Asymmetric Catalytic Alkynylation of Thiazolones and Azlactones for Synthesis of Quaternary α-Amino Acid Precursors
 Beibei Meng, Qian Shi, Yuan Meng, Jie Chen, Weiguo Cao, and Xiaoyu Wu*
 Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China
 E-mails: wuxy@shu.edu.cn

Supporting Information

General Information S2
General reaction conditions for alkynylation of thiazolones and azlactones S2
Table S1. Screening of the catalysts for the reaction between 1 a and 3 a S3
Table S2. Screening of the solvents for the reaction between 1a and 3a S4
Table S3. Screening of the bases for the reaction between 1a and 3a S4
Table S4. Screening of the temperature for the reaction between 1 a and 3 a S5
Table S5. Screening of the catalysts for the reaction between 2 a and 3 a S5
Table S6. Screening of the solvents for the reaction between $2 a$ and $3 a$ S6
Table S7. Screening of the bases for the reaction between 2a and 3a- S6
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, HPLC and specific rotation data of 4 S7- S15
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, HPLC and specific rotation data of 5 S16- S20
Ring opening of alkynylation product 4aa S20- S22
Ring opening of alkynylation product 5aa S22
General procedure for the synthesis of $\mathbf{1 b}-1 \mathbf{i}, 10,1 n$ S22-S26
Single crystal X-Ray analysis of chiral 4ah S26
Preparation of the PTC catalyst -S26-S29
References S30
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and HPLC spectra of isolated compounds S31- S103
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of thiazolones S104- S114
${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR spectra of catalysts S115- S119

General Information: Thin-layer chromatography (TLC) carried out on 0.25 mm silica gel plates visualized with UV light and/or by staining with ethanolic phosphomolybdic acid (PMA) or iodine. Flash column chromatography was performed on silica gel (300-400 mesh). NMR spectra were recorded on Bruker Ascend ${ }^{\mathrm{TM}}(600 \mathrm{MHz})$, JEOL $(400 \mathrm{MHz})$. Chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. Optical rotations were taken on JASCO P1030. Highresolution mass spectra were recorded on Agilent Technologies 6230 TOF LC/MS. Enantiomeric excesses were determined by chiral HPLC using a Shimadzu instrument.

General reaction conditions for alkynylation of thiazolones and azlactones:

Under an atmosphere of N_{2}, a mixture of 4-Benzyl-2-phenylthiazol-5(4H)-one 1a (26.7 mg, 0.10 mmol) or 4-benzyl-2-phenyloxazol-5(4H)-one 2a ($25.1 \mathrm{mg}, 0.10 \mathrm{mmol}$), 1-(phenylethynyl)-1,2-benziodoxol-3 $(1 H)$-one $\mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol})$ and catalyst $\mathbf{A}(3.01 \mathrm{mg}, 0.005 \mathrm{mmol})$ in toluene (1 mL) was cooled to $0^{\circ} \mathrm{C}$, and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ was added. The resulting mixture was stirred vigorously at the same temperature, and monitored by TLC. Upon the complete consumption of $\mathbf{1 a}$ or $\mathbf{2 a}$, the reaction mixture was loaded directly onto a column packed with silica gel, and eluted with petroleum ether/ethyl acetate (100/1) to afford the alkynylation products 4aa or 5aa.

Table S1. Screening of the catalysts for the reaction between 1a and 3a ${ }^{[a]}$

1a

$$
\begin{aligned}
& \mathrm{R}=s-\mathrm{Bu} \\
& \mathbf{A} \\
&=t-\mathrm{Bu} \\
&=\mathrm{CH}_{3} \\
& \mathbf{C} \\
&=\mathrm{Ph} \\
& \mathbf{D}
\end{aligned}
$$

$\mathrm{X}=\mathrm{S}, \mathrm{R}=s-\mathrm{Bu}$
$\mathrm{X}=\mathrm{O}, \mathrm{R}=t-\mathrm{Bu} \mathrm{F}$ $\mathrm{X}=\mathrm{S}, \mathrm{R}=t-\mathrm{Bu} \quad \mathbf{G}$
$\mathrm{Ar}=3,5-\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{C}_{6} \mathrm{H}_{3} \quad \mathrm{H}$

$$
=3,5-\left(\mathrm{CF}_{3}\right)_{2}-\mathrm{C}_{6} \mathrm{H}_{3}
$$

$$
=3,5-(t-\mathrm{Bu})_{2}-\mathrm{C}_{6} \mathrm{H}_{3} \quad \mathrm{~J}
$$

$$
=4-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4}
$$

= 1-Naphthyl

0

Entry	Catalyst	Time(h)	yield $^{[\mathrm{b}]}(\%)$	$\mathrm{ce}^{[\mathrm{cc}(\%)}$
1	\mathbf{A}	12	70	31
2	\mathbf{B}	12	59	31
3	\mathbf{C}	14	63	21
4	\mathbf{D}	18	67	21
5	\mathbf{E}	12	69	65
6	\mathbf{F}	15	56	62
7	\mathbf{G}	12	70	65
8	\mathbf{H}	12	73	73
9	\mathbf{I}	18	64	73
10	\mathbf{J}	12	70	80
11	\mathbf{K}	24	60	65
12	\mathbf{L}	18	69	69
13	\mathbf{M}	18	67	22
14	\mathbf{N}	15	64	26
15	\mathbf{O}	18	65	5

[a] General conditions: $1 \mathbf{1 a}$ ($0.05 \mathrm{mmol}, 1.0$ equiv), 3 a ($0.06 \mathrm{mmol}, 1.2$ equiv), catalyst ($5 \mathrm{~mol} \%$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.1 mmol, 2.0 equiv, 13.8 mg) in Toluene (1 mL) at $0^{\circ} \mathrm{C}$; [b] Yield referred to isolated pure 4aa; [c] Enantiomeric excess of 4aa was determined by chiral HPLC analysis.

Table S2. Screening of the solvents for the reaction between 1a and 3a ${ }^{[a]}$

Entry	Solvent	Time(h)	yield $^{[b]}(\%)$	ee $^{[\mathrm{cc}]}(\%)$
1	DCM	6	65	45
2	PE	12	66	63
3	CHCl_{3}	10	56	70
4	Toluene	12	79	80
5	THF	18	71	10
6	MTBE	18	62	59
7	MeCN	24	50	15
8	EA	14	55	11
9	MeOH	12	--	--
10	DMF	12	--	--
11	PhCl	12	71	79
12	xylene	12	70	79

[a] General conditions: 1a (0.05 mmol , 1.0 equiv), 3a (0.06 mmol , 1.2 equiv), catalyst $\mathbf{J}(5 \mathrm{~mol} \%)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.1$ mmol, 2.0 equiv, 13.8 mg) in solvent $(1 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$; [b] Yield referred to isolated pure 4aa; [c] Enantiomeric excess of $4 a a$ was determined by chiral HPLC analysis.

Table S3. Screening of the bases for the reaction between 1a and 3a ${ }^{[a]}$

Entry	Base	Time (h)	yield $^{[\mathrm{bb}]}(\%)$	ee $^{[\mathrm{cc]}(\%)}$
1	KF	16	40	79
2	NaOH	4	45	71
3	CsCO_{3}	4	58	75
4	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	12	54	79
5	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	12	49	75
6	$\mathrm{CH}_{3} \mathrm{COONa}^{2}$	12	trace	-
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	12	60	81
8	$\mathrm{~K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	6	75	83
9	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	12	70	80
10	$\mathrm{~K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{[\mathrm{dd}]}$	10	75	86
11	$\mathrm{~K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{[\mathrm{ed}}$	8	80	82
12	$\mathrm{~K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{[\mathrm{f]}}$	8	82	81

[a] General conditions: 1a ($0.05 \mathrm{mmol}, 1.0$ equiv), 3a ($0.06 \mathrm{mmol}, 1.2$ equiv), catalyst $\mathbf{J}(5 \mathrm{~mol} \%)$, and base (0.1 mmol, 2.0 equiv) in Toluene (1 mL) at $0^{\circ} \mathrm{C}$; [b] Yield referred to isolated pure $\mathbf{4 a a}$; [c] Enantiomeric excess of 4aa was determined by chiral HPLC analysis; [d] $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.025 \mathrm{mmol}, 0.5$ equiv $)$; [e] $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.05 \mathrm{mmol}$,

Table S4. Screening of the temperature for the reaction between $\mathbf{1 a}$ and $\mathbf{3} \mathbf{a}^{[a]}$

Entry	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	time	yield $^{[\mathrm{b}]}(\%)$	$\mathrm{ee}^{[\mathrm{cc}]}(\%)$
1	-10	18	75	85
3	-30	24	51	80
5	-40	24	60	79

[a] General conditions: $\mathbf{1 a}\left(0.05 \mathrm{mmol}, 1.0\right.$ equiv), $\mathbf{3 a}\left(0.06 \mathrm{mmol}, 1.2\right.$ equiv), catalyst $\mathbf{J}(5 \mathrm{~mol} \%)$, and $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ $(0.025 \mathrm{mmol}, 0.5$ equiv, 6.7 mg$)$ in Toluene $(1 \mathrm{~mL})$; [b] Yield referred to isolated pure $4 \mathbf{a a}$; [c] Enantiomeric excess of 4aa was determined by chiral HPLC analysis.

Table S5. Screening of the catalysts for the reaction between $\mathbf{2 a}$ and $\mathbf{3} \mathbf{a}^{[a]}$

Entry	Catalyst	Time(h)	yield $^{[b]}(\%)$	ee $^{[\mathrm{cc}]}(\%)$
1	\mathbf{A}	36	70	23
2	\mathbf{B}	36	68	23
3	\mathbf{H}	48	70	73
4	\mathbf{J}	48	70	51

[a] General conditions: 2a ($0.05 \mathrm{mmol}, 1.0$ equiv), 3a ($0.06 \mathrm{mmol}, 1.2$ equiv), catalyst ($5 \mathrm{~mol} \%$), and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.1 mmol, 2.0 equiv, 13.8 mg) in Toluene $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$; [b] Yield referred to isolated pure 5aa; [c] Enantiomeric excess of 5aa was determined by chiral HPLC analysis.

