,129.53,128.65,127.36,127.31,123.60,123.27$, $122.64,117.49,116.64,68.25,65.76,61.56,56.75,54.93,37.51,31.36,26.97,23.30,22.32$, 20.85, 13.05. HRMS Calcd. For $\left[\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{Br}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 617.0798$, found m / z 617.0792 .

Preparation of PTC 3v

Cn-4' was prepared according to Hintermann and Melchiorre's method (Angew. Chem. Int.

Ed. 2007, 46, 5164 -5167; J. Am. Chem. Soc, 2015, 137, 5678-5681) as light yellow solid ($1.53 \mathrm{~g}, 55 \%$ yield). . PTC 3v was synthesized by the same procedure as mentioned above for catalyst 3 e from Cn-4' as a white solid $(0.60 \mathrm{~g}, 79 \%$ yield $)$. m. p. $197-201{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+118.0$ (c $0.1, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.23(\mathrm{dt}, J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.08-7.96(\mathrm{~m}, 3 \mathrm{H}), 7.91-7.77(\mathrm{~m}, 4 \mathrm{H})$, $6.62(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{ddd}, J=17.4,10.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.11(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.18-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{q}$, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.03(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(101$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 155.18,148.12,146.34,140.04,136.19,135.90,135.26,133.30,131.61$, $130.78(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 130.00(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 129.59,127.78,125.90(\mathrm{~d}, J=3.9 \mathrm{~Hz})$, $123.26,122.86,116.98,116.62,68.21,65.92,61.49,56.75,54.94,37.54,29.95,26.97,23.30$, 20.89. ${ }^{19} \mathrm{~F}$ NMR (376 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \quad \delta \quad-64.07$ (s, 3F). HRMS Calcd. For $\left[\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{Br}_{3} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}-\mathrm{Br}\right]+$ requires $\mathrm{m} / \mathrm{z} 685.0671$, found $\mathrm{m} / \mathrm{z} 685.0676$.

3. $\boldsymbol{\beta}$-Keto esters:

β-keto esters 1a-1t were prepared according to the literature procedure (Eur. J. Org. Chem. 2010, 34, 6525-6530; Green Chemistry 2016, 18, 5493-5499)

4. Commercial grade reagents and solvents:

Commercial grade reagents, bases and solvents were purchased from Sinoreagent, Meryer and Energy-Chemical without further purifications.

B. General proceduce for the a-difluoromethylation of β-keto esters:

Achiral $\boldsymbol{\alpha}$-difluoromethylation of $\boldsymbol{\beta}$-keto esters

The reaction was conducted with substrate $\mathbf{1 a - 1 r}(0.1 \mathrm{mmol})$ in the presence of tetrabutylammonium bromide ($5 \mathrm{~mol} \%$) in toluene. Then $\mathrm{TMSCF}_{2} \mathrm{Br}(0.2 \mathrm{mmol})$ was added slowly, and the reaction was stirred at room temperaturefor 6 h . After completion of the reaction (confirmed by TLC analysis), the mixture was diluted with EtOAc (30 mL), washed with water $(3 \times 20 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography to give $\mathbf{2 a - 2 s}$. The ee of the product was determined by chiral HPLC.

Asymmetric $\boldsymbol{\alpha}$-difluoromethylation of $\boldsymbol{\beta}$-keto esters

The reaction was conducted with β-keto esters $\mathbf{1 a} \mathbf{- 1 p}(0.1 \mathrm{mmol})$ in the presence of PTC $\mathbf{3 l}$ $(0.0025 \mathrm{mmol})$ in a mixture containing $\mathrm{PhCH}_{3} / \mathrm{CHCl}_{3}=1: 1(8 \mathrm{~mL})$ and $30 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. Then $\mathrm{TMSCF}_{2} \mathrm{Br}(0.2 \mathrm{mmol})$ was added slowly, and the reaction was stirred at this temperaturefor 12 h . After the reaction was completed (confirmed by TLC analysis), the
mixture was diluted with $\operatorname{EtOAc}(30 \mathrm{~mL})$, washed with water $(3 \times 10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was subject to crude ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ to give the C / O isomer ratio (trifluoromethyl benzene $8 \mu \mathrm{~L}$ as internal standard). Subsequently, the residue was purified by flash chromatography (silica gel; petroleum ether/ethyl acetate $=50: 1-20: 1$) to afford the α-difluoromethylation products.

