Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Rhodium(III)-Catalyzed Switchable C–H Acylmethylation and Annulation of 2,2'-Bipyridine Derivatives with Sulfoxonium Ylides

Mengjia Chen, Haifang Meng, Fang Yang, Yani Wang, Chen Chen* and Bolin Zhu*

Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China. E-mail: hxxycc@tjnu.edu.cn, hxxyzbl@tjnu.edu.cn.

Table of Contents

General Information	S02
Preparation of Starting Materials	S02
Characterization of Products	S06
Control Experiment	S21
SyntheticTransformations	S21
References	\$24
NMR Spectra	\$25
Crystallography	S84
X-Ray Crystallographic Data of 3ab, 3ea and 4aa	S86

General information:

The ¹H NMR, ¹⁹F NMR, and ¹³C NMR were recorded with Bruker 400 MHz spectrometer instruments in CDCl₃. The chemical shifts (δ) of ¹H NMR and ¹³C NMR were measured in ppm, referenced to residual ¹H and ¹³C signals of nondeuterated CDCl₃ (δ = 7.26 and 77.00) as internal standards All solvents were obtained from commercial sources and were purified according to standard procedures. Purification of products was accomplished by flash chromatography using silica gel (200~300 mesh). Thin layer chromatography (TLC) was performed on Merck silica gel GF254 plates. Melting points were obtained on a Yanaco-241 apparatus and have been corrected with standards. HRMS were recorded on VG ZAB-HS mass spectrometer with ESI resource.

Preparation of Starting Materials:

Synthesis of 1a^[1]

A toluene solution (35.0 mL) containing **1a'** (1.26 g, 5.3 mmol), 2-(tri-nbutylstannyl)pyridine (1.95 g, 5.3 mmol), LiCl (2.5 g, 53.0 mmol), and $[PdCl_2(PPh_3)_2]$ (294.8 mg, 0.42 mmol) was deaerated by bubbling N₂ through it. The mixture was then refluxed under N₂ for 18 h, and an aqueous solution (10.0 mL) of NaF (2.2 g, 53.0 mmol) was added to the solution at room temperature. The resultant solution was further stirred at ambient temperature for 30 min. An insoluble solid was filtered off, and the filtrate was treated with a 5% Na₂CO₃ aqueous solution in a separating funnel. The organic layer was dried with anhydrous sodium sulfate, and the solvents were evaporated to dryness under reduced pressure. The obtained yellow solid was dissolved in PE/EA (95:5, v/v), and purified on a silica gel column.

Synthesis of 1b^[1]

A toluene solution (35.0 mL) containing **1b'** (1.02 g, 5.3 mmol), 2-(tri-nbutylstannyl)pyridine (2.95 g, 8.0 mmol), LiCl (2.5 g, 53.0 mmol), and $[PdCl_2(PPh_3)_2]$ (294.8 mg, 0.42 mmol) was deaerated by bubbling N₂ through it. The mixture was then refluxed under N₂ for 18 h, and an aqueous solution (10.0 mL) of NaF (2.2 g, 53.0 mmol) was added to the solution at room temperature. The resultant solution was further stirred at ambient temperature for 30 min. An insoluble solid was filtered off, and the filtrate was treated with a 5% Na₂CO₃ aqueous solution in a separating funnel. The organic layer was dried with anhydrous sodium sulfate, and the solvents were evaporated to dryness under reduced pressure. The obtained yellow solid was dissolved in PE/EA (95:5, v/v), and purified on a silica gel column.

Synthesis of 1c^[1]

A toluene solution (35.0 mL) containing 1c' (932.7 mg, 5.3 mmol), 2-(tri-nbutylstannyl)pyridine (2.95 g, 8.0 mmol), LiCl (2.5 g, 53.0 mmol), and $[PdCl_2(PPh_3)_2]$ (294.8 mg, 0.42 mmol) was deaerated by bubbling N₂ through it. The mixture was then refluxed under N₂ for 18 h, and an aqueous solution (10.0 mL) of NaF (2.2 g, 53.0 mmol) was added to the solution at room temperature. The resultant solution was further stirred at ambient temperature for 30 min. An insoluble solid was filtered off, and the filtrate was treated with a 5% Na₂CO₃ aqueous solution in a separating funnel. The organic layer was dried with anhydrous sodium sulfate, and the solvents were evaporated to dryness under reduced pressure. The obtained white solid was dissolved in PE/EA (95:5, v/v), and purified on a silica gel column.

Synthesis of 1d^[1]

4.0 mL of 1.6 M methyllithium in diethyl ether (67.5 mmol) was added dropwise to 40.0 mL of a diethyl ether solution containing 2,2'-bi-pyridine (1.0 g, 6.4 mmol) at 0°C. After complete addition (approximately 1 h), the resulting brown solution was gently refluxed for 3 h under N₂. It was then allowed to cool to room temperature and water was added with stirring, resulting in a biphasic yellow solution. The aqueous layer was separated from the organic layer and extracted three times with diethyl ether. The combined organic layers were washed twice with brine followed by addition of anhydrous Na₂SO₄ to remove residual water. The solution was then decanted into a round-bottom flask and the ether was removed by rotary evaporation. The resulting orange oil was oxidized with approximately 100.0 mL of a saturated KMnO₄/acetone solution until formation of MnO₂ ceased. The MnO₂ was removed by vacuum filtration through celite. The filtrate was placed in a round-bottom flask and acetone was removed by rotary evaporation. The purification of the crude product by columnchromatography (heptane/EtOAc: 1/1) give the desired product 1d. Synthesis of 1e^[1]

A toluene solution (35.0 mL) containing **1e'** (996.5 mg, 5.3 mmol), 2-(tri-nbutylstannyl)pyridine (2.9 g, 8.0 mmol), LiCl (2.5 g, 53.0 mmol), and $[PdCl_2(PPh_3)_2]$ (294.8 mg, 0.42 mmol) was deaerated by bubbling N₂ through it. The mixture was then refluxed under N₂ for 18 h, and an aqueous solution (10.0 mL) of NaF (2.2 g, 53.0 mmol) was added to the solution at room temperature. The resultant solution was further stirred at ambient temperature for 30 min. An insoluble solid was filtered off, and the filtrate was treated with a 5% Na₂CO₃ aqueous solution in a separating funnel. The organic layer was dried with anhydrous sodium sulfate, and the solvents were evaporated to dryness under reduced pressure. The obtained oil was dissolved in PE/EA (95:5, v/v), and purified on a silica gel

column.

Synthesis of 2

$$\begin{array}{c} O \\ R \\ \hline CI \end{array} + \begin{array}{c} O \\ S \\ \hline S \\ \hline \end{array} + \begin{array}{c} I \\ S \\ \hline I \end{array} + \begin{array}{c} O \\ S \\ \hline O \\ O \\ O \\ C \\ - r.t. \end{array} + \begin{array}{c} O \\ O \\ S \\ \hline O \\ S \\ \hline O \\ S \\ \hline S \\$$

Ylides **2a-2q**^[2] were prepared according to the reported procedures. To a stirred solution of potassium *tert*-butoxide (3.0 g, 27.2 mmol) in THF (30.0 mL) was added trimethylsulfoxonium iodide (5.0 g, 20.6 mmol) at room temperature. The resulting mixture is refluxed for 2 h. Then reaction mixture is cooled to 0 °C, followed by addition of acyl chlorides (7.0 mmol) in THF (5.0 mL). The reaction was allowed to room temperature and stirred for 3 h. Next, the solvent was evaporated and water (15.0 mL) and ethyl acetate (20.0 mL) were added to the resulting slurry. The layers were separated and the aqueous layer was washed with ethyl acetate (2 x 30 mL) and the organic layers were combined. The organic solutionwas dried over anhydrous sodium sulphate (Na₂SO₄), filtered over a sintered funnel, and evaporated to dryness. The crude product was purified by flash chromatography over silica gel using EtOAc/MeOH to afford the corresponding sulfoxonium ylides.

To a 3 mL glass vial containing a magnetic stirrer and fitted with a Teflon cap, the respective β -ketosulfoxonium ylide (1.0 equiv, 0.13 mmol), activated molecular sieves 4Å powder (25.0 mg), CsF (4.0 equiv, 77.4 mg, 0.51 mmol), and dry acetonitrile (1.0 mL) were added. Under vigorous stirring, the appropriate precursor of aryne (1.5 equiv, 0.19 mmol) was added in three portions (2.0 equiv in four portions for amino acid derivatives) at intervals of 1 hour (at 65 °C). After 3 hours, the organic solvent was removed into rotary evaporator and the crude product purified by flash chromatography, employing the basic silica gel and mixtures of 0.5 to 2 % of MeOH in CHCl₃ to give the product **2r**^[3].

Synthesis of 3

A sealed tube contained 1 (0.2 mmol), 2 (0.4 mmol), [Cp*Rh(MeCN)₃](SbF₆)₂ (10.0 mg, 0.012 mol), Zn(OAc)₂ (22.0 mg, 0.12 mmol) and PivOH (0.4 mmol, 2.0 equiv) was filled and \$55

purged with nitrogen gas three times. Then DCE (4.0 mL) was added to the system via syringe under a nitrogen atmosphere and the reaction was allowed to stir at 110 °C for 16 h. The reaction solution was concentrated in vacuum and the residue was purified by column chromatography on silica gel to afford the desired pure product **3**.