Table S6. Screening of the solvents for the reaction between $\mathbf{2 a}$ and $\mathbf{3 a}^{[a]}$

Entry	Solvent	Time(h)	yield $^{[b]}(\%)$	ee $^{[\mathrm{cc}]}(\%)$
1	DCM	12	82	31
2	PhCl	48	63	45
3	CHCl_{3}	18	80	31
4	Toluene	48	70	73
5	THF	12	71	11
6	MeOH	12	--	--
7	PhCF_{3}	48	70	51

[a] General conditions: 2a ($0.05 \mathrm{mmol}, 1.0$ equiv), 3a ($0.06 \mathrm{mmol}, 1.2$ equiv), catalyst $\mathbf{H}(5 \mathrm{~mol} \%)$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.1$ $\mathrm{mmol}, 2.0$ equiv, 13.8 mg) in solvent $(1 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$; [b] Yield referred to isolated pure 5aa; [c] Enantiomeric excess of $\mathbf{5 a}$ a was determined by chiral HPLC analysis.

Table S7. Screening of the bases for the reaction between 2a and 3a ${ }^{[a]}$

Entry	Base	Time(h)	yield $^{[\mathrm{b}]}(\%)$	ee $^{[\mathrm{cc}](\%)}$
1	KF	48	61	63
2	NaOH	1.5	85	59
3	CsCO_{3}	1.5	85	61
4	$\mathrm{Na}_{3} \mathrm{PO}_{4}$	48	70	65
5	$\mathrm{~K}_{3} \mathrm{PO}_{4}$	48	76	65
6	$\mathrm{CH}_{3} \mathrm{COONa}^{2}$	48	--	-
7	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	48	60	67
8	$\mathrm{~K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	18	81	60
9	DIPEA^{2}	$\mathrm{~K}_{2} \mathrm{CO}_{3}$	48	--
10	$\mathrm{~K}_{2} \mathrm{CO}_{3}{ }^{[\mathrm{d}]}$	48	70	--
11	$\mathrm{~K}_{2} \mathrm{CO}_{3}{ }^{[\mathrm{e}]}$	48	62	73
12	$\mathrm{~K}_{2} \mathrm{CO}_{3}{ }^{[\mathrm{f}]}$	48	59	45
13		48	63	59

[a] General conditions: 2a($0.05 \mathrm{mmol}, 1.0$ equiv), 3a ($0.06 \mathrm{mmol}, 1.2$ equiv), catalyst $\mathbf{H}(5 \mathrm{~mol} \%)$, and base (0.1 mmol, 2.0 equiv) in Toluene (1 mL) at $0^{\circ} \mathrm{C}$; [b] Yield referred to isolated pure 5aa; [c] Enantiomeric excess of 5aa was determined by chiral HPLC analysis; [d] $\mathrm{K}_{2} \mathrm{CO}_{3}$ (0.025 mmol , 0.5 equiv); [e] $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.05 \mathrm{mmol}, 1.0$ equiv); [f] $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.075 \mathrm{mmol}, 1.5$ equiv).

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, HPLC and specific rotation data of 4

(R)-4-benzyl-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4aa): following general procedure, 1a ($26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), 3a ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.), catalyst $\mathbf{J}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, light yellow solid, $27.53 \mathrm{mg}, 75 \%$ yield, 86% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.30(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{dd}, J=7.4,2.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J$ $=13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.32,165.16,133.58,133.11,132.52,132.14,130.93$, 128.99, 128.94, 128.36, 128.32, 128.10, 127.50, 121.91, 86.80, 84.91, 83.86, 46.04; HRMS (ESI) Calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 368.1104$, found 368.1105; $[\alpha]_{\mathrm{D}}{ }^{20}+17.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=$ 11.31 min (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=12.47 \mathrm{~min}$ (major enantiomer).

4ba
(R)-4-(4-bromobenzyl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4ba): following general procedure, $\mathbf{1 b}$ ($34.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.), $\mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.), catalyst $\mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA = 100:1, light yellow solid, $24.5 \mathrm{mg}, 55 \%$ yield, 67% ee; ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.26$ $(\mathrm{m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.00,165.37,132.95,132.74,132.71,132.56,132.12,131.25,129.09,129.02,128.39$, 128.36, 121.76, 87.05, 84.62, 83.49, 45.15; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 446.0209, found 446.0.208; $[\alpha]_{\mathrm{D}}{ }^{20}+19.8$ (c 0.5, CHCl_{3}); HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.80 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=14.20 \mathrm{~min}$ (major enantiomer).

(R)-4-(4-methylbenzyl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4ca): following general procedure: 1c ($28.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.), 3a ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ eq.), catalyst $\mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was
added; flash chromatography with PE: $\mathrm{EA}=100: 1$, light yellow solid, $27.4 \mathrm{mg}, 72 \%$ yield, 79% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=9.6,5.4$ $\mathrm{Hz}, 4 \mathrm{H}$), $7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, 1 H), $3.47(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.27,165.01,137.07$, 133.22, 132.46, 132.14, 130.77, 130.52, 128.92, 128.82, 128.38, 128.30, 121.99, 86.73, 85.06, 84.02, 45.67, 21.22; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 382.1260$, found 382.1262 ; $[\alpha] \mathrm{D}^{20}$ $+27.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=11.6 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=12.6 \mathrm{~min}$ (major enantiomer).

(R)-4-(4-chlorobenzyl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4da): following general procedure, 1d ($30.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 3 a ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ eq.), catalyst $\mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE : EA = $100: 1$, light yellow solid, $28.5 \mathrm{mg}, 71 \%$ yield, 69% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.84-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.31$ (ddd, $J=9.1,6.2,4.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.20(\mathrm{~s}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.03,165.36,133.53,132.96,132.70,132.21,132.12,129.09,129.02$, 128.38, 128.36, 128.30, 121.75, 87.03, 84.71, 83.53, 45.12; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClNOS}\right)^{+}$ $[\mathrm{M}+\mathrm{H}]^{+} 402.0714$, found $402.0715 ;[\alpha]_{\mathrm{D}}{ }^{20}+24.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK ODH, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=11.27 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=12.11 \mathrm{~min}$ (major enantiomer).

(R)-4-(4-methoxybenzyl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4ea): following general procedure, 1e ($29.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathbf{3 a}$ ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE : EA = $100: 1$, light yellow solid, $24.6 \mathrm{mg}, 62 \%$ yield, 75% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, 1 H), 3.46 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.47$, 165.14, 158.94, 133.15, 132.49, 132.14, 131.95, 128.94, 128.37, 128.31, 125.59, 121.95, 113.50, 86.70, 85.11, 83.97, 55.23, 45.33; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{2} \mathrm{~S}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 398.1209$, found 398.1211; $[\alpha]^{20}+28.8(c 0.5$, CHCl_{3}); HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=12.46 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=13.24 \mathrm{~min}$ (major enantiomer).

(R)-4-(3-bromobenzyl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4fa): following general procedure: 1f ($34.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 3a ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, light yellow solid, $27.1 \mathrm{mg}, 61 \%$ yield, 81% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.37-$ $7.26(\mathrm{~m}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.89,165.42,136.01,134.03,132.96,132.69,132.17$, 130.64, 129.64, 129.48, 129.10, 129.01, 128.41, 128.34, 122.01, 121.71, 87.27, 84.62, 83.35, 45.37. HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 446.0209$, found 446.0215; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}+24.8(c 0.5$, CHCl_{3}); HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=13.88 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=14.78 \mathrm{~min}$ (major enantiomer).

(R)-4-(3-methylbenzyl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4ga): following general procedure: $\mathbf{1 g}(28.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA = 100:1, light yellow solid, $30.1 \mathrm{mg}, 79 \%$ yield, 79% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{dd}, J=5.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 4 \mathrm{H})$, $7.38-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J$ $=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.34,165.09,137.51,133.41,133.15$, 132.48, 132.14, 131.83, 128.96, 128.91, 128.34, 128.31, 128.21, 127.96, 127.91, 121.95, 86.77, 84.91, 83.94, 46.11, 21.37; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 382.1260$, found 382.1264; $[\alpha]_{D}{ }^{20}+23.2\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=18.34 \mathrm{~min}\left(\right.$ minor enantiomer), $\mathrm{t}_{\mathrm{R}}=19.18 \mathrm{~min}$ (major enantiomer).

(R)-4-(3-chlorobenzyl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4ha): following general
procedure: $\mathbf{1 h}(30.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA = 100:1, light yellow solid, $29.67 \mathrm{mg}, 74 \%$ yield, 77% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=6.9,6.3$, $4.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.91,165.39,135.72,133.81,132.97,132.68,132.15,131.08$, $129.33,129.09,129.05,129.00,128.39,128.34,127.73,121.72,87.23,84.62,83.37,45.39$; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 402.0714$, found $402.0717 ;[\alpha]_{\mathrm{D}}{ }^{20}+15.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $t_{R}=21.40 \mathrm{~min}($ minor enantiomer $), \mathrm{t}_{\mathrm{R}}=22.57 \mathrm{~min}($ major enantiomer $)$.

(R)-4-(naphthalen-2-yl)-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4ia): following general procedure: $\mathbf{1 i} \mathbf{(} 31.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA = 100:1, light yellow solid, $27.11 \mathrm{mg}, 65 \%$ yield, 67% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81-7.72(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{dd}, J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.38(\mathrm{~m}, 8 \mathrm{H})$, $7.35-7.23(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{dd}, J=13.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=13.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.30,165.27,133.21,133.08,132.68,132.53,132.16,131.26,129.95,129.02,128.93$, 128.90, 128.37, 128.34, 127.94, 127.67, 127.54, 126.02, 125.93, 121.90, 86.94, 85.10, 83.91, 46.13; HRMS (ESI) calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 418.1260$, found $418.1265 ;[\alpha]_{\mathrm{D}}{ }^{20}+35.40(c 0.5$, CHCl_{3}); HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=29.16 \mathrm{~min}$ (mionr enantiomer), $\mathrm{t}_{\mathrm{R}}=31.01 \mathrm{~min}$ (major enantiomer).

(R)-4-methyl-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one ($\mathbf{4} \mathbf{j} \mathbf{a}$): following general procedure: $\mathbf{1 j}$ ($19.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), 3a ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.), catalyst $\mathbf{J}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $18.92 \mathrm{mg}, 65 \%$ yield, 49% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{dd}, J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.35-$ $7.25(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.33,164.03,133.25,132.60,132.13$, 128.99, 128.93, 128.47, 128.30, 121.92, 85.66, 84.53, 80.87, 26.16; HRMS (ESI) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$292.0791, found 292.0794; $[\alpha]_{\mathrm{D}}{ }^{20}-6.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}$ $=9.90 \mathrm{~min}($ major enantiomer $), \mathrm{t}_{\mathrm{R}}=10.97 \mathrm{~min}($ minor enantiomer $)$.