1-Adamantyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2a)

(Light yellow solid, 31.3 mg , 87% yield, 80% ee); m. p. $73-76^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25} 73.6\left(c 0.20, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.54(\mathrm{t}, J=55.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.06(\mathrm{~m}$, $9 \mathrm{H}), 1.73-1.56(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.36(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 164.37(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}), 154.03,135.90,134.20(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 127.89,126.41,125.13,115.72(\mathrm{~d}, J=5.8 \mathrm{~Hz})$, 83.91, 65.57 (dd, $J=23.0,21.2 \mathrm{~Hz}$), 40.97, 35.94, 30.86, 29.88. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -126.62 (dd, $J=286.5,55.0 \mathrm{~Hz}, 1 \mathrm{~F}$), -128.78 (dd, $J=286.3,55.9 \mathrm{~Hz}, 1 \mathrm{~F}$). HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=98 / 12,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}$ (major) $=12.25 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=10.99 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires m / z 383.1435 , found $\mathrm{m} / \mathrm{z} 383.1438$.

1-tert-butyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2b)

2b
(Colorless oil, $22.0 \mathrm{mg}, 78 \%$ yield, 67% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 63.2\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44-7.35(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{t}, J=55.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.45(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \delta 196.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 164.75(\mathrm{~d}, J=11.4 \mathrm{~Hz})$, $154.03,135.95,134.17(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 127.94,126.44,125.17,115.70(\mathrm{dd}, J=246.5,240.8 \mathrm{~Hz})$, 83.91, $65.52(\mathrm{dd}, J=23.0,21.2 \mathrm{~Hz}), 27.77 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-126.65(\mathrm{dd}, J=286.8$, $55.1 \mathrm{~Hz}, 1 \mathrm{~F}),-128.71(\mathrm{dd}, J=286.8,55.1 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=99 / 1,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}$ (major) $=9.26 \mathrm{~min}, \tau_{\mathrm{R}}$ (minor) $=8.24$ min. HRMS Calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 305.0965$, found $\mathrm{m} / \mathrm{z} 305.0962$.

2c
(Colorless oil, $22.8 \mathrm{mg}, 85 \%$ yield, 71% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 56.3\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=55.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ $(\mathrm{d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{dd}, J=10.5,6.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.95(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}), 165.38(\mathrm{~d}, J=12.0 \mathrm{~Hz}), 153.98,136.03,134.08(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 128.00,126.47,125.24$, 117.97, $115.55(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 113.12,70.66,66.90-59.15(\mathrm{~m}), 29.81(\mathrm{t}, J=2.7 \mathrm{~Hz}), 21.47(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-126.33(\mathrm{dd}, J=287.1,55.0 \mathrm{~Hz}, 1 \mathrm{~F}),-129.11(\mathrm{dd}, J=$ 287.1, $55.6 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column ($250 \times 4.6 \mathrm{~mm}$), hexane / i-PrOH $=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=10.82 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=9.76 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 291.0809$, found $\mathrm{m} / \mathrm{z} 291.0814$.

Benzyl 2-difluoromethyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2d)

(Colorless oil, $24.6 \mathrm{mg}, 78 \%$ yield, 67% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 76.3\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.77(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.26$ $(\mathrm{m}, 6 \mathrm{H}), 6.63(\mathrm{t}, J=55.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=17.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 165.82(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 153.88$, $136.20,134.83,134.03(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 128.66,128.51,128.14,127.87,126.53,125.35,117.87$, $115.45(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 113.02,68.07,64.81(\mathrm{dd}, J=24.2,20.8 \mathrm{~Hz}), 31.35-28.68(\mathrm{~m}) .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-125.86(\mathrm{~d}, J=287.5 \mathrm{~Hz}),-129.07(\mathrm{~d}, J=287.5 \mathrm{~Hz})$. HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}$ $($ major $)=41.58 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=27.07 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires m / z 339.0809 , found $\mathrm{m} / \mathrm{z} 339.0803$.

2-Adamantyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2e)

(White solid, $33.1 \mathrm{mg}, 92 \%$ yield, 83% ee); m. p. $56-58{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25} 77.5\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.42(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{t}, J=55.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=17.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.48(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.10$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}), 165.09(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 153.95,136.02,134.19(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 153.95,136.02$, $115.60(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 113.17,79.68,65.13(\mathrm{dd}, J=23.7,21.1 \mathrm{~Hz}), 37.18,36.13,31.66(\mathrm{~d}, J=2.9$ Hz), 26.99, 26.78. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-126.29(\mathrm{dd}, J=287.2,55.0 \mathrm{~Hz}, 1 \mathrm{~F}$), -128.91 (dd, $J=287.2,55.0 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column ($250 \times 4.6 \mathrm{~mm}$), hexane / $i-\mathrm{PrOH}=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=14.81 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=10.54 \mathrm{~min} . \mathrm{HRMS}$ Calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 383.1435$, found $\mathrm{m} / \mathrm{z} 383.1438$.