Synthesis of 4

A sealed tube contained 1 (0.2 mmol), 2 (0.4 mmol), [Cp*Rh(MeCN)₃](SbF₆)₂ (10.0 mg, 0.012 mol), and AgOAc (166.9 mg, 1.0 mmol) was filled and purged with nitrogen gas three times. Then DCE (4.0 mL) was added to the system via syringe under a nitrogen atmosphere and the reaction was allowed to stir at 110 °C for 16 h. The reaction solution was concentrated in vacuum and the residue was purified by column chromatography on silica gel to afford the desired pure product **4**.

Characterization of Products:

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-phenylethanone (**3aa**)

White solid (58 mg, 83%); M.P.: 122-124 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.19 (m, 1H), 8.10 – 8.07 (m, 1H), 8.01 – 7.98 (m, 2H), 7.78 – 7.72 (m, 1H), 7.61 – 7.56 (m, 1H), 7.53 – 7.47 (m, 4H), 7.16 – 7.12 (m, 1H), 4.73 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.6, 156.2, 155.2, 147.5, 143.6, 139.6, 137.1, 136.9, 132.8, 129.2, 128.5, 128.1, 127.5, 123.9, 123.3, 43.3. ESI-MS: Calcd for C₁₈H₁₃BrN₂O: [M+H⁺] 353.0284, found 353.0288.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(p-tolyl)ethanone (**3ab**)

White solid (60 mg, 82%); M.P.: 170-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 4.8 Hz, 1H), 7.89 (d, J = 8.0 Hz, 2H), 7.78 – 7.72 (m, 1H), 7.52 – 7.46 (m, 2H), 7.27 (d, J = 8.4 Hz, 2H), 7.17 – 7.12 (m, 1H), 4.71 (s, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 196.3, 156.3, 155.4, 147.6, 143.6, 143.5, 139.5, 136.8, 134.5, 129.4, 129.2, 128.3, 127.4, 124.0, 123.2, 43.1, 21.6. **ESI-MS:** Calcd for C₁₉H₁₅BrN₂O: [M+H⁺] 367.0441, found 367.0447.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(4-(*tert*-butyl)phenyl)ethanone (**3ac**)

White solid (69 mg, 85%); M.P.: 125-127 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (dd, J = 4.8, 0.8 Hz, 1H), 8.17 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.79 – 7.73 (m, 1H), 7.50 – 7.46 (m, 4H), 7.19 – 7.14 (m, 1H), 4.74 (s, 2H), 1.36 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 197.8, 162.2, 157.6, 150.8, 147.3, 144.0, 137.6, 136.4, 132.4, 128.4, 128.1, 123.4, 122.6, 122.5, 110.5, 53.4, 53.3, 43.1. **ESI-MS:** Calcd for C₂₂H₂₁BrN₂O: [M+H⁺] 409.0910, found 409.0919.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(4-methoxyphenyl)ethanone (**3ad**) White solid (61 mg, 80%); M.P.: 133-136 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 4.8 Hz, 1H), 8.16 (d, *J* = 8.0 Hz, 1H), 7.97 (d, *J* = 8.8 Hz, 2H), 7.78 – 7.72 (m, 1H), 7.52 – 7.46 (m, 2H), 7.15 (dd, *J* = 7.6, 4.8 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 4.69 (s, 2H), 3.88 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 195.3, 163.3, 156.4, 155.5, 147.6, 143.4, 136.8, 130.4, 130.0, 129.5, 127.4, 124.1, 123.2, 113.7, 55.4, 42.7. **ESI-MS:** Calcd for C₁₉H₁₅BrN₂O₂: [M+H⁺] 383.0390, found 383.0396.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(4-fluorophenyl)ethanone (3ae)

Gray solid (67 mg, 90%); M.P.: 137-139 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 8.0 Hz, 1H), 8.08 (d, J = 4.4 Hz, 1H), 8.05 – 8.00 (m, 2H), 7.78 – 7.73 (m, 1H), 7.49 (s, 2H), 7.18 – 7.13 (m, 3H), 4.69 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.9, 162.9, 160.6, 156.2, 152.3, 147.5, 146.4 (d, J = 7.0 Hz), 137.3, 136.8, 132.7, 128.5, 128.1, 123.7, 123.2, 109.0 (d, J = 39.0 Hz), 43.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -105.67. ESI-MS: Calcd for C₁₈H₁₂BrFN₂O: [M+H⁺] 371.0190, found 371.0197.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(4-chlorophenyl)ethanone (3af)

White solid (66 mg, 86%); M.P.: 147-148 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.0 Hz, 1H), 8.05 (d, *J* = 4.0 Hz, 1H), 7.96 – 7.93 (m, 2H), 7.78 – 7.73 (m, 1H), 7.50 – 7.44 (m, 4H), 7.17 – 7.13 (m, 1H), 4.67 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.4, 156.1, 155.0, 147.4, 143.6, 139.7, 139.1, 136.9, 135.5, 129.6, 128.9, 128.8, 127.5, 124.0, 123.4, 43.3. ESI-MS: Calcd for C₁₈H₁₂BrClN₂O: [M+H⁺] 386.9894, found 386.9898.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(4-(trifluoromethyl)phenyl)ethanone (**3ag**)

White solid (44 mg, 52%); M.P.: 161-163 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.30 – 8.26 (m, 1H), 8.11 (d, J = 8.0 Hz, 2H), 7.98 – 7.95 (m, 1H), 7.79 – 7.73 (m, 3H), 7.51 (s, 2H), 7.16 – 7.12 (m, 1H), 4.70 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 155.9, 154.8, 147.2, 143.7, 140.1, 139.8, 137.0, 134.1 (q, J = 33.0 Hz), 128.7, 128.5, 127.6, 125.6, 124.0, 123.7 (q, J = 271.0 Hz), 123.4, 43.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.97. ESI-MS: Calcd for C₁₉H₁₂BrF₃N₂O: [M+H⁺] 421.0158, found 421.0166.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(3-bromophenyl)ethanone (**3ah**) White solid (68 mg, 79%); M.P.: 152-154 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (d, *J* = 8.0 Hz, 1H), 8.13 (s, 1H), 8.05 (d, *J* = 4.8 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.78 – 7.69 (m, 2H), **S8** 7.49 (s, 2H), 7.40 – 7.35 (m, 1H), 7.17 – 7.13 (m, 1H), 4.66 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 155.9, 154.8, 147.3, 143.6, 139.7, 139.0, 136.9, 135.6, 131.2, 130.1, 128.7, 127.5, 126.6, 123.9, 123.4, 122.8, 43.4. **ESI-MS:** Calcd for C₁₈H₁₂Br₂N₂O: [M+H⁺] 430.9389, found 430.9395.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(m-tolyl)ethanone (3ai)

White solid (55 mg, 75%); M.P.: 112-114 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, J = 8.0 Hz, 1H), 8.15 – 8.12 (m, 1H), 7.80 – 7.73 (m, 3H), 7.52 – 7.46 (m, 2H), 7.41 – 7.34 (m, 2H), 7.17 – 7.13 (m, 1H), 4.71 (s, 2H), 2.41 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 196.8, 156.3, 155.4, 147.5, 143.5, 139.5, 138.3, 137.1, 136.8, 133.6, 129.3, 128.7, 128.4, 127.4, 125.4, 124.0, 123.2, 43.3, 21.3. **ESI-MS:** Calcd for C₁₉H₁₅BrN₂O: [M+H⁺] 367.0441, found 367.0450.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(3-fluorophenyl)ethanone (3aj)

White solid (52 mg, 70%); M.P.: 130-132 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.0 Hz, 1H), 8.04 (d, J = 4.4 Hz, 1H), 7.76 (dd, J = 18.8, 7.8 Hz, 2H), 7.67 (d, J = 9.2 Hz, 1H), 7.50 – 7.44 (m, 3H), 7.32 – 7.26 (m, 1H), 7.16 – 7.12 (m, 1H), 4.67 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 164.1, 161.6, 156.1, 155.0, 147.4, 143.6, 139.7, 139.4 (d, J = 6.0 Hz), 136.9, 130.2 (d, J = 7.0 Hz), 128.8, 127.5, 123.8 (d, J = 3.0 Hz), 123.4, 119.7 (d, J = 22.0 Hz), 114.9 (d, J = 23.0 Hz), 43.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.88. ESI-MS: Calcd for C₁₈H₁₂BrFN₂O: [M+H⁺] 371.0190, found 371.0196.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(o-tolyl)ethan-1-one (3ak)

White solid (45 mg, 61%); M.P.: 120-121 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.0 Hz, 1H), 8.11 – 8.09 (m, 1H), 7.75 – 7.68 (m, 2H), 7.49 – 7.43 (m, 2H), 7.38 – 7.33 (m, 1H), 7.25 – 7.21 (m, 2H), 7.14 – 7.09 (m, 1H), 4.59 (s, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 156.4, 155.4, 147.4, 143.6, 139.5, 138.5, 137.9, 136.8, 131.9, 131.1, 129.4, 128.3, 127.4, 125.5, 124.1, 123.2, 46.1, 21.1. **ESI-MS:** Calcd for C₁₉H₁₅BrN₂O: [M+H⁺] 367.0441, found 367.0443.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(2-fluorophenyl)ethan-1-one (3al)