(R)-4-isobutyl-2-phenyl-4-(phenylethynyl)thiazol-5(4H)-one (4la): following general procedure:11 ($23.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), 3a($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ eq.), catalyst $\mathbf{J}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol}$), was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA = 100:1, light yellow solid, $18.32 \mathrm{mg}, 55 \%$ yield, 71% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88(\mathrm{dd}, J=5.3,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{dd}$, $J=13.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.13 (dd, $J=12.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.93$ (dd, $J=13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.05$ (dd, $J=8.8$, $6.7 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.82,163.68,133.42,132.48,132.08,128.98,128.86$, $128.46,128.29,126.31,122.09,86.10,84.64,84.32,48.26,25.66,24.15,23.97$; HRMS (ESI) calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 334.1260$, found 334.1265; $[\alpha]_{\mathrm{D}}{ }^{20}+23.7$ (c 0.3, CHCl_{3}); HPLC (Daicel CHIRALPAK OJ-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=$ 10.70 min (major enantiomer), $\mathrm{t}_{\mathrm{R}}=11.71 \mathrm{~min}$ (minor enantiomer).

(R)-4-benzyl-4-(phenylethynyl)-2-(p-tolyl)thiazol-5(4H)-one (4na): following general procedure: $\mathbf{1 n}(28.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $28.58 \mathrm{mg}, 75 \%$ yield, 79% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46 (dd, $J=7.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27$ $-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.55,164.94,143.24,133.65,132.14,130.94,130.47,129.62,128.95$, 128.33, 128.31, 128.07, 127.45, 121.97, 86.71, 84.83, 84.04, 46.09, 21.72. HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 382.1260$, found 382.1262; $[\alpha]_{\mathrm{D}}{ }^{20}+30.0\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}$ $=10.68 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=11.52 \mathrm{~min}$ (major enantiomer).

(R)-4-benzyl-2-(3,5-dimethylphenyl)-4-(phenylethynyl)thiazol-5(4H)-one (40a): following general procedure: $\mathbf{1 0}$ ($29.53 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), 3a($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$), catalyst $\mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $35.16 \mathrm{mg}, 89 \%$ yield, 75%
ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 2 \mathrm{H}), 7.34-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.16(\mathrm{~s}, 1 \mathrm{H})$, $3.66(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.51$, $165.53,138.69,134.29,133.63,133.04,132.15,130.94,128.95,128.31,128.11,127.48,126.11,121.97$, 86.75, 84.82, 83.98, 46.05, 21.22; HRMS (ESI) calcd for $\left(\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 396.1417$, found 396.1422; $[\alpha]_{\mathrm{D}}{ }^{20}+6.4\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=$ $97: 3$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=9.93 \mathrm{~min}($ minor enantiomer $), \mathrm{t}_{\mathrm{R}}=11.00 \mathrm{~min}$ (major enantiomer).

4ab

(R)-4-benzyl-4-((4-chlorophenyl)ethynyl)-2-phenylthiazol-5(4H)-one (4ab): following general procedure: 1a ($26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 3b($45.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$), catalyst $\mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $28.47 \mathrm{mg}, 71 \%$ yield, 79% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 3.64(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.16,165.36,135.12,133.45,133.37$, 133.03, 132.60, 130.91, 128.97, 128.72, 128.36, 128.12, 127.56, 120.39, 85.68, 84.86, 46.00; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 402.0714$, found 402.0716; $[\alpha]_{\mathrm{D}}{ }^{20}+46.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm): $\mathrm{t}_{\mathrm{R}}=10.85 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=13.35 \mathrm{~min}$ (major enantiomer).

4ac
(R)-4-benzyl-4-((4-bromophenyl)ethynyl)-2-phenylthiazol-5(4H)-one (4ac): following general procedure: 1a ($26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathbf{3 c}(51.1 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $22.70 \mathrm{mg}, 51 \%$ yield, 73% ee; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=14.1,8.0$ $\mathrm{Hz}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.17(\mathrm{~m}, 5 \mathrm{H}), 3.63(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.14,165.38,133.55,133.43,133.01,132.61,131.64,130.90$, 128.97, 128.36, 128.12, 127.56, 123.40, 120.85, 85.73, 85.01, 84.86, 45.98; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 446.0209$, found 446.2010; $[\alpha]_{\mathrm{D}}{ }^{20}+10.8\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}$ $=11.12 \mathrm{~min}\left(\right.$ minor enantiomer), $\mathrm{t}_{\mathrm{R}}=12.97 \mathrm{~min}$ (major enantiomer).

4ad
(R)-4-benzyl-2-phenyl-4-((4-(trifluoromethyl)phenyl)ethynyl)thiazol-5(4H)-one (4ad): following general procedure: $\mathbf{1 a}(26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 3d $(49.9 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}$ $(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, light yellow solid, $30.02 \mathrm{mg}, 69 \%$ yield, 73% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{dd}, J=5.2,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 4 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 1 \mathrm{H})$, 7.47 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 5 \mathrm{H}), 3.65(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 204.97, 165.60, 133.34, 132.97, 132.67, 132.40, 130.91, 130.72 ($\mathrm{q}, J_{\mathrm{C}}$ $\mathrm{F}=32.6 \mathrm{~Hz}), 128.99,128.37,128.15,127.63,125.31,125.27,125.23,124.83\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=155 \mathrm{~Hz}\right), 86.30$, 85.33, 84.79, 45.99; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 436.0977$, found 436.0983; $[\alpha]_{\mathrm{D}}{ }^{20}+22.00\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OJ-H, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=32.36 \mathrm{~min}\left(\right.$ minor enantiomer), $\mathrm{t}_{\mathrm{R}}=39.36 \mathrm{~min}$ (major enantiomer).

4ae
(R)-4-((4-benzyl-5-oxo-2-phenyl-4,5-dihydrothiazol-4-yl)ethynyl)benzaldehyde (4ae): following general procedure: $\mathbf{1 a}(26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 e}(45.1 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}$ $(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $28.05 \mathrm{mg}, 71 \%$ yield, 79% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=12.3,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.54(\mathrm{dd}, J=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.0$, $3.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.65(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.90$, $191.48,165.66,136.02,133.29,132.96,132.69,130.90,129.51,129.00,128.37,128.16,128.09,127.64$, 87.75, 85.73, 84.84, 45.97; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 396.1053$, found 396.1055; $[\alpha]_{\mathrm{D}}{ }^{20}+11.80\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OJ-H, Hexane : Isopropanol $=95: 5$, Flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=16.88 \mathrm{~min}($ major enantiomer $), \mathrm{t}_{\mathrm{R}}=20.04 \mathrm{~min}$ (minor enantiomer).

4af
(R)-4-((4-benzyl-5-oxo-2-phenyl-4,5-dihydrothiazol-4-yl)ethynyl)phenyl propionate (4af): following general procedure: $\mathbf{1 a}(26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ eq.), $\mathbf{3 f}(50.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) ,$ catalyst $\mathbf{J}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}$, 0.05 mmol) was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, 31.61 mg , 72% yield, 79% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52(\mathrm{dd}, J=7.8,3.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 5 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.66(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 205.02,166.02,165.50,133.38,133.00,132.63,132.04,130.92,130.60,129.44,128.98$, 128.37, 128.14, 127.59, 126.41, 86.63, 85.98, 84.86, 61.30, 45.99, 14.40; HRMS (ESI) calcd for $\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 440.1315$, found 440.1315; [$\left.\alpha\right]_{D^{20}}+21.40\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm})$: $\mathrm{t}_{\mathrm{R}}=$ 12.46 min (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=13.72 \mathrm{~min}$ (major enantiomer).

4ag
(R)-4-benzyl-4-((3-fluorophenyl)ethynyl)-2-phenylthiazol-5(4H)-one (4ag): following general procedure: $\mathbf{1 a}$ ($26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathbf{3 g}(45.84 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $29.26 \mathrm{mg}, 76 \%$ yield, 79% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{dd}, J=5.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.27-7.19(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.99(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49$ (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.09,165.42,162.29\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}\right), 133.42$, $133.02,132.61,130.91,129.96\left(\mathrm{q}, J_{\mathrm{C} . \mathrm{F}}=8 \mathrm{~Hz}\right), 128.97,128.36,128.13,128.06,128.03,127.58,123.71$ ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=10 \mathrm{~Hz}$), 118.95 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}$), 116.43 ($\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}$), 85.49, 84.80, 45.98 ; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{FNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 386.1009$, found $386.1015 ;[\alpha]_{\mathrm{D}}{ }^{20}+35.2\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol = 95 : 5, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $t_{R}=10.67 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=11.95 \mathrm{~min}$ (major enantiomer).

4ah
(R)-4-benzyl-4-((3-chlorophenyl)ethynyl)-2-phenylthiazol-5(4H)-one (4ah): following general procedure: $\mathbf{1 a}$ ($26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), $\mathbf{3 h}(45.84 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, light yellow solid, $28.07 \mathrm{mg}, 70 \%$ yield, 73% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=8.4$, $6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 6 \mathrm{H}), 3.64(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.3 \mathrm{~Hz}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 205.06, 165.43, 134.19, 133.41, 133.01, 132.61, 132.01, 130.91, $130.23,129.59,129.32,128.97,128.36,128.13,127.58,123.59,85.32,85.12,84.80,45.97$; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 402.0714$, found $402.0720 ;[\alpha]_{\mathrm{D}}{ }^{20}+3.20\left(c 0.25, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK oD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=10.87 \mathrm{~min}($ minor enantiomer $), \mathrm{t}_{\mathrm{R}}=11.96 \mathrm{~min}$ (major enantiomer).

4ai
(R)-4-benzyl-2-phenyl-4-(p-tolylethynyl)thiazol-5(4H)-one (4ai): following general procedure: $\mathbf{1 a}(26.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 i}(43.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.), catalyst $\mathbf{J}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, light yellow solid, $28.58 \mathrm{mg}, 75 \%$ yield, 83% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=8.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.42,165.03$, $139.17,133.65,133.13,132.48,132.03,130.93,129.08,128.92,128.35,128.08,127.46,118.83,87.01$, 84.96, 83.15, 46.07, 21.64; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 382.1260$, found 382.1263; $[\alpha]_{\mathrm{D}}{ }^{20}-2.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$) $: \mathrm{t}_{\mathrm{R}}=10.44 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=12.49 \mathrm{~min}$ (major enantiomer).