Methyl 2-difluoromethyl -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2f)

(White wax, $21.4 \mathrm{mg}, 89 \%$ yield, 81% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 56.3\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.84-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{t}, J=55.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89-3.64(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.75(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}), 166.43(\mathrm{~d}, J=12.1 \mathrm{~Hz}), 153.88,136.19,134.01(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 128.12,126.52$, $125.33,117.84,115.42(\mathrm{~d}, J=6.2 \mathrm{~Hz}), 112.99,64.61(\mathrm{dd}, J=24.3,20.8 \mathrm{~Hz}), 53.47,29.91,29.89$, 29.86, 29.71. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-126.01$ (dd, $J=287.6,55.1 \mathrm{~Hz}, 1 \mathrm{~F}$), -129.29 (dd, $J=$ 287.5, $55.2 \mathrm{~Hz}, 1 \mathrm{~F}$). HPLC conditions: Chiralcel AD-H column ($250 \times 4.6 \mathrm{~mm}$), hexane / i-PrOH $=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}$ (major) $=16.56 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=13.18 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 263.0496$, found $\mathrm{m} / \mathrm{z} 263.0493$.

1-Adamantyl 2-difluoromethyl -5-chloro -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2g)

(White solid, $33.9 \mathrm{mg}, 86 \%$ yield, 74% ee); m. p. $93-96{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25} 62.1\left(c 0.20, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.32(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{dd}$, $J=55.8,54.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-1.98(\mathrm{~m}, 9 \mathrm{H})$, $1.66-1.59(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}), 163.99(\mathrm{~d}, J=11.4$ Hz), 155.36, 142.67, $132.65(\mathrm{~d}, ~ J=3.6 \mathrm{~Hz}$), 128.84, 126.69, 126.17, 117.90, 115.48 (d, $J=6.0$ Hz), $113.05,84.25,68.33-60.80(\mathrm{~m}), 40.96,35.92,30.86 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$-126.61(\mathrm{~d}, J=287.2 \mathrm{~Hz}, 1 \mathrm{~F}),-128.64(\mathrm{~d}, J=287.2 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=99 / 1,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=7.55 \mathrm{~min}$, $\tau_{\mathrm{R}}($ minor $)=6.34 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClF}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 417.1045$, found m / z 417.1047.

1-Adamantyl 2-difluoromethyl -5- fluorine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate

 (2h)

2h
(Light yellow solid, $33.2 \mathrm{mg}, 88 \%$ yield, 78% ee); m. p. $89-92{ }^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}{ }^{25} 69.7\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.70(\mathrm{dd}, J=8.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{td}$, $J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=55.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=17.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.17-2.01(\mathrm{~m}, 9 \mathrm{H}), 1.69-1.43(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 193.39(\mathrm{~d}, J=7.4$ $\mathrm{Hz}), 168.04,165.47,163.11,163.00,155.95(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 129.54(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 126.55$, $126.44,116.92,115.43(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 114.53,112.22(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 83.15,64.86(\mathrm{dd}, J=$ $22.8,21.2 \mathrm{~Hz}), 39.95,34.90,29.84 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-100.17(\mathrm{~s}, 1 \mathrm{~F}),-126.72(\mathrm{~d}, J=$ $286.8 \mathrm{~Hz}, 1 \mathrm{~F}),-128.72(\mathrm{~d}, J=287.1 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column ($250 \times$ 4.6 mm), hexane $/ i-\mathrm{PrOH}=99 / 1,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=12.87 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=$ 11.41 min . HRMS Calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 401.1340$, found $\mathrm{m} / \mathrm{z} 401.1334$.

1-tert-Butyl 2-difluoromethyl -5-fluorine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2i)

$2 i$
(Colorless oil, $26.4 \mathrm{mg}, 88 \%$ yield, 63% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 46.2\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=8.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.52$ $(\mathrm{dd}, J=55.8,54.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.34(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 169.10,166.53,164.46(\mathrm{~d}, J=11.3 \mathrm{~Hz})$, $156.97(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 130.53(\mathrm{~d}, J=1.9 \mathrm{~Hz}), 127.60,127.49,117.93,116.49(\mathrm{~d}, J=24.0 \mathrm{~Hz})$, $113.27(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 84.15,65.82(\mathrm{dd}, J=22.9,21.3 \mathrm{~Hz}), 27.76 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-100.10(\mathrm{~s}, 1 \mathrm{~F}),-126.74(\mathrm{~d}, J=286.8 \mathrm{~Hz}, 1 \mathrm{~F}),-128.65(\mathrm{~d}, J=286.8 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}$
$($ major $)=9.85 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=8.84 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires m / z 323.0871 , found $\mathrm{m} / \mathrm{z} 323.0869$.