Yellow oil (53 mg, 71%); ¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.0 Hz, 1H), 8.02 – 7.99 (m, 1H), 7.85 – 7.80 (m, 1H), 7.76 – 7.71 (m, 1H), 7.55 – 7.47 (m, 3H), 7.28 – 7.23 (m, 1H), 7.19 – 7.10 (m, 2H), 4.63 (d, J = 2.4 Hz, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 194.9, 162.7, 160.2, 156.0, 155.1, 147.2, 143.7, 139.5, 136.7, 134.0 (d, J = 9.0 Hz), 130.9 (d, J = 3.0 Hz), 129.0, 127.4, 126.2 (d, J = 13.0 Hz), 123.8, 123.2, 116.5 (d, J = 24.0 Hz), 48.06. ¹⁹**F NMR** (376 MHz, CDCl₃) δ -109.76. **ESI-MS:** Calcd for C₁₈H₁₂BrFN₂O: [M+H⁺] 371.0190, found 371.0186.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(3,4,5-trimethoxyphenyl)ethanone (**3am**) White solid (52 mg, 59%); M.P.: 157-159 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, *J* = 4.0 Hz, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.79 – 7.74 (m, 1H), 7.50 – 7.45 (m, 2H), 7.27 (s, 2H), 7.20 – 7.16 (m, 1H), 4.72 (s, 2H), 3.92 (s, 3H), 3.87 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 195.6, 156.4, 155.1, 153.0, 147.5, 143.2, 142.4, 139.5, 136.9, 132.2, 129.2, 127.5, 124.1, 123.3, 105.8, 60.8, 56.3, 42.9. **ESI-MS:** Calcd for C₂₁H₁₉BrN₂O₄: [M+H⁺] 443.0601, found 443.0604.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(naphthalen-1-yl)ethanone (3an)

Colorless oil (64 mg, 80%); ¹**H** NMR (400 MHz, CDCl₃) δ 8.48 – 8.45 (m, 1H), 8.21 (d, J = 8.0 Hz, 1H), 8.02 – 7.97 (m, 2H), 7.90 – 7.88 (m, 2H), 7.75 – 7.69 (m, 1H), 7.58 – 7.49 (m, 5H), 7.07 – 7.03 (m, 1H), 4.77 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.6, 156.3, 155.5, 147.6, 143.7, 139.6, 136.8, 136.1, 133.9, 132.4, 130.2, 129.2, 128.2, 127.6, 127.5, 127.0, 126.4, 126.1, 124.2, 124.0, 123.2, 46.7. **ESI-MS:** Calcd for C₂₂H₁₅BrN₂O: [M+H⁺] 403.0441, found 403.0448.

2-(6-bromo-[2,2'-bipyridin]-3-yl)-1-(furan-2-yl)ethanone (3ao)

Gray solid (51 mg, 74%); M.P.: 112-114 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, J = 4.4 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.78 – 7.73 (m, 1H), 7.59 – 7.57 (m, 1H), 7.50 (dd, J = 20.0, 8.0 Hz, 2H), 7.21 – 7.16 (m, 2H), 6.55 (dd, J = 3.6, 1.6 Hz, 1H), 4.56 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 185.6, 156.2, 155.5, 152.6, 147.5, 146.0, 143.5, 139.6, 136.8, 128.3, 127.4, 124.0, 123.3, 116.7, 112.2, 42.8. **ESI-MS:** Calcd for C₁₆H₁₁BrN₂O₂: [M+H⁺] 343.0077, found 343.0078.

1-(6-bromo-[2,2'-bipyridin]-3-yl)-3-methylbutan-2-one (**3ap**)

White solid (32 mg, 50%); M.P.: 120-122 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, *J* = 4.8 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.44 (dd, *J* = 20.8, 8.0 Hz, 2H), 7.30 – 7.27 (m, 1H), 4.21 (s, 2H), 2.84 – 2.77 (m, 1H), 1.11 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 210.3, 156.7, 155.7, 147.5, 143.3, 139.4, 136.9, 129.0, 127.4, 124.3, 123.3, 45.0, 40.6, 18.2. **ESI-MS:** Calcd for C₁₅H₁₅BrN₂O: [M+H⁺] 319.0441, found 319.0448.

1-((1s,3s)-adamantan-1-yl)-2-(6-bromo-[2,2'-bipyridin]-3-yl)ethan-1-one (3aq)

White solid (63 mg, 77%); M.P.: 129-131 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.56 – 8.53 (m, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.81 – 7.75 (m, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.28 – 7.23 (m, 1H), 4.31 (s, 2H), 2.03 (s, 3H), 1.81 (d, *J* = 2.8 Hz, 6H), 1.71 (dd, *J* = 27.6, 12.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 211.5, 157.1, 156.2, 147.7, 143.2, 139.2, 136.8, 129.4, 127.2, 124.5, 123.1, 46.5, 40.8, 38.5, 36.5, 28.0. ESI-MS: Calcd for C₂₂H₂₃BrN₂O: [M+H⁺] 410.0994, found 410.1001.

2-(6-chloro-[2,2'-bipyridin]-3-yl)-1-phenylethan-1-one (**3ba**)

White solid (54 mg, 88%); M.P.: 101-102 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 8.0 Hz, 1H), 8.09 (dd, J = 4.8, 0.8 Hz, 1H), 8.01 – 7.98 (m, 2H), 7.78 – 7.72 (m, 1H), 7.63 – 7.56 (m, 2H), 7.51 – 7.46 (m, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.16 – 7.12 (m, 1H), 4.74 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 156.3, 154.7, 149.1, 147.5, 143.9, 137.2, 136.9, 132.8, 128.8, 128.5, 128.1, 123.9, 123.7, 123.2, 43.2. **ESI-MS:** Calcd for C₁₈H₁₃ClN₂O: [M+H⁺] 309.0789, found 309.0798.

2-(6-fluoro-[2,2'-bipyridin]-3-yl)-1-phenylethan-1-one (3ca)

White solid (50 mg, 85%); M.P.: 129-131 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.0 Hz, 1H), 8.08 (d, *J* = 4.4 Hz, 1H), 8.03 – 8.00 (m, 2H), 7.78 – 7.72 (m, 2H), 7.62 – 7.57 (m, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.16 – 7.11 (m, 1H), 6.97 (dd, *J* = 8.0, 3.6 Hz, 1H), 4.76 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 195.1, 166.8, 164.3, 156.2, 155.1, 147.4, 143.6, 139.7, 136.9, 133.6 (d, *J* = 3.0 Hz), 130.7 (d, *J* = 9.0 Hz), 129.0, 127.5, 124.0, 115.6 (d, *J* = 21.0 Hz), 43.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.17. **ESI-MS:** Calcd for C₁₈H₁₃FN₂O: [M+H⁺] 293.1085, found 293.1094.

2-(6-methyl-[2,2'-bipyridin]-3-yl)-1-phenylethan-1-one (3da)

Colorless oil (48 mg, 83%); ¹**H NMR** (400 MHz, CDCl₃) δ 8.19 – 8.16 (m, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.98 – 7.95 (m, 2H), 7.77 – 7.71 (m, 1H), 7.58 – 7.53 (m, 2H), 7.48 – 7.43 (m, 2H), 7.18 (d, J = 8.0 Hz, 1H), 7.15 – 7.10 (m, 1H), 4.67 (s, 2H), 2.63 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.4, 158.2, 156.5, 154.3, 147.6, 141.0, 137.3, 136.7, 132.7, 128.5, 128.2, 126.5, 123.9, 122.9, 122.6, 43.2, 24.3. **ESI-MS:** Calcd for C₁₉H₁₆N₂O: [M+H⁺] 289.1335, found 289.1335.

2-(6-methoxy-[2,2'-bipyridin]-3-yl)-1-phenylethan-1-one (3ea)

White solid (50 mg, 82%); M.P.: 128-130 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.26 (d, *J* = 8.0 Hz, 1H), 8.09 (d, *J* = 4.4 Hz, 1H), 8.03 – 8.00 (m, 2H), 7.76 – 7.70 (m, 1H), 7.59 – 7.52 (m, 2H), 7.50 – 7.45 (m, 2H), 7.12 – 7.08 (m, 1H), 6.80 (d, *J* = 8.4 Hz, 1H), 4.71 (s, 2H), 4.02 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 197.8, 162.2, 157.6, 150.8, 147.3, 144.0, 137.6, 136.4, 132.4, 128.4, 128.1, 123.4, 122.6, 122.5, 110.5, 53.3, 43.1. **ESI-MS:** Calcd for C₁₉H₁₆N₂O₂: [M+H⁺] 305.1285, found 305.1283.

2-(5-bromo-[2,2'-bipyridin]-3-yl)-1-phenylethan-1-one (3fa)

White solid (18 mg, 25%); M.P.: 102-103 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (d, J = 2.4 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 8.08 – 8.06 (m, 1H), 8.01 – 7.98 (m, 2H), 7.82 (d, J = 2.0 Hz, 1H), 7.78 – 7.72 (m, 1H), 7.62 – 7.57 (m, 1H), 7.52 – 7.47 (m, 2H), 7.16 – 7.11 (m, 1H), 4.72 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.4, 157.0, 153.2, 148.7, 147.5, 143.2, 137.2, 136.8, 132.8, 131.8, 128.6, 128.2, 123.6, 123.0, 120.2, 43.7. ESI-MS: Calcd for C₁₈H₁₃BrN₂O: [M+H⁺] 353.0284, found 353.0290.