(R)-4-benzyl-4-ethynyl-2-phenylthiazol-5(4H)-one (4ak): following general procedure: 1a (26.7 $\mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathbf{3 k}(43.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{J}(4.2 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene (1.0 mL) and then $\mathrm{K}_{3} \mathrm{PO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(13.4 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, white solid, $23.28 \mathrm{mg}, 80 \%$ yield, 31% ee; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{dd}, J=10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=10.4,4.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 5 \mathrm{H}), 3.58(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.03,165.71,133.15,132.90,132.63,130.85,128.95,128.34,128.10$, 127.57, 84.13, 78.75, 75.09, 45.91; HRMS (ESI) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 292.0791$, found 292.0796; $[\alpha]_{\mathrm{D}}{ }^{20}+18.6\left(c 0.5, \mathrm{CHCl}_{3}\right.$); HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=20.19 \mathrm{~min}($ minor enantiomer $), \mathrm{t}_{\mathrm{R}}=22.77 \mathrm{~min}$ (major enantiomer).

${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS, HPLC and specific rotation data of 5

(R)-4-benzyl-2-phenyl-4-(phenylethynyl)oxazol-5(4H)-one (5aa): following general procedure: 2a ($25.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$), 3a ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.), catalyst $\mathbf{H}(3.8 \mathrm{mg}, 0.005 \mathrm{mmol}$), was added in toluene (1.0 mL) and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, white solid, $24.57 \mathrm{mg}, 70 \%$ yield, 73% ee; ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.93-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dt}, J=13.3,4.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.37-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{dt}, J=12.6,4.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.85,161.69,133.19,133.03,132.12,130.70,129.15,128.84$, 128.37, 128.31, 128.20, 127.83, 125.30, 121.61, 86.74, 82.79, 68.20, 45.19. HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 352.1332$, found 352.1330; $[\alpha]_{\mathrm{D}}{ }^{20}+37.4\left(c 0.25, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=$ 11.31 min (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=12.47 \mathrm{~min}$ (major enantiomer)

(R)-4-(4-bromobenzyl)-2-phenyl-4-(phenylethynyl)oxazol-5(4H)-one (5ba): following general procedure: 2b ($32.9 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ eq. $)$, catalyst $\mathbf{H}(3.8 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, white solid, $30.46 \mathrm{mg}, 71 \%$ yield, 50% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.27(\mathrm{~m}$, $5 \mathrm{H}), 7.15$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $3.52(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.61,161.93,133.40,132.38,132.17,132.10,131.48,129.26,128.94,128.41,128.26$, $125.13,122.12,121.44,87.02,82.44,67.85,44.38$; $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrNO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 430.0437, found 430.0435; $[\alpha]_{\mathrm{D}}{ }^{20}+39.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=23.61 \mathrm{~min}$ (major enantiomer), t_{R} $=26.05 \mathrm{~min}$ (minor enantiomer).

(R)-4-(4-methylbenzyl)-2-phenyl-4-(phenylethynyl)oxazol-5(4H)-one (5ca): following general procedure: 2c ($26.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{H}(3.8 \mathrm{mg}$, 0.005 mmol), was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added;
flash chromatography with PE:EA $=100: 1$, white solid, $27.74 \mathrm{mg}, 76 \%$ yield, 56% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=8.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=12.4,7.6,4.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.54(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.00,155.78,131.59$, $127.28,126.25,124.67,124.04,123.24,123.15,122.96,122.49,122.36,119.52,115.79,80.76,77.04$, 62.42, 38.92, 23.94; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 366.1489$, found $366.1492 ;[\alpha]_{\mathrm{D}}{ }^{20}$ $+30.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol = $97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=23.78 \mathrm{~min}($ major enantiomer $), \mathrm{t}_{\mathrm{R}}=25.26 \mathrm{~min}$ (minor enantiomer).

(R)-4-(4-methoxybenzyl)-2-phenyl-4-(phenylethynyl)oxazol-5(4H)-one (5da): following general procedure: 2d ($28.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 3a ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ eq.), catalyst $\mathbf{H}(3.8 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, white solid, $26.29 \mathrm{mg}, 69 \%$ yield, 63% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.38-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}$, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.92,161.67,159.16,133.18,132.12,131.78$, 129.13, 128.85, 128.37, 128.22, 125.34, 125.03, 121.65, 113.71, 86.65, 82.89, 68.38, 55.24, 44.44; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{3}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 382.1438$, found 382.1434; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}+42.0(c 0.5$, CHCl_{3}); HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=27.32 \mathrm{~min}$ (major enantiomer), $\mathrm{t}_{\mathrm{R}}=29.68 \mathrm{~min}$ (minor enantiomer).

(R)-4-(naphthalen-2-ylmethyl)-2-phenyl-4-(phenylethynyl)oxazol-5(4H)-one (5ea): following general procedure: $\mathbf{2 e}(30.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathbf{3 a}$ ($41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ eq.), catalyst \mathbf{H} $(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, white solid, $30.07 \mathrm{mg}, 75 \%$ yield, 57% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~s}, 3 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=8.3,3.9 \mathrm{~Hz}, 5 \mathrm{H}), 7.36-7.26(\mathrm{~m}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.83,161.84,133.25,133.20$, $132.80,132.13,130.71,129.83,129.17,128.82,128.55,128.38,128.23,127.99,127.80,127.65,126.08$, 126.05, 125.25, 121.60, 86.87, 82.86, 68.34, 45.25; HRMS (ESI) calcd for $\left(\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 402.1489, found 402.1486; $[\alpha]_{\mathrm{D}}{ }^{20}+13.40\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=14.32 \mathrm{~min}$ (major enantiomer), t_{R}

(R)-4-methyl-2-phenyl-4-(phenylethynyl)oxazol-5(4H)-one (5fa): following general procedure:2f ($17.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{H}(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene (1.0 mL) and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, white solid, $18.97 \mathrm{mg}, 69 \%$ yield, 27% ee; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=7.8,1.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.87,161.72,133.33$, 132.10, 129.11, 128.96, 128.35, 128.33, 125.51, 121.61, 85.57, 83.52, 63.37, 26.01. HRMS (ESI) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 276.1019$, found 276.1021; $[\alpha]_{\mathrm{D}}{ }^{20}-2.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=$ 20.92 min (major enantiomer), $\mathrm{t}_{\mathrm{R}}=22.67 \mathrm{~min}$ (minor enantiomer).

(R)-4-isobutyl-2-phenyl-4-(phenylethynyl)oxazol-5(4H)-one (5ga known compound ${ }^{[2]}$): following general procedure: $\mathbf{2 g}(21.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{H}$ $(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, white solid, $17.44 \mathrm{mg}, 55 \%$ yield, 53% ee; HRMS (ESI) calcd for $\left(\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 318.1489$, found 318.1486; $[\alpha]_{\mathrm{D}}{ }^{20}+31.0(c 0.5$, CHCl_{3}); HPLC (Daicel CHIRALPAK OJ-H, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=18.49 \mathrm{~min}$ (major enantiomer), $\mathrm{t}_{\mathrm{R}}=19.77 \mathrm{~min}$ (minor enantiomer).

(R)-4-benzyl-4-(phenylethynyl)-2-(p-tolyl)oxazol-5(4H)-one (5ha): following general procedure: $\mathbf{2 h}(26.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 a}(41.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{H}(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene (1.0 mL) and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, white solid, $29.20 \mathrm{mg}, 80 \%$ yield, 59% ee; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.31$ (ddd, $\left.J=7.3,4.6,2.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 7.29$ $-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 3.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 174.99,161.75,144.01,133.11,132.12,130.71$, 129.58, 129.11, 128.36, 128.29, 128.18, 127.79, 122.48, 121.67, 86.64, 82.97, 68.13, 45.22, 21.86. HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 366.1489$, found 366.1491; $[\alpha]_{\mathrm{D}}{ }^{20}+59.6(c 0.5$,
CHCl_{3}); HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=22.61 \mathrm{~min}$ (major enantiomer), $\mathrm{t}_{\mathrm{R}}=25.17 \mathrm{~min}$ (minor enantiomer).

(R)-4-benzyl-2-phenyl-4-(p-tolylethynyl)oxazol-5(4H)-one (5ab): following general procedure: $\mathbf{2 a}(25.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}),. \mathbf{3 b}(43.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{H}(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene (1.0 mL) and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with PE:EA = 100:1, white solid, $27.37 \mathrm{mg}, 75 \%$ yield, 53% ee; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (s, 2H), $7.20(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.11$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.47 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.95,161.61,139.37,133.17$, $133.09,132.02,130.70,129.14,128.83,128.30,128.19,127.81,125.33,118.53,86.95,82.10,68.24$, 45.22, 21.66; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 366.1489$, found $366.1491 ;[\alpha]_{\mathrm{D}}{ }^{20}+42.8$ (c 0.5, CHCl_{3}); HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3$ $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=21.85 \mathrm{~min}$ (major enantiomer), $\mathrm{t}_{\mathrm{R}}=25.19 \mathrm{~min}$ (minor enantiomer).

5ac
(R)-4-benzyl-2-phenyl-4-((4-(trifluoromethyl)phenyl)ethynyl)thiazol-5(4H)-one (5ac): following general procedure: 2a ($25.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}.), \mathbf{3 c}(49.9 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{H}$ $(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, white solid, $27.23 \mathrm{mg}, 65 \%$ yield, 27% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.52(\mathrm{~m}, 5 \mathrm{H}), 7.45(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26$ $(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.52,161.98,133.35,132.79,132.39,130.88\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=32 \mathrm{~Hz}\right), 130.68$, $128.90,128.37,128.22,127.96,125.38,125.34,125.29,125.13,123.84\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=273 \mathrm{~Hz}\right), 85.28,85.18$, 68.12, 45.08; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 420.1206$, found 420.1209; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ +18.8 ($c 0.5, \mathrm{CHCl}_{3}$); HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol = 95:5, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=12.58 \mathrm{~min}$ (major enantiomer), $\mathrm{t}_{\mathrm{R}}=14.13 \mathrm{~min}$ (minor enantiomer).