1-tert-Pentyl 2-difluoromethyl -5-fluorine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2j)

2j
(Colorless oil, $25.4 \mathrm{mg}, 81 \%$ yield, 55% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 42.8\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.78(\mathrm{dd}, J=8.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=8.6$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=55.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{q}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.39(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}), 169.10,166.52,164.35(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 156.96(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 130.57,127.53(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}), 117.93,116.50(\mathrm{~d}, J=24.2 \mathrm{~Hz}), 115.50(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 113.26(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 86.66$, $69.64-62.48(\mathrm{~m}), 33.50,30.97-27.80(\mathrm{~m}), 25.26,25.19,7.96 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-100.09(\mathrm{~s}, 1 \mathrm{~F}),-126.66(\mathrm{~d}, J=287.4 \mathrm{~Hz}, 1 \mathrm{~F}),-128.65(\mathrm{~d}, J=287.4 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=98 / 2,0.6 \mathrm{~mL} /$ $\min , 254 \mathrm{~nm}, \tau_{\mathrm{R}}$ (major) $=8.95 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=8.07 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$ requires $\mathrm{m} / \mathrm{z} 337.1027$, found $\mathrm{m} / \mathrm{z} 337.1031$.

1-Adamantyl 2-difluoromethyl-5-bromine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2k)

2k
(White solid, $36.3 \mathrm{mg}, 83 \%$ yield, 78% ee); m. p. $113-115{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25} 73.2\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.74(\mathrm{dt}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.46(\mathrm{~m}, 2 \mathrm{H}), 6.51(\mathrm{dd}, J$ $=55.7,54.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-1.87(\mathrm{~m}, 8 \mathrm{H})$, $1.69-1.49(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.13,163.94(\mathrm{~d}, J=11.3 \mathrm{~Hz}$), 155.43, $133.05(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 131.67,29.78,126.21,117.87,115.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 113.02,84.27,69.76$ -62.45 (m), 40.96, 35.91, 30.86. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-126.58$ (d, $J=286.9 \mathrm{~Hz}$, $1 \mathrm{~F}),-128.61(\mathrm{~d}, J=286.9 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column ($250 \times 4.6 \mathrm{~mm}$), hexane $/ i-\operatorname{PrOH}=98 / 2,0.6 \mathrm{~mL} / \min , 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=12.25 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=10.99 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrF}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 461.0540$, found $\mathrm{m} / \mathrm{z} 461.0545$.

1-Adamantyl 2-difluoromethyl-4-bromine -1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2l)

(White solid, $33.7 \mathrm{mg}, 77 \%$ yield, 63% ee); m. p. $105-107{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25} 67.8\left(c \quad 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{dd}, J=55.7,54.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=18.0 \mathrm{~Hz}$, 1H), $2.18-1.97(\mathrm{~m}, 8 \mathrm{H}), 1.71-1.47(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.71$ (d, $J=6.7$ $\mathrm{Hz}), 163.86(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 153.63,138.66,136.08(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 129.66,123.93,121.83$, $117.84,115.42(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 112.99,84.35,69.54-62.85(\mathrm{~m}), 40.96,35.92,30.86 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3} \delta-126.41$ (d, $J=287.5 \mathrm{~Hz}, 1 \mathrm{~F}$), -128.51 ($\mathrm{d}, J=287.5 \mathrm{~Hz}, 1 \mathrm{~F}$). HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ \mathrm{i}-\mathrm{PrOH}=99.5 / 0.5,0.6 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm}, \tau \mathrm{R}($ major $)=21.04 \mathrm{~min}, \tau \mathrm{R}($ minor $)=19.67 \mathrm{~min} . \mathrm{HRMS}$ Calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrF}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$ requires $\mathrm{m} / \mathrm{z} 461.0540$, found $\mathrm{m} / \mathrm{z} 461.0543$.

1-Adamantyl 2-difluoromethyl-6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2m)

2m
(White wax, $28.4 \mathrm{mg}, 76 \%$ yield, 63% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 54.8\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{t}, J=55.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J$ $=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=28.6,3.1 \mathrm{~Hz}, 9 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.40(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 164.52(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 151.52,137.94,137.22,134.38(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}), 126.05,124.97,118.17,115.75(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 113.33,83.80,65.86(\mathrm{dd}, J=23.1$, $21.1 \mathrm{~Hz}), 40.96,35.95,30.85,29.94-28.85(\mathrm{~m}), 21.03 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-126.66$ (dd, $J=286.5,55.2 \mathrm{~Hz}, 1 \mathrm{~F}),-128.93$ (dd, $J=286.5,55.2 \mathrm{~Hz}, 1 \mathrm{~F}$). HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=$ $14.93 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=11.19 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires m / z 397.1591, found $\mathrm{m} / \mathrm{z} 397.1594$.