2-(2-(isoquinolin-1-yl)pyridin-3-yl)-1-phenylethan-1-one (3ga)

Colorless oil (34 mg, 52%); ¹**H NMR** (400 MHz, CDCl₃) δ 8.63 (dd, J = 4.8, 1.6 Hz, 1H), 8.36 (d, J = 6.0 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.0 Hz, 2H), 7.64 – 7.55 (m, 4H), 7.49 – 7.45 (m, 1H), 7.43 – 7.35 (m, 2H), 7.25 – 7.20 (m, 2H), 4.32 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 196.7, 158.1, 156.6, 147.5, 141.3, 139.7, 136.9, 136.4, 133.0, 130.6, 130.3, 128.4, 128.1, 127.6, 127.4, 127.3, 126.7, 123.3, 120.9, 41.9. **ESI-MS:** Calcd for C₂₂H₁₆N₂O: [M+H⁺] 325.1335, found 325.1339.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(phenyl)methanone (4aa)

Yellow solid (52 mg, 73%); M.P.: 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.50 (d, J = 6.8 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 7.65 (d, J = 7.2 Hz, 2H), 7.63 – 7.57 (m, 2H), 7.55 – 7.50 (m, 2H), 7.47 (t, J = 6.8 Hz, 1H), 7.27 – 7.24 (m, 1H), 6.97 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 183.5, 141.5, 136.5, 135.7, 132.9, 130.8, 129.4, 128.8, 128.7, 128.1, 126.9, 126.0, 124.2, 120.1, 118.1, 111.4. **ESI-MS:** Calcd for C₁₈H₁₁BrN₂O: [M+H⁺] 351.0128, found 351.0128.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(p-tolyl)methanone (4ab)

Yellow solid (51 mg, 70%); M.P.: 166-169 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.48 (d, J = 7.2 Hz, 1H), 8.56 – 8.53 (m, 1H), 7.62 – 7.56 (m, 3H), 7.48 – 7.44 (m, 1H), 7.33 – 7.27 (m, 3H), 7.12 (d, J = 8.8 Hz, 1H), 2.48 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.7, 141.3, 138.7, 136.4, 135.7, 132.8, 129.7, 129.3, 128.7, 128.4, 126.8, 125.7, 124.2, 119.9, 118.1, 111.6, 21.6. **ESI-MS:** Calcd for C₁₉H₁₃BrN₂O: [M+H⁺] 365.0284, found 365.0285.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(4-(*tert*-butyl)phenyl)methanone (4ac)

Yellow solid (61 mg, 75%); M.P.: 178-179 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.48 (d, J = 6.8 Hz, 1H), 8.55 (d, J = 8.8 Hz, 1H), 7.63 – 7.57 (m, 3H), 7.53 (d, J = 8.0 Hz, 2H), 7.45 (t, J = 6.8 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 8.8 Hz, 1H), 1.40 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 183.7, 154.5, 138.6, 136.4, 135.6, 132.7, 129.6, 128.7, 128.2, 126.8, 125.7, 125.5, 124.1, 119.9, 118.1, 111.6, 35.0, 31.24. **ESI-MS:** Calcd for C₂₂H₁₉BrN₂O: [M+H⁺] 407.0754, found 407.0759.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(4-methoxyphenyl)methanone (4ad)

Yellow solid (55 mg, 73%); M.P.: 218-219 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.42 (d, J = 7.2 Hz, 1H), 8.56 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.8 Hz, 2H), 7.60 (t, J = 7.6 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.34 – 7.26 (m, 2H), 7.05 (d, J = 8.8 Hz, 2H), 3.95 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 162.0, 136.3, 135.5, 133.8, 132.5, 130.6, 129.6, 128.6, 126.7, 125.4, 123.9, 119.8, 118.1, 113.9, 111.6, 55.5. **ESI-MS:** Calcd for C₁₉H₁₃BrN₂O₂: [M+H⁺] 381.0233, found 381.0236.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(4-fluorophenyl)methanone (4ae)

Yellow solid (56 mg, 77%); M.P.: 184-187 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.52 (d, J = 7.2 Hz, 1H), 8.60 (d, J = 8.4 Hz, 1H), 7.81 – 7.77 (m, 2H), 7.73 – 7.67 (m, 1H), 7.57 – 7.53 (m, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.34 – 7.29 (m, 2H), 7.16 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 182.1, 165.5, 163.0, 137.6, 136.5, 135.7, 133.0, 130.6 (d, J = 8.0 Hz) 129.0 (d, J = 36.0 Hz), 127.0, 126.1, 124.0, 120.1, 118.1, 115.8 (d, J = 22.0 Hz), 111.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -108.42. **ESI-MS:** Calcd for C₁₈H₁₀BrFN₂O: [M+H⁺] 369.0033, found 369.0036.

(2-bromopyrido[2,3-a]indolizin-5-yl)(4-(trifluoromethyl)phenyl)methanone (4ag)

Yellow solid (33 mg, 40%); M.P.: 190-192 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.55 – 10.51 (m, 1H), 8.57 – 8.54 (m, 1H), 7.82 – 7.76 (m, 4H), 7.70 – 7.64 (m, 1H), 7.53 – 7.49 (m, 1H), 7.30 (d, J = 8.8 Hz, 1H), 6.92 (d, J = 9.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 181.5, 144.8, 136.8, 136.2, 133.6, 132.5 (q, J = 33.0 Hz), 129.1, 128.9, 128.5, 127.4, 126.9, 125.8, 123.8 (q, J = 271.0 Hz), 124.2, 120.5, 118.2, 111.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.65. **ESI-MS:** Calcd for C₁₉H₁₀BrF₃N₂O: [M+H⁺] 419.0001, found 419.0001.

(2-bromopyrido[2,3-a]indolizin-5-yl)(4-methoxyphenyl)methanone (4ai)

Yellow solid (51 mg, 70%); M.P.: 175-176 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.52 (d, J = 7.2 Hz, 1H), 8.58 – 8.54 (m, 1H), 7.65 – 7.60 (m, 1H), 7.51 – 7.40 (m, 5H), 7.31 – 7.27 (m, 1H), 7.03 (d, J = 8.8 Hz, 1H), 2.46 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.8, 141.6, 138.6, 136.5, 135.7, 132.9, 131.5, 129.6, 128.9, 128.6, 128.5, 126.9, 125.9, 125.2, 124.3, 120.1, 118.1, 111.5, 21.4. **ESI-MS:** Calcd for C₁₉H₁₃BrN₂O: [M+H⁺] 365.0284, found 365.0292.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(3-fluorophenyl)methanone (4aj)

Yellow solid (48 mg, 66%); M.P.: 208-210 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.51 (d, J = 7.2 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H), 7.67 – 7.62 (m, 1H), 7.54 – 7.47 (m, 2H), 7.44 – 7.41 (m, 1H), 7.39 – 7.35 (m, 1H), 7.32 – 7.26 (m, 2H), 7.00 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 181.6 (d, J = 2.0 Hz), 164.0, 161.5, 143.7, 143.6, 136.7, 136.0, 130.5 (d, J = 8.0 Hz), 129.1 (d, J = 5.0 Hz), 127.2, 126.5, 124.3, 123.8 (d, J = 3.0 Hz), 120.3, 118.2, 117.7 (d, J = 21.0 Hz), 115.2 (d, J = 22.0 Hz), 111.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.38. ESI-MS: Calcd for C₁₈H₁₀BrFN₂O: [M+H⁺] 369.0033, found 369.0038.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(o-tolyl)methanone (4ak)

Yellow solid (56 mg, 76%); M.P.: 220-222 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.72 (d, J = 6.8 Hz, 1H), 8.57 (d, J = 8.4 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.54 – 7.51 (m, 1H), 7.46 – 7.42 (m, 1H), 7.37 – 7.31 (m, 3H), 7.23 (d, J = 8.8 Hz, 1H), 6.45 (d, J = 8.8 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 184.0, 141.4, 136.6, 136.1, 134.8, 133.3, 130.9, 129.5, 129.2, 128.9, 127.5, 126.8, 126.5, 126.2, 124.5, 120.3, 118.1, 111.7, 19.0. ESI-MS: Calcd for C₁₉H₁₃BrN₂O: [M+H⁺] 364.0211, found 364.0218.

(2-bromopyrido[2,3-a]indolizin-5-yl)(2-fluorophenyl)methanone (4al)

Yellow solid (67 mg, 91%); M.P.: 215-216 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.70 (d, J = 6.8 Hz, 1H), 8.60 (d, J = 8.4 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.61 – 7.53 (m, 3H), 7.39 – 7.28 (m, 3H), 6.85 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 160.3, 157.9, 136.8, 136.4, 133.6, 131.8 (d, J = 8.0 Hz), 130.0 (d, J = 17.0 Hz), 129.4 (d, J = 3.0 Hz), 128.6, 127.6, 127.0, 124.6 (d, J = 39.0 Hz), 120.5, 118.2, 116.6, 116.4 (d, J = 21.0 Hz), 112.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.96. **ESI-MS:** Calcd for C₁₈H₁₀BrFN₂O: [M+H⁺] 367.9961, found 367.9966.