5ad
(R)-4-((4-benzyl-5-oxo-2-phenyl-4,5-dihydrooxazol-4-yl)ethynyl)phenyl propionate (5ad): following general procedure: $\mathbf{2 a}(25.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , \mathbf{3 d}(50.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.), catalyst $\mathbf{H}(3.8 \mathrm{mg}, 0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20$ mmol) was added; flash chromatography with $\mathrm{PE}: \mathrm{EA}=100: 1$, white solid, 32.99 mg , 78% yield, 60% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.91(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{dt}, J=9.0,3.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{dd}, J=4.7,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.57,165.98,161.91,133.30,132.84,132.03,130.78,130.68,129.49,128.87,128.35$, 128.22, 127.92, 126.07, 125.18, 85.92, 85.49, 68.18, 61.33, 45.08, 14.39; HRMS (ESI) calcd for $\left(\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{NO}_{4}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 424.1543$, found 424.1550; $[\alpha]_{\mathrm{D}}{ }^{20}+6.40\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=32.49$ \min (major enantiomer), $\mathrm{tR}=35.80 \mathrm{~min}$ (minor enantiomer).

5ae
(R)-4-benzyl-4-((3-fluorophenyl)ethynyl)-2-phenylthiazol-5(4H)-one (5ae): following general procedure: 2a ($25.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}$.), $\mathbf{3 e}(43.9 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , catalyst \mathbf{H}(3.8 \mathrm{mg}$, $0.005 \mathrm{mmol})$, was added in toluene $(1.0 \mathrm{~mL})$ and then $\mathrm{K}_{2} \mathrm{CO}_{3}(27.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ was added; flash chromatography with PE:EA $=100: 1$, white solid, $23.25 \mathrm{mg}, 63 \%$ yield, 65% ee; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, J=5.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=10.7,4.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.27-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.63,162.29\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=245 \mathrm{~Hz}\right), 161.86$ $133.28,132.88,130.68,130.04\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right.$), 128.87, 128.34, 128.21, 128.04, 127.99, 127.91, 125.20, $123.39\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=9 \mathrm{~Hz}\right), 118.94\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=23 \mathrm{~Hz}\right), 116.62\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=21 \mathrm{~Hz}\right), 85.45,83.73,68.11,45.10$; HRMS (ESI) calcd for $\left(\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{FNO}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 370.1238$, found 370.1237; $[\alpha]_{\mathrm{D}}{ }^{20}+40.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK IA, Hexane : Isopropanol $=97: 3$, Flow rate $=0.3 \mathrm{~mL} / \mathrm{min}, \lambda=254$ nm): $\mathrm{t}_{\mathrm{R}}=19.86 \mathrm{~min}$ (major enantiomer), $\mathrm{tR}=22.45 \mathrm{~min}$ (minor enantiomer).

Ring opening of alkynylation product 4aa ${ }^{[1][2]}$

To a solution of $4 \mathbf{a a}\left(36.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}, 86 \%\right.$ ee) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{BnNH}_{2}(22 \mu \mathrm{~L}$, $0.2 \mathrm{mmol}, 2.0 \mathrm{eq}$) under N_{2}. The reaction mixture was vigorously stirred at ambient temperature for 24 h . After consumption of the starting material 4aa which was monitored by TLC, the reaction mixture was quenched by water, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated after filtration. After evaporation of
the solvent, the residue was purified by column chromatography (hexane: ethyl acetate $=10: 1$) to give 7 ($45.03 \mathrm{mg}, 0.095 \mathrm{mmol}, 95 \%$ yield, 86% ee).

In a sealed tube, a solution of $\mathbf{4 a a}(36.7 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}, 86 \% \mathrm{ee})$ in MeOH was added KF ($0.3 \mathrm{mmol}, 3.0 \mathrm{eq}$) under N_{2}. The reaction mixture was vigorously stirred at $55^{\circ} \mathrm{C}$ for 0.5 h . After consumption of the starting material 4aa which was monitored by TLC, the reaction mixture was quenched by water, and the organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated after filtration. The residue was purified by column chromatography (hexane: ethyl acetate $=10: 1$) to give $\mathbf{8}(35.91 \mathrm{mg}, 0.09$ mmol, 90% yield, 86% ee).

(R)-N,2-dibenzyl-4-phenyl-2-phenylthioamidobut-3-ynamide (7): flash chromatography with PE:EA $=10: 1$, white solid, $45.03 \mathrm{mg}, 95 \%$ yield, 86% ee; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89-7.81$ (m, 2H), $7.61(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.45(\mathrm{ddt}, J=12.7,11.5,4.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.27(\mathrm{ddt}, J=8.5,3.8$, $1.6 \mathrm{~Hz}, 6 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.09(\mathrm{dt}, J=7.3,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=$ $15.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=15.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.01,168.32,138.39,138.07,137.06,135.70,132.39,132.20,131.12$, $128.89,128.70,128.66,128.38,127.83,127.52,127.38,127.27,126.79,123.53,92.27,48.95,43.49$; HRMS (ESI) calcd for $\left(\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 475.1839$, found 475.1855; [$\left.\alpha\right]_{\mathrm{D}}{ }^{20}-20.0$ (c 0.5, CHCl_{3}); HPLC (Daicel CHIRALPAK OD-H, Hexane : Isopropanol $=95: 5$, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}$): $\mathrm{t}_{\mathrm{R}}=21.01 \mathrm{~min}$ (minor enantiomer), $\mathrm{t}_{\mathrm{R}}=22.59 \mathrm{~min}$ (major enantiomer).

methyl (R)-2-benzyl-4-phenyl-2-phenylthioamidobut-3-ynoate (8): flash chromatography with PE:EA $=10: 1$, white solid, $35.91 \mathrm{mg}, 90 \%$ yield, 86% ee; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.74$ (m, 2H), 7.48 (dd, $J=6.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.12$ $(\mathrm{s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.72(\mathrm{dd}, J=13.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=$ $13.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.22,167.66,139.78,136.36,135.04,132.46$, 131.89, 131.11, 128.76, 128.37, 128.15, 127.74, 127.40, 126.75, 121.41, 93.16, 53.38, 46.33; HRMS (ESI) calcd for $\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO}_{2} \mathrm{~S}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 400.1366$, found 400.1372; $[\alpha]_{\mathrm{D}}{ }^{20}+72.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$;

HPLC (Daicel CHIRALPAK OJ-H, Hexane : Isopropanol =95: 5, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}): \mathrm{t}_{\mathrm{R}}=35.95 \mathrm{~min}\left(\right.$ minor enantiomer), $\mathrm{t}_{\mathrm{R}}=53.01 \mathrm{~min}$ (major enantiomer).

Ring opening of alkynylation product 5aa

To a solution of $\mathbf{5 a a}\left(35.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0 \mathrm{eq}, 73 \%\right.$ ee) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added BnNH_{2} ($22 \mu \mathrm{~L}$, $0.2 \mathrm{mmol}, 2.0 \mathrm{eq}$) under N_{2}. The reaction mixture was vigorously stirred at ambient temperature for 24 h . After consumption of the starting material 5aa which was monitored by TLC, the reaction mixture was quenched by water, and the organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times. The combined organic extracts were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated after filtration. After evaporation of the solvent, the residue was purified by column chromatography (hexane: ethyl acetate $=10: 1$) to give 9 ($41.22 \mathrm{mg}, 0.090 \mathrm{mmol}, 90 \%$ yield, 73% ee).

(R)-N-(2-benzyl-1-(benzylamino)-1-oxo-4-phenylbut-3-yn-2-yl)benzamide (9): flash chromatography with $\mathrm{PE}: \mathrm{EA}=10: 1$, white solid, $41.22 \mathrm{mg}, 90 \%$ yield, 73% ee; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.82-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=8.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H})$, $7.34-7.25(\mathrm{~m}, 11 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.82(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=15.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ (dd, $J=15.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.80,166.18,137.44,134.66,134.12,131.94,131.90,130.75,129.02,128.80,128.65$, $128.40,128.34,127.72,127.66,127.29,121.82,88.35,86.23,59.39,44.43,44.30$; HRMS (ESI) calcd for $\left(\mathrm{C}_{31} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 459.2067$, found 459.2077; $[\alpha]_{\mathrm{D}}{ }^{20}+3.60\left(c 0.5, \mathrm{CHCl}_{3}\right)$; HPLC (Daicel CHIRALPAK AS-H, Hexane : Isopropanol =95:5, Flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}): \mathrm{t}_{\mathrm{R}}=24.00$ \min (major enantiomer), $\mathrm{t}_{\mathrm{R}}=31.55 \mathrm{~min}$ (minor enantiomer).

General procedure for the synthesis of 4-benzyl-2-phenylthiazol-5(4H)-one substrates $\mathbf{1 b}-1 \mathrm{i}$, 10, 1 n

Known compounds $\mathbf{1 a}^{[3]}, \mathbf{1 j}^{[3]}, \mathbf{1} \mathbf{k}^{[1]}$ and $\mathbf{1 1}^{[4]}$ were prepared by literature procedures. New compounds $\mathbf{1 b}, \mathbf{1 c}, \mathbf{1 d}, \mathbf{1 e}, \mathbf{1 f}, \mathbf{1 g}, \mathbf{1 h}, \mathbf{1 i}, \mathbf{1 o}$ and $\mathbf{1 m}$ were prepared according to literature procedures. ${ }^{[5]}{ }^{[3]}$

Step 1: In a round-bottom flask, following flame drying, 40 ml of 1 M phenyl magnesium bromide (40 mmol) in THF was added. It was then cooled to $0^{\circ} \mathrm{C}$, and 2.42 ml of carbon disulfide (40 mmol) was slowly introduced dropwise. It was stirred at room temperature for 12 hr and then poured into 100 g of ice water and 3.78 g of chloroacetic acid (40 mmol). Anhydrous sodium carbonate 3.36 g
(20 mmol) was added and stirred for 24 hr at $90^{\circ} \mathrm{C}$. The liquid was adjusted to pH 2 with concentrated hydrochloric acid, and a red solid was obtained in 72% yield by recrystallization in a mixture of ethyl acetate and hexane.