1-Adamantyl

(2n)

2n
(Light yellow solid, $28.9 \mathrm{mg}, 74 \%$ yield, 73% ee); m. p. $93-95{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25} 55.6\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{t}, J=55.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.64-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.07(\mathrm{~m}, 9 \mathrm{H}), 1.73-1.56(\mathrm{~m}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 164.47(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 159.68$, $147.13,135.38(\mathrm{~d}, J=3.6 \mathrm{~Hz}), 125.50,118.12,115.70(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 105.92,83.86,66.28(\mathrm{dd}, J$ $=23.1,21.1 \mathrm{~Hz}), 55.62,40.97,35.95,30.86,29.25 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-126.65(\mathrm{dd}, J$ $=286.5,55.1 \mathrm{~Hz}, 1 \mathrm{~F}),-129.01(\mathrm{dd}, J=286.5,55.8 \mathrm{~Hz}, 1 \mathrm{~F})$. Chiralcel OJ-H column $(250 \times 4.6$ mm), hexane $/ i-\operatorname{PrOH}=99 / 1,1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=8.88 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=11.28$ \min. HRMS Calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 413.1540$, found $\mathrm{m} / \mathrm{z} 413.1544$.

1-Adamantyl

 2-difluoromethyl-5-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (2o)
(Light yellow solid, $29.2 \mathrm{mg}, 75 \%$ yield, 63% ee); m. p. $103-105^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25} 54.3\left(c 0.20, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{t}, J=55.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.03(\mathrm{~m}, 9 \mathrm{H}), 1.63-$ $1.47(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 194.25,166.25,164.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}), 157.19$, $127.29(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 126.84,118.23,116.27,115.81(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 113.39,109.37,83.75$, $65.81(\mathrm{dd}, J=23.0,20.8 \mathrm{~Hz}), 55.79,40.99,35.97,30.86,30.23-29.22(\mathrm{~m}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-126.89(\mathrm{dd}, J=286.0,55.8 \mathrm{~Hz}, 1 \mathrm{~F}),-128.97(\mathrm{dd}, J=286.0,55.8 \mathrm{~Hz}, 1 \mathrm{~F}) . \mathrm{HPLC}$ conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=99 / 1,0.6 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm}, \tau_{\mathrm{R}}($ major $)=11.73 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=15.87 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 413.1540$, found $\mathrm{m} / \mathrm{z} 413.1543$.

1-Adamantyl 2-difluoromethyl-5,6-di-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate

 (2o)
$\mathbf{2 p}$ was obtained by the same procedure as mentioned above for $\mathbf{2 a - 2 p}$ using $\mathbf{2 5 \%} \mathrm{KOH}$ instead of $30 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ as the base. (Light yellow solid, $26.4 \mathrm{mg}, 63 \%$ yield, 58% ee); m. p. $146-148{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{25} 46.2\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=$ $55.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ $-2.05(\mathrm{~m}, 9 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 194.67(\mathrm{~d}, J=7.3 \mathrm{~Hz})$, $164.78(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 156.48,149.89(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 126.83,126.79,118.22,115.80(\mathrm{~d}, J=$ $5.5 \mathrm{~Hz}), 113.38,107.18,105.07,83.75,65.89(\mathrm{dd}, J=23.1,20.9 \mathrm{~Hz}), 56.40,56.11,45.33,41.00$, $35.98,30.86,29.57 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-126.79(\mathrm{dd}, J=285.6,55.1 \mathrm{~Hz}, 1 \mathrm{~F}),-129.19$ (dd, $J=285.6,55.1 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column ($250 \times 4.6 \mathrm{~mm}$), hexane / $i-\mathrm{PrOH}=98 / 2,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=29.10 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=37.61 \mathrm{~min} . \mathrm{HRMS}$ Calcd. for $\left[\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 443.1646$, found $\mathrm{m} / \mathrm{z} 443.1643$.

1-Methyl 2-difluoromethyl-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (2q)

$\mathbf{2 q}$ was obtained by the same procedure as mentioned above for $\mathbf{2 a - 2 p}$ using $25 \% \mathrm{KOH}$ instead of $30 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ as the base. (colourless oil, $18.5 \mathrm{mg}, 73 \%$ yield, 19% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 5.3(c 0.20$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{t}, J=55.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.46-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{dt}, J=$ $17.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dt}, J=13.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=13.9,11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.01(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 166.78(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 143.56,134.56,130.99(\mathrm{~d}, J=$ 2.7 Hz), 128.94, 128.24, 126.99, 118.24, 115.78, 113.33, 66.67 - 55.83 (m), 53.28, 24.97, 23.08. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-127.32(\mathrm{~d}, J=283.3 \mathrm{~Hz}, 1 \mathrm{~F}),-131.82(\mathrm{~d}, J=283.2 \mathrm{~Hz}, 1 \mathrm{~F})$. HPLC conditions: Chiralcel AD-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=99 / 1,0.8 \mathrm{~mL} /$ $\min , 254 \mathrm{~nm}, \tau_{\mathrm{R}}($ major $)=16.58 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=12.52 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 277.0652$, found $\mathrm{m} / \mathrm{z} 277.0655$.