(2-bromopyrido[2,3-a]indolizin-5-yl)(3,4,5-trimethoxyphenyl)methanone (4am)

Yellow solid (53 mg, 60%); M.P.: 221-222 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.47 – 10.44 (m, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 7.65 – 7.60 (m, 1H), 7.51 – 7.46 (m, 1H), 7.34 (d, *J* = 8.8 Hz, 1H), 7.22 (d, *J* = 8.8 Hz, 1H), 6.93 (s, 2H), 3.96 (s, 3H), 3.84 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 182.8, 153.4, 140.3, 136.7, 136.6, 135.8, 133.1, 129.7, 128.8, 126.9, 126.0, 124.2, 120.1, 118.2, 111.2, 105.5, 61.0, 56.2. **ESI-MS:** Calcd for C₂₁H₁₇BrN₂O₄: [M+H⁺] 441.0444, found 441.0447.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(naphthalen-1-yl)methanone (4an)

Yellow solid (69 mg, 86%); M.P.: 222-224 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.81 (d, J = 7.2 Hz, 1H), 8.57 – 8.52 (m, 1H), 8.04 – 8.00 (m, 1H), 7.95 – 7.92 (m, 2H), 7.67 – 7.62 (m, 1H), 7.60 – 7.47 (m, 4H), 7.42 – 7.37 (m, 1H), 7.03 (dd, J = 8.8, 4.4 Hz, 1H), 6.25 (dd, J = 8.8, 0.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 183.0, 139.1, 136.5, 136.1, 133.6, 133.3, 130.2, 129.8, 129.3, 129.0, 128.2, 127.2, 126.9, 126.6, 126.4, 125.2, 125.1, 125.0, 124.3, 120.4, 118.0, 112.2. ESI-MS: Calcd for C₂₂H₁₃BrN₂O: [M+H⁺] 401.0284, found 401.0293.

(2-bromopyrido[2,3-*a*]indolizin-5-yl)(furan-2-yl)methanone (4ao)

Yellow solid (56 mg, 82%); M.P.: 197-199 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.31 (d, J = 7.2 Hz, 1H), 8.55 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.68 (dd, J = 1.6, 0.8 Hz, 1H), 7.61 – 7.56 (m, 1H), 7.49 – 7.41 (m, 2H), 7.20 – 7.18 (m, 1H), 6.68 – 6.66 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 153.2, 144.8, 136.6, 135.8, 133.0, 129.7, 128.6, 127.0, 125.8, 123.4, 119.9, 118.2, 116.3, 112.2, 111.6. **ESI-MS:** Calcd for C₁₆H₉BrN₂O₂: [M+H⁺] 340.9920, found 340.9927.

1-(2-bromopyrido[2,3-a]indolizin-5-yl)-2-methylpropan-1-one (4ap)

Yellow solid (41 mg, 64%); M.P.: 127-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.67 (d, J = 7.2 Hz, 1H), 8.54 (d, J = 8.4 Hz, 1H), 8.17 (d, J = 8.8 Hz, 1H), 7.61 (d, J = 8.8 Hz, 1H), 7.58 – 7.53 (m, 1H), 7.44 – 7.39 (m, 1H), 3.59 – 3.51 (m, 1H), 1.36 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 192.2, 135.9, 135.8, 132.5, 129.2, 129.0, 127.4, 125.4, 122.1, 120.1, 118.0, 110.9, 37.5, 19.2. **ESI-MS:** Calcd for C₁₅H₁₃BrN₂O: [M+H⁺] 317.0284, found 317.0284.

(2-chloropyrido[2,3-a]indolizin-5-yl)(phenyl)methanone (4ba)

Yellow solid (49 mg, 80%); M.P.: 156-158 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.50 (d, J = 6.8 Hz, 1H), 8.51 (d, J = 8.4 Hz, 1H), 7.66 – 7.56 (m, 4H), 7.54 – 7.50 (m, 2H), 7.48 – 7.43 (m, 1H), 7.10 (dd, J = 24.8, 8.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 183.4, 146.0, 141.5, 134.9, 132.9, 130.7, 129.8, 128.8, 128.7, 128.1, 125.9, 124.0, 123.6, 120.0, 118.0, 111.4. ESI-MS: Calcd for C₁₈H₁₁ClN₂O: [M+H⁺] 307.0633, found 307.0642.

(2-fluoropyrido[2,3-*a*]indolizin-5-yl)(phenyl)methanone (4ca)

Yellow solid (41 mg, 70%); M.P.: 139-142 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.58 (d, J = 7.2 Hz, 1H), 8.50 (d, J = 8.4 Hz, 1H), 7.73 – 7.70 (m, 2H), 7.66 – 7.57 (m, 4H), 7.53 – 7.48 (m, 1H), 7.32 – 7.27 (m, 1H), 6.92 (dd, J = 9.2, 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 182.1, 165.5, 163.0, 137.6, 136.5, 135.7, 133.0, 130.6 (d, J = 8.0 Hz), 129.0 (d, J = 36.0 Hz), 127.0, 126.1, 124.0, 120.1, 118.1, 115.8 (d, J = 22.0 Hz), 111.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.16. **ESI-MS:** Calcd for C₁₈H₁₁FN₂O: [M+H⁺] 291.0928, found 291.0932.

(2-methylpyrido[2,3-a]indolizin-5-yl)(phenyl)methanone (4da)

Yellow solid (44 mg, 77%); M.P.: 173-175 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.58 (d, J = 7.2 Hz, 1H), 8.59 – 8.55 (m, 1H), 7.68 – 7.65 (m, 2H), 7.60 – 7.55 (m, 2H), 7.54 – 7.49 (m, 2H), 7.46 – 7.41 (m, 1H), 7.08 – 7.01 (m, 2H), 2.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 183.1, 154.3, 142.1, 135.8, 134.0, 130.4, 129.0, 128.6, 128.1, 127.4, 125.5, 124.2, 123.7, 119.5, 117.8, 111.5, 24.6. **ESI-MS:** Calcd for C₁₉H₁₄N₂O: [M+H⁺] 287.1179, found 287.1186.

(2-methoxypyrido[2,3-*a*]indolizin-5-yl)(phenyl)methanone (4ea)

Yellow solid (42 mg, 70%); **M.P.**: 189-190 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 10.47 (d, J = 7.2 Hz, 1H), 8.37 (d, J = 8.8 Hz, 1H), 7.68 – 7.64 (m, 2H), 7.59 – 7.45 (m, 4H), 7.35 – 7.30 (m, 1H), 7.02 (d, J = 9.2 Hz, 1H), 6.70 (d, J = 9.2 Hz, 1H), 4.05 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 182.9, 160.8, 142.1, 133.0, 132.9, 130.5, 130.4, 128.7, 128.5, 128.2, 124.5, 122.2, 118.5, 117.7, 114.2, 111.9, 53.3. **ESI-MS:** Calcd for C₁₉H₁₄N₂O₂: [M+H⁺] 303.1128, found 303.1135.

(3-bromopyrido[2,3-a]indolizin-5-yl)(phenyl)methanone (4fa)

Yellow solid (16 mg, 22%); M.P.: 206-208 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.58 (d, J = 7.2 Hz, 1H), 8.57 – 8.55 (m, 2H), 7.69 – 7.62 (m, 4H), 7.58 – 7.50 (m, 3H), 7.25 (d, J = 2.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 146.2, 141.4, 134.1, 131.0, 129.2, 128.8, 128.7, 128.0, 126.7, 126.5, 120.2, 120.0, 117.9, 110.8. ESI-MS: Calcd for C₁₈H₁₁BrN₂O: [M+H⁺] 351.0128, found 351.0128.

phenyl(pyrido[2',3':3,4]pyrrolo[2,1-*a*]isoquinolin-8-yl)methanone (**4ga**)

Yellow solid (15 mg, 24%); M.P.: 176-178 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.22 (d, J = 7.6 Hz, 1H), 9.99 – 9.96 (m, 1H), 8.73 (dd, J = 4.0, 1.6 Hz, 1H), 7.91 (d, J = 7.6 Hz, 1H), 7.86 – 7.81 (m, 1H), 7.76 – 7.69 (m, 3H), 7.64 – 7.59 (m, 2H), 7.57 – 7.52 (m, 2H), 7.25 – 7.21 (m, 1H), 7.18 – 7.14 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 184.3, 146.4, 142.0, 137.7, 130.9, 129.2, 128.6, 128.6, 127.8, 126.7, 126.2, 125.8, 125.7, 125.5, 121.6, 118.6, 112.8. ESI-MS: Calcd for C₂₂H₁₄N₂O: [M+H⁺] 323.1179, found 323.1185.

Control Experiment

A sealed tube contained **3aa** (70.6 mg, 0.2 mmol), AgOAc (166.91 mg, 1.0 mmol) was filled and purged with nitrogen gas three times. Then DCE (4.0 mL) was added to the system via syringe under a nitrogen atmosphere and the reaction was allowed to stir at 110 °C for 10 h. The reaction solution was concentrated in vacuum and the residue was purified by column chromatography on silica gel to afford the desired pure product **4aa** (46 mg, 65%) as a yellow solid, next replace the added AgOAc with $Zn(OAc)_2$ (183.48 mg, 1.0 mmol), and the product **4aa** was not detected.