Step 2: 2-((phenylcarbonothioyl)thio) acetic acid ($2 \mathrm{~g}, 9.43 \mathrm{mmol}$) was dissolved in $1 \mathrm{M} \mathrm{NaOH}(28.3$ $\mathrm{mL}, 3 \mathrm{eq}$) solution, then 1-carboxy-2-phenylethan-1-aminium chloride was added. After consumption of the starting material, the reaction mixture was acidified to $\mathrm{pH} 7-8$ with dilute HCl (aq). The aqueous layer was extracted with EtOAc ($15 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was loaded onto a column packed with silica gel, and eluted with petroleum ether/ethyl acetate (10:1) to afford ethyl (phenylcarbonothioyl)phenylalaninate as ligtht green solid (50% yield, 1.08 g).

Step 3: A solution of ethyl (phenylcarbonothioyl)phenylalaninate ($1.08 \mathrm{~g}, 4.56 \mathrm{mmol}$) in anhydrous trifluoroacetic acid $(13.5 \mathrm{ml})$ was set aside at room temp. overnight, evaporation in vacuo, followed by trituration of the residual oil with aqueous sodium hydrogen carbonate, gave pure DL-4-benzyl-2-phenyloxazole-5(4H)-thione $(1.21 \mathrm{~g}, 100 \%$ yield), other products were obtained by similar treatment of the amino-acid derivative.

4-(4-bromobenzyl)-2-phenylthiazol-5(4H)-one (1b): light yellow solid, $1.55 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.11(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.19$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO$\left.d_{6}\right) \delta 153.23,150.85,140.23,134.67,134.42,131.64,131.20,129.51,129.39,125.35,119.46,32.51$; HRMS (ESI) calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 345.9896$, found 345.9901 .

1c
4-(4-methylbenzyl)-2-phenylthiazol-5(4H)-one (1c): light yellow solid, $1.27 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.18-6.96(\mathrm{~m}$, $4 \mathrm{H}), 3.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 152.80$, $150.65,137.73,135.63,135.24,134.50,129.49,129.33,128.83,125.31,32.74,21.14$; HRMS (ESI) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 282.0947$, found 282.0955

4-(4-chlorobenzyl)-2-phenylthiazol-5(4H)-one (1d): light yellow solid, $1.36 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.67(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 153.46,150.66,139.83,134.58$, 134.43, 131.01, 130.78, 129.51, 129.36, 128.72, 125.32, 32.44. HRMS (ESI) calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$302.0401, found 302.0416.

4-(4-methoxybenzyl)-2-phenylthiazol-5(4H)-one (1e): light yellow solid, $1.34 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{dt}, J=23.5,7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $7.13(\mathrm{t}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 158.01,152.87,150.54,135.77,134.54,132.77,129.88,129.48,129.27,125.30,114.19$, 55.48, 32.26. HRMS (ESI) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$298.0896, found 298.0908.

4-(3-bromobenzyl)-2-phenylthiazol-5(4H)-one (1f): light yellow solid, $1.56 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.67$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{td}, J=14.7,7.1 \mathrm{~Hz}, 5 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 153.33,150.96,143.62,134.50,134.38,131.57$, 131.03, 130.08, 129.54, 129.45, 129.32, 128.10, 125.35, 122.07, 32.66. HRMS (ESI) calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{BrNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$345.9896, found 345.9905.

4-(3-methylbenzyl)-2-phenylthiazol-5(4H)-one (1g): light yellow solid, $1.27 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.15(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dt}, J=24.7,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.11(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 153.21,150.48,140.77$, 137.73, 135.33, 134.55, 129.59, 129.48, 129.26, 128.67, 127.00, 126.08, 125.31, 33.14, 21.59. HRMS (ESI) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$ 282.0947, found 282.0958.

methyl 2-(3-methoxyphenyl)-2-nitroacetate (1h): light yellow solid, $1.36 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.11(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.20 (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.92 ($\mathrm{s}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 153.38,150.93$, 143.33, 134.39, 133.39, 130.67, 129.52, 129.42, 128.69, 127.70, 126.42, 125.36, 32.72. HRMS (ESI) calcd for $\left(\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClNOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 302.0401$, found 302.0410.

4-(naphthalen-2-ylmethyl)-2-phenylthiazol-5(4H)-one (1i): light yellow solid, $1.43 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.84-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.74-7.64(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{dd}, J=14.6,7.3 \mathrm{~Hz}$, $3 \mathrm{H}), 7.32(\mathrm{dt}, J=23.2,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 4.07(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 153.33,150.67$, $138.51,135.14,134.49,133.62,132.12,129.50,129.32,128.27,127.97,127.89,126.77,126.54,125.82$, 125.32, 33.41. HRMS (ESI) calcd for $\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 318.0947$, found 318.0960.

4-(tert-butyl)-2-phenylthiazol-5(4H)-one (1m): light yellow liquid, $0.74 \mathrm{~g}, 70 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{ddd}, J=14.3,10.1,6.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 1 \mathrm{H}), 1.15$ ($\mathrm{s}, 9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.46,164.28,133.78,131.98,128.88,128.14,91.48,38.17$, 26.99. HRMS (ESI) calcd for $\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+} 234.0947$, found 234.0942.

4-benzyl-2-(p-tolyl)thiazol-5(4H)-one (1n): light yellow solid, $1.27 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.17(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 152.41,151.01,140.84,138.96$, 135.12, 131.90, 130.04, 128.94, 128.78, 126.35, 125.29, 33.14, 21.36. HRMS (ESI) calcd for $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$282.0947, found 282.0951.

4-benzyl-2-(3,5-dimethylphenyl)thiazol-5(4H)-one (10): according to general procedure: light
yellow solid, $1.33 \mathrm{~g}, 99 \%$ yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.80(\mathrm{~d}, J=144.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (s, 2H), $7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.13(\mathrm{td}, J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 152.75,151.02,140.86,138.61,135.15,134.43,130.87,128.91,128.78$, 126.34, 123.07, 33.14, 21.32. HRMS (ESI) calcd for $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NOS}\right)^{+}[\mathrm{M}+\mathrm{H}]^{+}$296.1104, found 296.1107.

Single crystal X-Ray analysis of chiral 4ah

The crystal was developed from the solution of 4ah in dichloromethane. CCDC 2072377 contains the supplementary crystallographic data for this paper. The absolute stereochemistry of $4 \mathbf{a h}$ was determined unambiguously to be R with a flack parameter is $0.064(5)$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

4ah

Preparation of the phase transfer catalysts:

Known catalysts $\mathbf{A}^{[6]}, \mathbf{B}^{[6]}, \mathbf{C}^{[7]}, \mathbf{D}^{[6]}, \mathbf{E}^{[13]}, \mathbf{F}^{[8]}, \mathbf{G}^{[13]}, \mathbf{M}^{[9]}, \mathbf{N}^{[10]}$ and $\mathbf{O}^{[11]}$ were prepared by literature procedures. The corresponding new catalysts were prepared according to literature procedures ${ }^{[12] ~[13] ~[14] ~}$

In a sealed tube , the corresponding amino acid-derived bifunctional phosphine (1.0 equiv)was dissolved in anhydrous toluene under N_{2}, then the corresponding benzylic halide (1.2 equiv) was added, and the resulting mixture was refluxed at $120^{\circ} \mathrm{C}$ for 8 h to 12 h . After complete conversion of the starting material, which was monitored by TLC, the mixture was allowed to cool to ambient temperature and concentrated under reduced pressure. After evaporation of the solvent, the resulting mixture was purified by flash column chromatography to afford the desired phase transfer catalyst $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=100: 1\right)$.

H
((2S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-3-methylpentyl)(3,5-
dimethylbenzyl)diphenylphosphonium bromide (H): white solid, 75% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{~s}, 2 \mathrm{H}), 7.89-7.70(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.54(\mathrm{~m}, 5 \mathrm{H}), 7.53-7.44$ $(\mathrm{m}, 3 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 2 \mathrm{H}), 5.41-5.11(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{dd}, J=26.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 1.76(\mathrm{~d}, J=29.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.49-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.39,140.67,139.12\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 135.10,134.68,133.60\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right)$, $133.19\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.9 \mathrm{~Hz}\right), 131.18\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.4 \mathrm{~Hz}\right), 130.37,130.64,130.16\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.1 \mathrm{~Hz}\right), 130.03\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\mathrm{p}=3.9 \mathrm{~Hz}), 128.23\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.6 \mathrm{~Hz}\right), 125.92\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 123.33\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=273 \mathrm{~Hz}\right), 122.65,119.06(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=83.1 \mathrm{~Hz}\right), 117.30,116.48,51.66,41.09\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 29.07\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=45.1 \mathrm{~Hz}\right), 25.58,24.22(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{P}}=52.5 \mathrm{~Hz}$), 21.15, 14.95, 11.57. HRMS (ESI) calcd for $\left(\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{PS}\right)^{+}[\mathrm{M}-\mathrm{Br}]^{+}$675.2392, found 675.2200; $[\alpha]_{\mathrm{D}^{20}}-73.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

(3,5-bis(trifluoromethyl)benzyl)((2S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-3methylpentyl)diphenylphosphonium bromide (I): white solid, 65% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 2 \mathrm{H}), 7.87(\mathrm{dt}, J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.79$ (m, 1H), $7.77-7.69(\mathrm{~m}, 7 \mathrm{H}), 7.61(\mathrm{td}, J=7.6,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 5.32-5.07(\mathrm{~m}$, $2 \mathrm{H}), 4.87(\mathrm{t}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=26.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 1 \mathrm{H}), 1.23$ $-1.12(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $180.31,140.62,135.76\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=35.3 \mathrm{~Hz}\right), 133.41\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 133.12,132.71,132.40,132.22$, $132.12,132.04,131.44\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.3 \mathrm{~Hz}\right), 130.84,130.72$, $130.62,130.49,130.29\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right)$, $128.59\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 123.27\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=269 \mathrm{~Hz}\right), 122.41\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=277 \mathrm{~Hz}\right), 122.66,117.63,116.38(\mathrm{~d}$, $J_{\mathrm{C}-\mathrm{P}}=28.1 \mathrm{~Hz}$), $115.55\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=29.6 \mathrm{~Hz}\right), 112.68,51.59,40.74\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 29.79,28.62\left(\mathrm{~d}, J_{\mathrm{C}}\right.$ $\left.{ }_{\mathrm{P}}=44.9 \mathrm{~Hz}\right), 25.74,25.32\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=50.6 \mathrm{~Hz}\right), 14.60,11.37$. HRMS (ESI) calcd for $\left(\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{PS}\right)^{+}[\mathrm{M}$ $-\mathrm{Br}]^{+} 783.1827$, found 783.1821; $[\alpha]_{\mathrm{D}^{20}}-24.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

((2S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-3-methylpentyl)(3,5-di-tertbutylbenzyl)diphenylphosphonium bromide (J): white solid, 70% yield; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 9.62(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{dd}, J=12.3,7.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.63-7.49(\mathrm{~m}$, $8 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.57(\mathrm{dd}, J=26.5,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{t}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{dt}, J=18.1,10.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.12(\mathrm{~s}, 18 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $180.51,152.21,140.70,134.83\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=30.1 \mathrm{~Hz}\right), 133.34\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=21 \mathrm{~Hz}\right), 133.33\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4 \mathrm{~Hz}\right)$, $131.19\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.3 \mathrm{~Hz}\right), 130.29\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 130.17\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 125.53\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right)$, $124.62\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.6 \mathrm{~Hz}\right), 123.36\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271.6 \mathrm{~Hz}\right), 123.07,122.69,119.46,118.64,117.71,117.30$, $116.88,51.78,41.08\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 34.84,29.64\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=45.4 \mathrm{~Hz}\right), 25.30,24.54\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=52.2 \mathrm{~Hz}\right)$, 14.96, 11.69. HRMS (ESI) calcd for $\left(\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{PS}\right)^{+}[\mathrm{M} \mathrm{-} \mathrm{Br}]^{+} 759.3331$, found 759.3321; [$\left.\alpha\right]_{D^{20}}-$ 48.6 (c 0.5, CHCl_{3}).