1-Adamantyl 2-difluoromethyl -1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (2r)

$\mathbf{2 r}$ was obtained by the same procedure as mentioned above for $\mathbf{2 a} \mathbf{- 2 p}$ using $25 \% \mathrm{KOH}$ instead of $30 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ as the base. (colourless oil, $25.0 \mathrm{mg}, 67 \%$ yield, 47% ee); $[\alpha]_{\mathrm{D}}{ }^{25} 10.5(c 0.20$, CHCl_{3}); ${ }^{11} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.03(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.51(\mathrm{td}, J=7.5,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{t}, J=55.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=17.1,11.8$, $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{ddd}, J=17.2,5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=13.9,5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{ddd}$, $J=13.9,11.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.02(\mathrm{~m}, 9 \mathrm{H}), 1.68-1.53(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ $\delta 190.60(\mathrm{~d}, J=5.8 \mathrm{~Hz}), 164.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 143.31,134.19,131.36(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 128.82$, 128.02, 126.87, 118.47, 116.02, 113.57, 83.93, $61.41(\mathrm{t}, J=21.0 \mathrm{~Hz}), 40.97,35.93,30.81,25.09$, 23.38. ${ }^{19}$ F NMR (376 MHz , Chloroform- d) $\delta-127.41$ (d, $J=282.7 \mathrm{~Hz}, 1 \mathrm{~F}$), -132.08 ($\mathrm{d}, J=282.7$ Hz, 1F). HPLC conditions: Chiralcel OJ-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=99.5 / 0.5$, $1 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}$ (major) $=9.89 \mathrm{~min}, \tau_{\mathrm{R}}($ minor $)=11.43 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 397.1591$, found $\mathrm{m} / \mathrm{z} 397.1588$.

C. General proceduce for the O-difluoromethylation of

$\boldsymbol{\beta}$-keto ester $1 f$

The reaction was conducted with β-keto esters $\mathbf{1 f}(0.3 \mathrm{mmol})$ in the presence of $\mathrm{KHF}_{2}(1.8$ mmol) in a mixture containing $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}=1: 1(0.4 \mathrm{~mL})$ in pressure tubing at rt . Then $\mathrm{TMSCF}_{2} \mathrm{Br}(0.9 \mathrm{mmol})$ was added slowly, and the reaction was stirred at this $60^{\circ} \mathrm{C}$ for 12 h . After the reaction was completed (confirmed by TLC analysis), the mixture was diluted with EtOAc (30 $\mathrm{mL})$, washed with water $(3 \times 10 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was subject to crude ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ to give the C / O isomer ratio (trifluoromethyl benzene $8 \mu \mathrm{~L}$ as internal standard). Subsequently, the residue was purified by flash chromatography (silica gel; petroleum ether/ethyl acetate=20:1) to afford the O-difluoromethylation product $\mathbf{2 f}$ '. (colourless oil, $56.2 \mathrm{mg}, 78 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.67-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.12((\mathrm{t}, J=55.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}$, 2H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 163.9,156.1,141.5,138.5,129.3,127.3,124.4,121.0,119.2$,
116.9, 116.6, 114.0, 51.8, 36.1. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.61(\mathrm{~s}, 1 \mathrm{~F}),-81.81(\mathrm{~s}, 1 \mathrm{~F})$. HRMS

Calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}$requires m / z 263.0496, found $\mathrm{m} / \mathrm{z} 263.0491$.

D. General proceduce for the derivatization of $1 f$

The difluoromethylated compound $\mathbf{1 f}(48.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in anhydrous THF (1 mL) was added slowly to the mixture of lithium aluminum hydride ($17.3 \mathrm{mg}, 0.45 \mathrm{mmol}$) in anhydrous THF (1 mL) at $0{ }^{\circ} \mathrm{C}$. After stirring for another 1 hour at the same temperature, the reaction was allowed to warm to room temperature and stirred for another 5 h . After that, the reaction was quenched by the dropwise addition of EtOAc followed by a $10 \% \mathrm{HCl}$. After vigorous stirring for another 20 min , the resulting mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=3: 1)$ to give product $\mathbf{4 f}$ (colourless oil, 32.1 mg , 75% yield, dr> 20:1). $[\alpha]_{\mathrm{D}}{ }^{25}+95.6\left(c 0.20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{dd}, J=$ $6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.28(\mathrm{t}, J=55.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.62(\mathrm{dd}, J=11.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.4,140.4,129.2,125.0(\mathrm{~d}, J=16.6 \mathrm{~Hz}$), 127.4, 121.3, $118.9,116.5,78.8,64.0(\mathrm{dd}, J=5.8,4.1 \mathrm{~Hz}), 54.5(\mathrm{t}, J=17.1 \mathrm{~Hz}), 33.5(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR (376 MHz , Chloroform- d) $\delta-126.58$ (dd, $J=285.3,55.8 \mathrm{~Hz}, 1 \mathrm{~F}$), -130.09 (dd, $J=285.3$, $55.8 \mathrm{~Hz}, 1 \mathrm{~F})$. HRMS Calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$requires m / z 237.0703, found m / z 237.0710.