Synthetic Transformations:

A mixture of **3aa** (70.6 mg, 0.2 mmol), phenylacetylene (24.5 mg, 0.24 mmol), $PdCl_2(PPh_3)_2$ (2.8 mg, 2 mmol%), Et_3N (2.0 mL) and CuI (0.5 mg, 1 mmol%) in THF (10.0 mL) was heated at 70 °C overnight. The mixture was cooled to r.t., and the solvent was removed at reduced pressure. The residue was purified by silica gel chromatography to give **5** (58 mg, 77%) as a yellow solid.

M.P.: 121-122 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 8.0 Hz, 1H), 8.14 – 8.12 (m, 1H), 7.99 – 7.96 (m, 2H), 7.78 – 7.73 (m, 1H), 7.66 – 7.61 (m, 3H), 7.59 – 7.54 (m, 2H), 7.49 – 7.44 (m, 2H), 7.39 – 7.34 (m, 3H), 7.16 – 7.11 (m, 1H), 4.73 (s, 2H). ¹³**C** NMR (100 MHz,

CDCl₃) δ 196.8, 157.2, 155.2, 147.4, 141.4, 141.1, 137.1, 136.8, 132.7, 132.0, 129.4, 128.8, 128.5, 128.3, 128.1, 126.6, 124.1, 123.0, 122.3, 88.8, 88.7, 43.6. **ESI-MS**: Calcd for C₂₆H₁₈N₂O: [M+H⁺] 375.1492, found 375.1491.

A 50.0 mL 3-neck flask was charged with **3aa** (70.6 mg, 0.2 mmol) in 5.0 mL THF under N_2 , and cooled to - 78 °C with a acetone/liquid N_2 slush bath. A n-butyl llithium solution (0.3 mL, 0.4 mmol) was added dropwise to the slurry which changed color from white to orange. The temperature was then raised to - 78 °C and within one hour it became an orange solution. Then in sequence, 5.0 mL methanol and then 2.0 mL H₂O were added to the solution. The THF and methanol were removed by rotary evaporation and a yellow solid was isolated by vacuum filtration of the aqueous supernatent. The residue was purified by silica gel chromatography to give **6** (44 mg, 81%) as a white solid.

M.P.: 74-76 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.65 (dd, J = 4.8, 1.6 Hz, 1H), 8.15 – 8.11 (m, 2H), 8.01 – 7.97 (m, 2H), 7.78 – 7.72 (m, 1H), 7.78 – 7.65 (m, 1H), 7.59 – 7.54 (m, 1H), 7.50 – 7.45 (m, 2H), 7.32 (dd, J = 7.6, 4.8 Hz, 1H), 7.15 – 7.11 (m, 1H), 4.72 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 197.1, 157.9, 154.9, 147.8, 147.5, 140.9, 137.3, 136.7, 132.6, 129.9, 128.5, 128.2, 123.7, 123.1, 122.7, 43.8. **ESI-MS**: Calcd for C₁₈H₁₄N₂O: [M+H⁺] 275.1179, found 275.1188.

In a two-necked round bottomed flask **3aa** (70.6 mg, 0.2 mmol) was dissolved in methanol (1.0 mL) under a nitrogen atmosphere at ice-water temperature. Next, sodium borohydride(3.8 mg, 0.1 mmol) was added portionwise with stirring at a rate sufficient enough to maintain the reaction temperature at 0 - 5 °C. The reaction mixture was stirred for 1 h. Next, brine(1.0 mL) was added and the resultant suspension was stirred at room temperature for 10 min. The reaction mixture was diluted by the addition of AcOEt (5.0 mL) and distilled

water (3.0 mL),and the layers were separated. The aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine and dried over MgSO₄. Next, the solvent was evaporated to dryness leaving a crude product, the residue was purified by column chromatography to give 7 (64 mg, 90%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.69 (d, J = 4.8 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.92 (t, J = 8.0 Hz, 1H), 7.45 – 7.41 (m, 4H), 7.37 (t, J = 7.6 Hz, 2H), 7.32 – 7.27 (m, 2H), 5.13 – 5.09 (m, 1H), 3.15 (d, J = 2.8 Hz, 1H), 3.14 (s, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 156.3, 155.6, 146.7, 145.4, 142.2, 139.1, 138.2, 132.4, 128.3, 127.7, 127.1, 125.7, 125.6, 123.8, 74.6, 41.2. **ESI-MS**: Calcd for C₁₈H₁₅BrN₂O: [M+H⁺] 355.0441, found 355.0442.

A mixture of MePPh₃Br (107.2 mg, 0.3 mmol) and KO'Bu (33.7 mg, 0.3 mmol) in THF (2.0 mL) was stirred at room temperature for 1 h. Then **3aa** (70.6 mg, 0.2 mmol) was added dropwise to the reaction mixture at 0 °C. The reaction was stirred at room temperature until the starting material was disappeared. After that the solvents were evaporated under reduced pressure. The residue was purified by column chromatography to give **8** (42 mg, 60%) as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃) δ 8.58 – 8.56 (m, 1H), 7.77 – 7.71 (m, 2H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.30 (d, *J* = 8.0 Hz, 1H), 7.26 – 7.18 (m, 4H), 7.17 – 7.13 (m, 2H), 5.34 (s, 1H), 4.81 (d, *J* = 1.2 Hz, 1H), 4.14 (s, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 157.3, 156.8, 148.4, 146.2, 141.3, 140.2, 138.9, 136.8, 133.4, 128.3, 127.6, 127.5, 126.1, 124.5, 123.2, 114.9, 37.4. **ESI-MS**: Calcd for C₁₉H₁₅BrN₂: [M+H⁺] 351.0491, found 351.0493.

A mixture of **4aa** (70.2 mg, 0.2 mmol), phenylacetylene (24.5 mg, 0.24 mmol), $PdCl_2(PPh_3)_2$ (2.8 mg, 2 mmol%), Et_3N (2.0 mL) and CuI (0.5 mg, 1 mmol%) in THF (10.0 mL) was heated at 70 °C overnight. The mixture was cooled to r.t., and the solvent was

removed at reduced pressure. The residue was purified by silica gel chromatography to give **9** (48 mg, 65%) as a yellow solid.

M.P.: 226-227 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.56 (d, J = 6.8 Hz, 1H), 8.69 (d, J = 8.4 Hz, 1H), 7.70 – 7.67 (m, 2H), 7.64 – 7.46 (m, 7H), 7.39 – 7.34 (m, 4H), 7.11 (d, J = 8.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 183.6, 141.8, 138.2, 136.2, 134.0, 132.1, 130.8, 129.2, 128.9, 128.7, 128.4, 128.2, 126.9, 126.5, 126.4, 124.6, 122.4, 120.3, 118.4, 111.9, 89.6, 89.4. **ESI-MS**: Calcd for C₂₆H₁₆N₂O: [M+H⁺] 373.1335, found 373.1341.

A mixture of the **3aa** (35.1 mg, 0.1 mmol) in anhydrous THF (2.0 mL) was degassed by bubbling argon for few minutes. Then, $Pd(OAc)_2$ (1.1 mg, 0.005 mmol), PPh_3 (5.3 mg, 0.02 mmol), TMEDA (19.9 mg, 0.17 mmol) and finally NaBH₄ (6.4 mg, 0.17 mmol) were introduced in sequence. The mixture was stirred at room temperature under argon for 1 h. The residue was taken up in brine and extracted with ethyl acetate. The organic phase was separated, dried (Na₂SO₄), the solvent was evaporated and the residue was purified by column chromatography to give **10** (25 mg, 90%) as a yellow solid.

M.P.: 137-139 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.60 (d, J = 7.2 Hz, 1H), 8.58 – 8.55 (m, 2H), 7.67 – 7.64 (m, 2H), 7.60 – 7.44 (m, 5H), 7.17 – 7.10 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 183.3, 145.4, 141.9, 136.1, 134.3, 130.4, 129.0, 128.6, 128.0, 127.0, 125.9, 125.8, 122.7, 119.9, 117.8, 111.4. **ESI-MS**: Calcd for C₁₈H₁₂N₂O: [M+H⁺] 273.1022, found 273.1025.

References:

- [1] S. Wu, Z. Wang, Y. Bao, C. Chen, K. Liu, and B. Zhu, *Chem. Commun.*, 2020, 56, 4408–4411.
- [2] Y. Xu, X. Zhou, G. Zheng and X. Li, Org. Lett., 2017, 19, 5256-5259.
- [3] A. G. Talero, B. S. Martins and A. C. B. Burtoloso, Org. Lett., 2018, 20, 7206-7211.