((2S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-3-methylpentyl)(4nitrobenzyl)diphenylphosphonium bromide (K): white solid, 61% yield; ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 9.60(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.89-7.79(\mathrm{~m}$, $3 \mathrm{H}), 7.74-7.67(\mathrm{~m}, 5 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{t}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=12.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=15.2,11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59(\mathrm{t}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.13(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.40,147.86,140.71,135.77\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6 \mathrm{~Hz}\right.$), $135.43(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=6 \mathrm{~Hz}\right), 135.01\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 133.62\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.4 \mathrm{~Hz}\right), 133.43\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 132.19,132.09$, $131.54,131.48,131.38\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33 \mathrm{~Hz}\right), 130.69\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.3 \mathrm{~Hz}\right), 130.41\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.4 \mathrm{~Hz}\right), 128.62(\mathrm{~d}$, $\left.J_{\mathrm{C}-\mathrm{P}}=12.2 \mathrm{~Hz}\right), 124.18\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 123.26\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272 \mathrm{~Hz}\right), 122.63,117.57,116.84\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.9\right.$ Hz), $116.01\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=14.5 \mathrm{~Hz}\right), 51.57\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.3 \mathrm{~Hz}\right), 40.75\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.0 \mathrm{~Hz}\right), 28.64\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=44.8 \mathrm{~Hz}\right)$, 25.73, $25.40\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=50.9 \mathrm{~Hz}\right), 14.66,11.45$. HRMS (ESI) calcd for $\left(\mathrm{C}_{34} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{PS}\right)^{+}[\mathrm{M} \mathrm{-} \mathrm{Br}]^{+}$ 692.1930, found 692.1977; $[\alpha]_{\mathrm{D}^{20}}-50.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$.

L
((2S)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)-3-methylpentyl)(naphthalen-2-
ylmethyl)diphenylphosphonium bromide (L): white solid, 68% yield; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 9.64(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 2 \mathrm{H}), 7.82-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.64-7.54(\mathrm{~m}, 7 \mathrm{H}), 7.54-$ $7.48(\mathrm{~m}, 3 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.40-5.21(\mathrm{~m}, 1 \mathrm{H}), 4.97(\mathrm{t}, J$ $=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{t}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=16.4,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~s}$, $1 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.45,140.76,135.02\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=48.0 \mathrm{~Hz}\right), 133.51\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.3 \mathrm{~Hz}\right), 133.30$ $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{P}}=9.1 \mathrm{~Hz}\right), 133.10\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 132.87\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 131.17\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=33.3 \mathrm{~Hz}\right), 130.33$, $130.21,130.11,129.24,127.72\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=21.4 \mathrm{~Hz}\right), 127.12\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.3 \mathrm{~Hz}\right), 123.35\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=271 \mathrm{~Hz}\right)$, $123.77\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=8.7 \mathrm{~Hz}\right), 122.60,118.48\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=83.0 \mathrm{~Hz}\right), 117.33,117.25,116.51,51.70\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=4.3\right.$ $\mathrm{Hz}), 41.01\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 29.49\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=45.3 \mathrm{~Hz}\right), 25.54,24.45\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=52.1 \mathrm{~Hz}\right), 14.94,11.54$. HRMS (ESI) calcd for $\left(\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{PS}\right)^{+}[\mathrm{M}-\mathrm{Br}]^{+} 697.2236$, found 697.2239; [$\left.\alpha\right]_{\mathrm{D}^{20}}-80.8$ (c 0.5, CHCl_{3}).

References:

[1] J. Kikuchi, N. Momiyama, and M. Terada, Org. Lett. 2016, 18, 2521-2523.
[2] P. Finkbeiner, N. Weckenmann, and B. Nachtsheim, Org. Lett. 2014, 16, 1326-1329.
[3] Y. Lin, and K. Andersen, Eur. J. Org. Chem. 2002, 557-563.
[4] G. Barrett, and A. Khokhar, J. Chem. Soc., 1969.
[5] I. Ko, S. Park, G. Lee, and H. Kim, Arkivoc. 2019, 3, 67-78.
[6] X. Wu, Q. Liu, Y. Liu, Q. Wang, Y. Zhang, J. Chen, W. Cao, and G. Zhao, Adv. Synth. Catal. 2013, 355, 2701-2706.
[7] L. Ge, X. Lu, C. Cheng, J. Chen, W. Cao, X. Wu, and G. Zhao, J. Org. Chem. 2016, 81, 9315-9325.
[8] E. Yamamoto, K. Wakafuji, Y. Mori, G. Teshima, Y. Hidani, and M. Tokunaga, Org. Lett. 2019, 21, 4030-4034.
[9] Y. Wu, Y. Jhong, H. Lin, S. Swain, H. Tsai, and D. Hou, Adv. Synth. Catal. 2019, 361, 49664982.
[10] L. Qi, H. Hou, F. Ling and W. Zhong, Org. Biomol. Chem. 2018, 16, 566-574.
[11] S. Wu, D. Pan, C. Cao, Q. Wang, and F. Chen, Adv. Synth. Catal. 2013, 355, 1917-1923.
[12] Z. Dong, C. Yan, Y. Gao, C. Dong, G. Qiu, and H. Zhou, Adv. Synth. Catal. 2015, 357, 21322142.
[13] H. Xiao, Z. Chai, C. Zheng, Y. Yang, W. Liu, J. Zhang, and G. Zhao, Angew. Chem. Int. Ed. 2010, 49, 4467 - 4470 .
[14] D. Cao, Z. Chai, J. Zhang, Z. Ye, H. Xiao, H. Wang, J. Chen, X. Wu and G. Zhao, Chem. Comтии. 2013, 49, 5972--5974.

 NNNNNNNNNNNNNN
 ल్ల゙ゥ

〈Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	11.234	2305406	42712592	49.971
2	12.416	2218996	42761542	50.029
Total		4524401	85474134	100.000

<Peak table>
PDA Ch1 254nm
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area $\%$
1	11.948	36349	616770	6.937
2	13.194	452991	8274161	93.063
Total		489339	8890931	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	12.714	478764	9375692	50.182
2	14.168	441162	9307623	49.818
Total		919926	18683316	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	12.801	54123	1075607	16.756
2	14.202	253485	5343624	83.244
Total		307608	6419231	100.000

$\underbrace{\infty}$

〈Peak table〉
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	11.636	888454	15123210	50.681
2	12.663	817213	14716928	49.319
Total		1705667	29840139	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	11.646	186996	3158626	10.869
2	12.649	1425085	25901141	89.131
Total		1612081	29059767	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	11.272	1058996	14951310	50.414
2	12.147	1005293	14705746	49.586
Total		2064289	29657055	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	11.277	414324	5723317	15.645
2	12.119	2067843	30859824	84.355
Total		2482168	36583141	100.000

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	-1

〈Peak tab1e〉

PDA Ch1 254nm				
Peak\＃ Ret．Time Height Area Area\％ 1 12.460 353584 5331700 2 13.278 327631 5235815$\| 49.544$				
Total		681215	10567514	100.000

〈Peak table＞
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	12.464	439990	6479290	12.275
2	13.248	2873977	46305283	87.725
Total		3313967	52784573	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	13.879	1147693	22264562	50.175
2	14.831	1083834	22109011	49.825
Total		2231527	44373573	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	13.884	219604	4218937	9.406
2	14.789	1960565	40633022	90.594
Total		2180170	44851959	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	18.341	511498	11965303	48.426
2	19.204	498545	12743123	51.574
Total		1010044	24708426	100.000

<Peak table>
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area $\%$
1	18.346	274690	5601694	10.883
2	19.188	1862131	45870741	89.117
Total		2136821	51472435	100.000

$\stackrel{8}{0}$
$\stackrel{y}{3}$
\vdots

〈Peak table〉
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	21.439	1002984	25582452	50.440
2	22.687	955725	25135657	49.560
Total		1958709	50718108	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	21.407	117183	2807317	11.436
2	22.579	797976	21739778	88.564
Total		915159	24547095	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	28.322	454845	16203958	50.023
2	30.077	432631	16189153	49.977
Total		887475	32393111	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	29.164	95548	3566473	16.326
2	31.016	467846	18279254	83.674
Total		563394	21845727	100.000

 NTNNNNTNNNNNNBEFARNNNNNNN

$\stackrel{\sim}{0}$

$\stackrel{\circ}{\infty} \stackrel{\circ}{\circ}$

〈Peak table〉
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area\%
1	10.967	2495696	28392541	50.143
2	12.094	2179316	28230119	49.857
Total		4675012	56622659	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area $\%$
1	9.909	3994907	68950175	74.190
2	10.975	1726025	23987458	25.810
Total		5720932	92937633	100.000

<Peak table>
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area\%
1	10.375	1993374	33435759	49.790
2	11.205	1784059	33717207	50.210
Total		3777433	67152967	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	10.709	2504999	60065138	85.205
2	11.714	551869	10430108	14.795
Total		3056868	70495246	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	10.429	111497	1971820	50.161
2	11.334	103792	1959148	49.839
Total		215289	3930967	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	10.689	50055	730219	10.133
2	11.519	400494	6476112	89.867
Total		450549	7206331	100.000

$40 a$

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	9.962	115084	2040496	55.926
2	11.073	92888	1608087	44.074
Total		207972	3648583	100.000

〈Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	9.934	305680	5525023	12.366
2	11.004	2350526	39155562	87.634
Total		2656206	44680585	100.000

4ab
 NNNNNNNNNNNNNNN

[^0]

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	10.905	51755	779318	49.897
2	13.478	36971	782521	50.103
Total		88726	1561839	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	10.848	72396	1078760	10.536
2	13.354	433972	9160140	89.464
Total		506367	10238901	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	11.131	211324	3432943	51.050
2	13.015	166268	3291733	48.950
Total		377593	6724676	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	11.125	120132	1935207	13.267
2	12.976	637767	12651668	86.733
Total		757899	14586875	100.000

〈Peak table〉
PDA Ch1 254 nm

PDA Ch1 254nm	Area	Area		
Peak. Time	Height	Area	50.002	
2	32.652	529923	30079883	59.998
Total	39.923	369061	30077620	49

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	32.365	150239	8826003	13.568
2	39.357	684356	56221844	86.432
Total		834595	65047847	100.000

4ae

®.