The difluoromethylated compound $\mathbf{1 f}(48.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added slowly to anhydrous cyclohexylamine $(0.3 \mathrm{~mL})$ at $120{ }^{\circ} \mathrm{C}$. After stirring for another 3 hour at the same temperature, the reaction was allowed to cool down to room temperature. After that, the reaction was quenched by the dropwise addition of EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum. The residue was purified by silica gel column chromatography $(\mathrm{PE} / \mathrm{EtOAc}=10: 1)$ to give product $\mathbf{5 f}$ (light yellow solid, $32.1 \mathrm{mg}, 84 \%$ yield, 80% ee); m. p. $78-81{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}+57.3\left(c 0.20, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{t}, J=55.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.90(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.11(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.8(\mathrm{~d}, J=5.7$ $\mathrm{Hz}), 162.0(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 154.1,136.6,134.7(\mathrm{~d}, J=2.2 \mathrm{~Hz}), 127.9,126.6,124.8,120.8-110.2$ (m), $64.3(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 49.0,32.6,32.5,29.9,29.9,25.5,24.5 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-121.39(\mathrm{dd}, J=279.4,55.3 \mathrm{~Hz}),-124.86(\mathrm{dd}, J=279.4,55.3 \mathrm{~Hz})$. HPLC conditions: Chiralcel OJ-H column $(250 \times 4.6 \mathrm{~mm})$, hexane $/ i-\mathrm{PrOH}=98 / 2,0.6 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, \tau_{\mathrm{R}}$ (major) $=12.29$ $\min , \tau_{\mathrm{R}}($ minor $)=15.84 \mathrm{~min}$. HRMS Calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}$requires $\mathrm{m} / \mathrm{z} 330.1282$, found m/z 330.1289.

E. NMR spectra

$\underbrace{\infty}_{\text {min }}$

 $\underbrace{\text { Nin No }}$
$\underbrace{-\underbrace{\circ}-\underbrace{2}}$
$\int_{\mathrm{r}} \mathrm{I} \int$ $\iiint \int$

 \qquad L —

flobir sur it randil

PTC 3u

$\int_{4}^{\text {\& }}$

2q

$2 f^{\prime}$

Copies of some representative ${ }^{19} \mathrm{~F}$ NMR spectras of crude mixtures for determining the high C/O selectivities

F. HPLC spectra

R.Time	Area	Area\%
10.525	111996656	50.4323
11.712	110076610	49.5677

2b

R.Time	Area	Area\%
8.243	1869104	16.4870
9.269	8630407	$\mathbf{8 3 . 5 1 3 0}$

R.Time	Area	Area\%
9.760	4522232	14.5
10.821	26665575	85.5

R.Time	Area	Area\%
27.071	37587524	16.5043
41.587	1901563003	83.4957

R.Time	Area	Area\%
30.104	60007588	48.0550
42.573	64865137	51.9450

R.Time	Area	Area\%
10.542	3751933	$\mathbf{8 . 5 0 3 0}$
14.811	40388455	$\mathbf{9 1 . 4 9 7 0}$

R.Time	Area	Area\%
$\mathbf{1 1 . 0 1 2}$	$\mathbf{1 0 2 9 3 7 8 2}$	$\mathbf{4 9 . 8 8 0 0}$
$\mathbf{1 6 . 7 4 7}$	$\mathbf{1 0 3 4 3 3 1 1}$	$\mathbf{5 0 . 1 2 0 0}$

R.Time	Area	Area\%
13.183	2767981	$\mathbf{1 0 . 0 1 3 0}$
16.564	$\mathbf{2 4 8 7 4 7 8 4}$	$\mathbf{8 9 . 9 8 3 0}$

R.Time	Area	Area\%
$\mathbf{6 . 3 3 8}$	$\mathbf{7 3 7 0 7 2 7}$	$\mathbf{1 2 . 9 8 1 5}$
$\mathbf{7 . 5 4 9}$	$\mathbf{4 9 4 0 7 9 7 3}$	$\mathbf{8 7 . 0 1 8 5}$

R.Time	Area	Area\%
$\mathbf{7 . 0 8 4}$	$\mathbf{5 6 0 0 7 1 2 4}$	$\mathbf{4 8 . 3 4 8 2}$
$\mathbf{8 . 9 1 0}$	$\mathbf{5 9 8 3 4 0 5 3}$	$\mathbf{5 1 . 6 5 1 8}$

R.Time	Area	Area\%
11.415	5795442	$\mathbf{1 0 . 9 6 3 0}$
12.870	47068208	$\mathbf{8 9 . 0 3 7 0}$

R.Time	Area	Area\%
$\mathbf{1 1 . 7 4 2}$	$\mathbf{8 1 7 3 7 1 7}$	$\mathbf{4 9 . 5 3 6 0}$
$\mathbf{1 2 . 6 6 4}$	$\mathbf{8 3 2 6 8 4 2}$	$\mathbf{5 0 . 4 6 4 0}$