NMR Spectra

S25

-2.434

¹³C NMR (100 MHz, CDCl₃)

Br o N t Bu 3ac

¹H NMR (400 MHz, CDCI₃)

3ac ¹³C NMR (100 MHz, CDCl₃)

-1.362

S28

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCI₃)

Br Ö 3af

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

Br o Br

3ah ¹H NMR (400 MHz, CDCl₃)

-4.655

S34

8.195 8.175 8.175 8.175 8.137 8.137 8.137 8.137 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125 8.127 8.125

-2.414

¹H NMR (400 MHz, CDCl₃)

S35

¹H NMR (400 MHz, CDCl₃)

-4.669

-2.360

¹H NMR (400 MHz, CDCI₃)

8.227 8.207 8.201 7.399 7.7.999 7.7.999 7.7.999 7.7.734 7.7.34 7.511 7.551 7.511 7.551 7.511 7.551 7.511 7.554 7.7.193 7.7.193 7.7.195 7.7.136 7.7.146

Bı 3al

¹H NMR (400 MHz, CDCl₃)

3al ¹³C NMR (100 MHz, CDCI₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCI₃)

-4.558

3aq ¹H NMR (400 MHz, CDCl₃)

3aq ¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

-2.626

¹H NMR (400 MHz, CDCI₃)

¹³C NMR (100 MHz, CDCl₃)

28.694 28.688 28.688 28.165 28.1455 28.067 28.067 28.067 28.067 28.067 28.065 28.067 28.065 28.065 28.065 28.057 29.057 2

3fa ¹H NMR (400 MHz, CDCI₃)

¹H NMR (400 MHz, CDCI₃)

-2.484

4ab ¹H NMR (400 MHz, CDCl₃)

4ac ¹H NMR (400 MHz, CDCI₃)

-1.401

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

Br N H 4ae

10.530

¹H NMR (400 MHz, CDCl₃)

4ae ¹³C NMR (100 MHz, CDCl₃)

10.540 10.553 10.553 10.553 10.553 10.553 10.5518 8.568 8.568 8.564 8.544 8.544 8.568 8.568 8.569 7.7782 7.7782 7.7782 7.7687 7.7529 7.75200 7.75200 7.75200 7.75200 7.752

Br CF₃

4ag ¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

10.514

¹H NMR (400 MHz, CDCl₃)

-2.273

₩00 .02-0.0 3.02 8. 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 f1 (ppm) 10.5 9.5 9.0 8.5 8.0 7.5 1.5 1.0 0.5 0.0 -0 2.5 2.0 -177.58 157.86 136.79 135.41 135.41 133.52 133.52 133.52 133.52 133.35 135.41 123.45 122.46 122.46 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.45 122.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 125.55 12 77.00 Br 4al

¹³C NMR (100 MHz, CDCl₃)

200 190 180

80 70 60 50 40 30 20 10 0 -1

170 160 150 140 130 120 110 100 90 f1 (ppm)

¹H NMR (400 MHz, CDCI₃)

¹H NMR (400 MHz, CDCI₃)

4an ¹³C NMR (100 MHz, CDCI₃)

10.317 8.556 7.807 7.679 7.679 7.677 7.677 7.476 6.668 6.668

¹H NMR (400 MHz, CDCI₃)

10.584

4ca ¹H NMR (400 MHz, CDCl₃)

10.568 (10.568) (10.568) (10.568) (10.568) (10.568) (10.568) (10.568) (10.568) (10.568) (10.568) (10.568) (10.568) (10.552) (10.5

¹H NMR (400 MHz, CDCI₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

S76

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

8.698 8.686 8.037 7.942 7.7348 7.7348 7.7316 7.7326 7.73276 7.732676 7.7326 7.7326 7.7326 7.7326 7.7326 7.7326 7.7

¹³C NMR (100 MHz, CDCI₃)

8.579 8.576 8.576 8.576 7.7456 7.7446 7.7446 7.74313 7.7412 7.7413 7.7414 7.7413 7.7413 7.7413 7.7413 7.7413 7.7414 7.7413 7.74147 7.74147 7.74147 7.74147 7.74147 7.74147 7.74147 7.741

¹H NMR (400 MHz, CDCI₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

8:576 8:558 8:558 8:558 8:558 8:558 8:558 8:558 8:558 8:558 8:558 8:558 8:558 8:558 7:7,758 8:558 7:7,758 7:7,482 7:7,482 7:7,482 7:7,482 7:7,482 7:7,482 7:7,482 7:7,482 7:7,482 7:7,482 7:7,482 7:7,128 7:7,128 7:7,128

-10.607

¹H NMR (400 MHz, CDCI₃)

Crystallography:

Single crystals of complexes **3ab** (CCDC reference number 2033676), **3ea** (CCDC reference number 2034526) and **4aa** (CCDC reference number 2034525) suitable for X-ray diffraction were obtained by crystallization from n-hexane/CH₂Cl₂ (2:1). Data collection was performed on a Bruker SMART 1000, using graphite-monochromated Mo K α radiation (ω -2 θ scans, $\lambda = 0.71073$ Å). Semiempirical absorption corrections were applied for these complexes. The structures were solved by direct methods and refined by full-matrix least squares. All calculations were using the SHELXL-97 program system. The crystal data and summary of X-ray data collection are presented in Tables 1-14.

Figure 1. ORTEP drawing for the product 3ab.

Figure 2. ORTEP drawing for the product 3ea.

Figure 3. ORTEP drawing for the product 4aa.

X-Ray Crystallographic Data of 3ab, 3ea and 4aa:

X-Ray crystallographic data of **3ab**:

Table 1. Crystal data and st	ructure refinement for N191217A.		
Identification code	n191217a		
Empirical formula	C19 H15 Br N2 O		
Formula weight	367.24		
Temperature	296(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Monoclinic, P 21/c		
Unit cell dimensions	a = 10.730(4) A alpha = 90 deg.		
b = 9.218(3) A beta = 95.63	35(7) deg.		
c = 16.091(6) A gamma = 90) deg.		
Volume	1583.9(10) A^3		
Z, Calculated density	4, 1.540 Mg/m^3		
Absorption coefficient	2.601 mm^-1		
F(000)	744		
Crystal size	0.220 x 0.210 x 0.180 mm		
Theta range for data collection	1.907 to 26.499 deg.		
Limiting indices	-13<=h<=13, -9<=k<=11, -20<=l<=18		
Reflections collected / unique	10044 / 3285 [R(int) = 0.0611]		
Completeness to theta = 25.242	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3285 / 0 / 208		
Goodness-of-fit on F^2	1.030		
Final R indices [I>2sigma(I)]	R1 = 0.0416, $wR2 = 0.0812$		
R indices (all data)	R1 = 0.0737, $wR2 = 0.0885$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.337 and -0.433 e.A^-3		

	Х	у	Z	U(eq)
Br(1)	6298(1)	5282(1)	2119(1)	46(1)
N(1)	4741(2)	5400(3)	3364(2)	35(1)
N(2)	2626(2)	5526(3)	4947(2)	44(1)
O(1)	2653(2)	8942(3)	4460(2)	61(1)
C(1)	5677(3)	6092(3)	3081(2)	34(1)
C(2)	6232(3)	7317(3)	3439(2)	42(1)
C(3)	5760(3)	7817(3)	4142(2)	40(1)
C(4)	4760(3)	7143(3)	4477(2)	33(1)
C(5)	4264(2)	5921(3)	4054(2)	32(1)
C(6)	3205(3)	5041(3)	4313(2)	33(1)
C(7)	2850(3)	3766(3)	3900(2)	43(1)
C(8)	1884(3)	2956(4)	4168(2)	53(1)
C(9)	1291(3)	3460(4)	4822(2)	53(1)
C(10)	1692(3)	4731(4)	5193(2)	53(1)
C(11)	4314(3)	7745(3)	5254(2)	38(1)
C(12)	3043(3)	8460(3)	5135(2)	35(1)
C(13)	2327(3)	8660(3)	5870(2)	34(1)
C(14)	1302(3)	9578(3)	5797(2)	42(1)
C(15)	582(3)	9766(4)	6446(2)	49(1)
C(16)	849(3)	9054(4)	7196(2)	47(1)
C(17)	1889(3)	8176(4)	7269(2)	53(1)
C(18)	2620(3)	7979(4)	6626(2)	48(1)
C(19)	40(3)	9216(5)	7891(2)	73(1)

Table 2.Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for N191217A. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Br(1)-C(1)	1.899(3)
N(1)-C(1)	1.309(4)
N(1)-C(5)	1.355(4)
N(2)-C(6)	1.324(4)
N(2)-C(10)	1.333(4)
O(1)-C(12)	1.210(3)
C(1)-C(2)	1.376(4)
C(2)-C(3)	1.365(4)
C(2)-H(2)	0.9300
C(3)-C(4)	1.393(4)
C(3)-H(3)	0.9300
C(4)-C(5)	1.394(4)
C(4)-C(11)	1.489(4)
C(5)-C(6)	1.489(4)
C(6)-C(7)	1.385(4)
C(7)-C(8)	1.381(4)
C(7)-H(7)	0.9300
C(8)-C(9)	1.364(5)
C(8)-H(8)	0.9300
C(9)-C(10)	1.365(5)
C(9)-H(9)	0.9300
C(10)-H(10)	0.9300
C(11)-C(12)	1.509(4)
C(11)-H(11A)	0.9700
C(11)-H(11B)	0.9700
C(12)-C(13)	1.483(4)
C(13)-C(18)	1.378(4)
C(13)-C(14)	1.384(4)
C(14)-C(15)	1.369(5)
C(14)-H(14)	0.9300
C(15)-C(16)	1.379(5)
C(15)-H(15)	0.9300
C(16)-C(17)	1.374(5)
C(16)-C(19)	1.489(5)
C(17)-C(18)	1.370(4)
С(17)-Н(17)	0.9300
C(18)-H(18)	0.9300
C(19)-H(19A)	0.9600
C(19)-H(19B)	0.9600
C(19)-H(19C)	0.9600
C(1)-N(1)-C(5)	118.4(3)
C(6)-N(2)-C(10)	117.8(3)

 Table 3.
 Bond lengths [A] and angles [deg] for N191217A.