 バмึ

〈Peak table〉
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	16.926	89235	3736694	49.313
2	19.746	82386	3840880	50.687
Total		171620	7577574	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	16.880	57764	2268026	89.100
2	20.049	6379	277446	10.900
Total		64142	2545472	100.000

 NNNNNNNNNNNNNNN
ザすザヅற゙ற $\stackrel{\circ}{\circ} \stackrel{\infty}{m}$

〈Peak table＞
PDA Ch1 254nm

Peak\＃．Time	Ret．Height	Area	Area\％	
1	12.530	313474	4960435	49.999
2	13.824	278340	4960661	50.001
Total		591815	9921096	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	12.464	240153	3807595	10.663
2	13.724	1834956	31902134	89.337
Total		2075109	35709730	100.000

4 ag

210	190	170	150	130	110	90	80	70	60	50	40	30	20	10	0	-10

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area $\%$
1	10.730	249045	3843810	49.624
2	12.029	221222	3902125	50.376
Total		470267	7745934	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	10.671	317377	4630061	10.416
2	11.949	2269576	39820404	89.584
Total		2586953	44450465	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area $\%$
1	11.711	392046	6102226	50.546
2	12.999	352812	5970506	49.454
Total		744858	12072732	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area\%
1	10.878	101462	1534171	13.862
2	11.962	565768	9533340	86.138
Total		667229	11067511	100.000

4ai

NNNNNNNNNNNNNNNNNNNNNNNNmmm

〈Peak table＞
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	10.347	3990813	63741292	50.453
2	12.429	3193927	62597513	49.547
Total		7184740	126338804	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	10.447	564735	7841266	8.382
2	12.498	3864440	85710931	91.618
Total		4429175	93552197	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	21.348	1826958	62549325	49.240
2	24.434	1678753	64480773	50.760
Total		3505711	127030097	100.000

〈Peak table＞
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	20.195	96699	2681626	34.920
2	22.770	161243	4997624	65.080
Total		257942	7679250	100.000

[^1]

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	13.212	1656447	43691817	49.856
2	15.603	1532736	43944773	50.144
Total		3189183	87636590	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	11.130	754435	16820558	86.154
2	12.648	117168	2703311	13.846
Total		871602	19523868	100.000

将웅

| 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90
 $\mathrm{f1}(\mathrm{ppm})$
 77 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 | -10 |
| :--- |

<Peak table〉
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area\%
1	23.684	469365	18736941	50.098
2	26.135	429459	18663418	49.902
Total		898825	37400359	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	23.613	398383	14821830	74.664
2	26.059	121287	5029604	25.336
Total		519669	19851433	100.000

ழing ion लัツ
$\underset{\sim}{\text { N }}$

8	$\underset{\sim}{ }$	
-	$\stackrel{\circ}{\circ}$	
	$\stackrel{\square}{\square}$	NNTN-NへN

앙	\%
¢	กั่

〈Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	25.180	152232	5284214	50.075
2	26.996	135697	5268333	49.925
Total		287929	10552547	100.000

<Peak table>
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area\%
1	23.780	674450	21806539	78.051
2	25.267	175395	6132331	21.949
Total		849844	27938870	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	27.469	436101	18791482	50.190
2	29.798	398389	18649292	49.810
Total		834491	37440774	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	27.319	240371	10583808	81.270
2	29.685	51481	2439208	18.730
Total		291853	13023016	100.000

Nォ®®®
NNNNNNNNNNNNNNNA

| 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

〈Peak tab1e〉

| PDA Ch1 254nm | |
| ---: | ---: | ---: | ---: | ---: |
| Peak\＃ Ret．Time Height Area
 Area\％
 1 14.467 277933 5673058
 2 16.394 245132 5673182
 Total 523066 11346240 | 50.001 |

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	14.321	200625	4345834	78.633
2	16.226	48078	1180919	21.367
Total		248703	5526753	100.000

$\hat{\infty}$	N	
$\stackrel{N}{\sim}$	$\bar{\square}$	
-	\bigcirc	

$\stackrel{\substack{0 \\ i}}{ }$
$\stackrel{\overleftarrow{\circ}}{\stackrel{\circ}{\circ}}$

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	20.703	110672	3185423	50.227
2	22.402	101460	3156611	49.773
Total		212132	6342033	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	20.926	63147	1846162	63.863
2	22.667	32635	1044655	36.137
Total		95782	2890817	100.000

〈Peak table〉
PDA Ch1 254nm
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	18.538	89872	2905571	49.615
2	19.813	79756	2950628	50.385
Total		169628	5856199	100.000

〈Peak tab1e〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	18.497	198607	6507368	76.271
2	19.773	53031	2024583	23.729
Total		251638	8531952	100.000

 パल゙の
 $\stackrel{\circ}{i}$

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	22.520	299991	12671237	51.163
2	25.078	267687	12095348	48.837
Total		567678	24766585	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	22.617	651847	27642840	79.317
2	25.171	160983	7208187	20.683
Total		812830	34851027	100.000

5ab

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	20.277	1133681	47852577	49.890
2	22.958	1099850	48062933	50.110
Total		2233531	95915510	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	21.856	300634	10835624	76.761
2	25.199	81198	3280455	23.239
Total		381832	14116079	100.000

5 ac

$$
\begin{aligned}
& 8 \text { 융 } \\
& \text { लัल゙ल }
\end{aligned}
$$

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	12.836	554411	11772947	50.206
2	14.468	462647	11676176	49.794
Total		1017058	23449123	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	12.589	2379241	54994714	63.134
2	14.135	1327265	32112891	36.866
Total		3706506	87107605	100.000

$$
\begin{aligned}
& \stackrel{\text { 子}}{\sim}
\end{aligned}
$$

in	®\%	
N	$\stackrel{6}{6}$	ల్ల్ల్ల్ల్ల్ల్N
	1	

$\stackrel{\infty}{\grave{\omega}}$
$\stackrel{\stackrel{9}{N}}{\stackrel{+}{+}}$

5ad

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	32.140	157930	8371501	49.220
2	35.428	144445	8636968	50.780
Total		302375	17008469	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	32.494	86613	4665730	79.845
2	35.809	17645	1177760	20.155
Total		104258	5843490	100.000

5ae

〈Peak table〉
PDA Ch1 254 nm

Peak\#	Ret. Time	Height	Area	Area\%
1	20.277	1133681	47852577	49.890
2	22.958	1099850	48062933	50.110
Total		2233531	95915510	100.000

<Peak table>
PDA Ch1 254nm

Peak\#	Ret. Time	Height	Area	Area\%
1	19.863	830996	27894061	82.524
2	22.450	157190	5907002	17.476
Total		988185	33801063	100.000

 둔

N
N
or
-48.95
-43.49 1
$\begin{array}{llllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 80$

〈Peak table〉

| PDA Ch1 254 nm | |
| ---: | ---: | ---: | ---: |
| Peak\＃ Ret．Time Height Area
 Area\％
 1 21.075 402630 12267256
 2 22.480 223605 12319857
 Total 626235 24587113 | 100.107 |

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area $\%$
1	21.051	48607	1560838	6.661
2	22.684	358808	21872027	93.339
Total		407415	23432864	100.000

 NNNNNNNNNNNNNNめ

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area $\%$
1	43.984	94053	19608822	50.249
2	54.249	49254	19414188	49.751
Total		143306	39023010	100.000

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	44.104	4372	856072	5.783
2	53.767	36691	13947603	94.217
Total		41063	14803675	100.000

$\left.\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$

〈Peak table〉
PDA Ch1 254nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	23.839	41133	7425499	50.174
2	31.127	34872	7374009	49.826
Total		76005	14799509	100.000

〈Peak table〉
PDA Ch1 254 nm

Peak\＃	Ret．Time	Height	Area	Area\％
1	24.000	114180	17938560	86.381
2	31.551	13259	2828168	13.619
Total		127439	20766728	100.000

 ${\underset{\sim}{\infty}}_{\infty}^{\infty}$

$\stackrel{\infty}{\infty}$

$\stackrel{\omega}{0}$
$\underset{\sim}{N}$

$\stackrel{\stackrel{\rightharpoonup}{+}}{\dot{J}}$

$\underset{\sim}{\text { ¢ }}$

$\underbrace{\text { mombono }}$
$\stackrel{\square}{+}$
$\stackrel{n}{\square}$

$\stackrel{\stackrel{\circ}{\infty}}{\stackrel{\infty}{+}}$
$\stackrel{\infty}{\sim}$
$\stackrel{\infty}{\stackrel{\infty}{\sigma}} \stackrel{\underset{\sim}{\infty}}{\stackrel{\infty}{\infty}}$

$$
\begin{aligned}
& -33.14 \\
& -21.36
\end{aligned}
$$

$$
\begin{aligned}
& \text { Nin 꾹 }
\end{aligned}
$$

H

190	170	150	130	110	$\begin{aligned} & 9080 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$	70	60	50	40	30	20	10	0	-10	-2

190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

K

| 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100
 $\mathrm{f} 1(\mathrm{ppm})$ | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |

L

$\begin{array}{lllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^0]: ூㅡ욱
 ल゙றற

[^1]: $\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