R.Time	Area	Area\%
$\mathbf{8 . 8 4 2}$	$\mathbf{2 1 2 3 7 8 7}$	$\mathbf{1 8 . 4 7 0 0}$
$\mathbf{9 . 8 5 4}$	$\mathbf{9 3 7 4 7 8 9}$	$\mathbf{8 1 . 5 3 0 0}$

R.Time	Area	Area\%
8.161	13884401	48.2541
9.029	14889106	51.7459

R.Time	Area	Area\%
$\mathbf{8 . 0 7 0}$	$\mathbf{2 6 7 5 2 0 7}$	$\mathbf{2 2 . 4 9 7 0}$
$\mathbf{8 . 9 5 0}$	$\mathbf{9 2 1 5 8 3 0}$	$\mathbf{7 7 . 5 0 3 0}$

R.Time	Area	Area\%
7.831	27569514	$\mathbf{5 0 . 1 5 4 2}$
8.874	27399988	$\mathbf{4 9 . 8 4 5 8}$

R.Time	Area	Area\%
11.464	11138592	49.0050
13.001	11848280	50.9950

R.Time	Area	Area\%
19.671	15587770	18.4970
21.039	68684112	81.5030

R.Time	Area	Area\%
19.708	$\mathbf{4 6 6 2 1 0 8 0}$	$\mathbf{4 8 . 4 3 2 0}$
21.079	$\mathbf{4 9 6 3 9 8 1 1}$	$\mathbf{5 1 . 5 6 8 0}$

R.Time	Area	Area\%
10.580	24099084	50.6655
13.853	23465992	49.3345

R.Time	Area	Area\%
$\mathbf{8 . 9 2 8}$	$\mathbf{2 6 3 7 1 7 6 4}$	$\mathbf{4 9 . 2 0 5 2}$
$\mathbf{1 1 . 3 3 0}$	$\mathbf{2 7 2 2 3 7 2 0}$	$\mathbf{5 0 . 7 9 4 8}$

R.Time	Area	Area\%
$\mathbf{1 1 . 7 2 6}$	$\mathbf{3 4 5 5 3 4 8 8}$	$\mathbf{8 1 . 5 3 4 0}$
$\mathbf{1 5 . 8 7 1}$	$\mathbf{7 8 2 5 7 5 0}$	$\mathbf{1 8 . 4 6 6 0}$

R.Time	Area	Area\%
$\mathbf{1 2 . 3 6 4}$	$\mathbf{3 5 0 8 3 1 3 2}$	$\mathbf{4 9 . 5 3 9 1}$
$\mathbf{1 6 . 5 9 0}$	35741678	$\mathbf{5 0 . 4 6 9 0}$

2-8

R.Time	Area	Area\%
29.109	$\mathbf{1 5 0 6 6 9 4 4}$	$\mathbf{7 8 . 9 5 5 0}$
$\mathbf{3 7 . 5 1 3}$	$\mathbf{4 0 1 6 0 0 7}$	$\mathbf{2 1 . 0 4 5 0}$

R.Time	Area	Area\%
29.260	9602190	49.9027
36.637	9639634	50.0973

R.Time	Area	Area\%
12.521	8872778	40.4638
16.587	130549153	59.5362

R.Time	Area	Area\%
$\mathbf{1 2 . 0 6 4}$	$\mathbf{1 8 5 6 7 0 7 4}$	$\mathbf{4 9 . 3 3 9 0}$
$\mathbf{1 5 . 4 4 3}$	$\mathbf{1 9 0 6 4 5 6 4}$	$\mathbf{5 0 . 6 6 1 0}$

R.Time	Area	Area\%
$\mathbf{9 . 8 8 8}$	$\mathbf{3 5 9 4 2 2 0}$	$\mathbf{7 3 . 2 8 5 1}$
$\mathbf{1 1 . 4 3 4}$	$\mathbf{1 3 1 0 2 1 5}$	$\mathbf{2 6 . 7 1 4 9}$

R.Time	Area	Area\%
$\mathbf{9 . 7 6 4}$	$\mathbf{6 9 1 7 8 6 8}$	$\mathbf{5 0 . 7 3 6 7}$
$\mathbf{1 1 . 2 9 5}$	$\mathbf{6 7 1 2 8 4 0}$	$\mathbf{4 9 . 2 6 3 3}$

R.Time	Area	Area\%
12.297	87857488	89.9150
15.843	9854226	$\mathbf{1 0 . 0 8 5 0}$

R.Time	Area	Area\%
$\mathbf{1 2 . 3 4 4}$	$\mathbf{3 1 5 2 0 5 9 8}$	$\mathbf{5 0 . 7 5 2 8}$
$\mathbf{1 5 . 8 8 0}$	$\mathbf{3 0 5 8 5 5 2 8}$	$\mathbf{4 9 . 2 4 7 2}$