N(1)-C(1)-C(2)	124.8(3)
N(1)-C(1)-Br(1)	115.8(2)
C(2)-C(1)-Br(1)	119.4(2)
C(3)-C(2)-C(1)	116.3(3)
C(3)-C(2)-H(2)	121.8
C(1)-C(2)-H(2)	121.8
C(2)-C(3)-C(4)	122.2(3)
C(2)-C(3)-H(3)	118.9
C(4)-C(3)-H(3)	118.9
C(5)-C(4)-C(3)	116.3(3)
C(5)-C(4)-C(11)	124.9(3)
C(3)-C(4)-C(11)	118.8(3)
N(1)-C(5)-C(4)	122.0(3)
N(1)-C(5)-C(6)	113.3(2)
C(4)-C(5)-C(6)	124.7(3)
N(2)-C(6)-C(7)	121.9(3)
N(2)-C(6)-C(5)	117.4(3)
C(7)-C(6)-C(5)	120.6(3)
C(8)-C(7)-C(6)	119.3(3)
C(8)-C(7)-H(7)	120.4
C(6)-C(7)-H(7)	120.4
C(9)-C(8)-C(7)	118.5(3)
C(9)-C(8)-H(8)	120.7
C(7)-C(8)-H(8)	120.7
C(8)-C(9)-C(10)	118.6(3)
C(8)-C(9)-H(9)	120.7
C(10)-C(9)-H(9)	120.7
N(2)-C(10)-C(9)	123.8(3)
N(2)-C(10)-H(10)	118.1
C(9)-C(10)-H(10)	118.1
C(4)-C(11)-C(12)	114.7(2)
C(4)-C(11)-H(11A)	108.6
C(12)-C(11)-H(11A)	108.6
C(4)-C(11)-H(11B)	108.6
C(12)-C(11)-H(11B)	108.6
H(11A)-C(11)-H(11B)	107.6
O(1)-C(12)-C(13)	120.7(3)
O(1)-C(12)-C(11)	120.1(3)
C(13)-C(12)-C(11)	119.1(3)
C(18)-C(13)-C(14)	117.6(3)
C(18)-C(13)-C(12)	123.8(3)
C(14)-C(13)-C(12)	118.6(3)
C(15)-C(14)-C(13)	121.1(3)
C(15)-C(14)-H(14)	119.4

C(13)-C(14)-H(14)	119.4
C(14)-C(15)-C(16)	121.5(3)
C(14)-C(15)-H(15)	119.3
C(16)-C(15)-H(15)	119.3
C(17)-C(16)-C(15)	116.9(3)
C(17)-C(16)-C(19)	121.6(3)
C(15)-C(16)-C(19)	121.5(3)
C(18)-C(17)-C(16)	122.3(3)
C(18)-C(17)-H(17)	118.8
С(16)-С(17)-Н(17)	118.8
C(17)-C(18)-C(13)	120.5(3)
C(17)-C(18)-H(18)	119.7
C(13)-C(18)-H(18)	119.7
C(16)-C(19)-H(19A)	109.4
C(16)-C(19)-H(19B)	109.6
H(19A)-C(19)-H(19B)	109.5
C(16)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for N191217A.The anisotropic displacement factor exponent takes the form:-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
Br(1)	54(1)	48(1)	39(1)	2(1)	16(1)	4(1)
N(1)	38(1)	33(1)	34(2)	0(1)	7(1)	1(1)
N(2)	44(2)	39(2)	50(2)	-4(1)	18(1)	-3(1)
O(1)	70(2)	66(2)	48(2)	22(1)	19(1)	30(1)
C(1)	37(2)	33(2)	34(2)	4(1)	9(1)	5(1)
C(2)	44(2)	38(2)	46(2)	6(2)	14(2)	-6(2)
C(3)	43(2)	27(2)	49(2)	-4(2)	6(2)	-2(1)
C(4)	38(2)	26(2)	36(2)	0(1)	3(1)	5(1)
C(5)	31(2)	29(2)	35(2)	6(1)	3(1)	2(1)
C(6)	32(2)	28(2)	38(2)	0(1)	4(1)	1(1)
C(7)	40(2)	45(2)	45(2)	-9(2)	11(2)	-5(2)
C(8)	51(2)	44(2)	65(3)	-7(2)	10(2)	-15(2)
C(9)	43(2)	49(2)	69(3)	9(2)	15(2)	-7(2)
C(10)	55(2)	52(2)	57(2)	3(2)	23(2)	0(2)
C(11)	41(2)	34(2)	38(2)	-9(1)	4(2)	0(1)
C(12)	43(2)	23(2)	41(2)	0(1)	10(2)	3(1)
C(13)	40(2)	26(2)	38(2)	-2(1)	4(1)	-1(1)
C(14)	44(2)	40(2)	45(2)	4(2)	6(2)	3(2)
C(15)	41(2)	46(2)	62(3)	-10(2)	10(2)	5(2)
C(16)	42(2)	52(2)	48(2)	-17(2)	9(2)	-5(2)
C(17)	59(2)	62(3)	39(2)	3(2)	9(2)	5(2)
C(18)	49(2)	54(2)	41(2)	3(2)	6(2)	13(2)
C(19)	60(2)	102(4)	61(3)	-14(2)	22(2)	2(2)

	Х	У	Z	U(eq)
H(2)	6892	7779	3213	51
H(3)	6118	8634	4407	48
H(7)	3258	3460	3447	52
H(8)	1642	2086	3907	63
H(9)	628	2948	5011	64
H(10)	1289	5061	5643	64
H(11A)	4920	8451	5489	45
H(11B)	4283	6965	5656	45
H(14)	1099	10076	5299	51
H(15)	-103	10388	6379	59
H(17)	2104	7700	7772	64
H(18)	3320	7380	6701	57
H(19A)	-316	10172	7875	110
H(19B)	533	9073	8415	110
H(19C)	-619	8509	7830	110

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) forN191217A.

C(5)-N(1)-C(1)-C(2)	0.6(4)
C(5)-N(1)-C(1)-Br(1)	179.5(2)
N(1)-C(1)-C(2)-C(3)	0.6(5)
Br(1)-C(1)-C(2)-C(3)	-178.2(2)
C(1)-C(2)-C(3)-C(4)	-0.9(5)
C(2)-C(3)-C(4)-C(5)	0.2(4)
C(2)-C(3)-C(4)-C(11)	179.1(3)
C(1)-N(1)-C(5)-C(4)	-1.5(4)
C(1)-N(1)-C(5)-C(6)	180.0(2)
C(3)-C(4)-C(5)-N(1)	1.1(4)
C(11)-C(4)-C(5)-N(1)	-177.8(3)
C(3)-C(4)-C(5)-C(6)	179.4(3)
C(11)-C(4)-C(5)-C(6)	0.5(4)
C(10)-N(2)-C(6)-C(7)	1.2(5)
C(10)-N(2)-C(6)-C(5)	-178.8(3)
N(1)-C(5)-C(6)-N(2)	-175.5(3)
C(4)-C(5)-C(6)-N(2)	6.0(4)
N(1)-C(5)-C(6)-C(7)	4.6(4)
C(4)-C(5)-C(6)-C(7)	-173.9(3)
N(2)-C(6)-C(7)-C(8)	-1.5(5)
C(5)-C(6)-C(7)-C(8)	178.4(3)
C(6)-C(7)-C(8)-C(9)	1.4(5)
C(7)-C(8)-C(9)-C(10)	-1.1(5)
C(6)-N(2)-C(10)-C(9)	-0.8(5)
C(8)-C(9)-C(10)-N(2)	0.8(6)
C(5)-C(4)-C(11)-C(12)	-70.9(4)
C(3)-C(4)-C(11)-C(12)	110.3(3)
C(4)-C(11)-C(12)-O(1)	-24.4(4)
C(4)-C(11)-C(12)-C(13)	160.1(3)
O(1)-C(12)-C(13)-C(18)	170.7(3)
C(11)-C(12)-C(13)-C(18)	-13.8(4)
O(1)-C(12)-C(13)-C(14)	-9.1(4)
C(11)-C(12)-C(13)-C(14)	166.4(3)
C(18)-C(13)-C(14)-C(15)	-2.0(5)
C(12)-C(13)-C(14)-C(15)	177.8(3)
C(13)-C(14)-C(15)-C(16)	0.2(5)
C(14)-C(15)-C(16)-C(17)	1.6(5)
C(14)-C(15)-C(16)-C(19)	-177.8(3)
C(15)-C(16)-C(17)-C(18)	-1.5(5)
C(19)-C(16)-C(17)-C(18)	177.9(3)
C(16)-C(17)-C(18)-C(13)	-0.4(6)
C(14)-C(13)-C(18)-C(17)	2.1(5)

 Table 6.
 Torsion angles [deg] for N191217A.

C(12)-C(13)-C(18)-C(17)

-177.7(3)

Symmetry transformations used to generate equivalent atoms:

Table 7.	Hydrogen	bonds for	N191217A	[A and deg.].

D-HA d(D-H) d(H.	A) d(DA) <(DHA)
------------------	-----------------

X-Ray crystallographic data of **3ea**:

Identification code	A200710A
Empirical formula	$C_{19}H_{16}N_2O_2$
Formula weight	304.34
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.8361(10)
b/Å	8.2497(8)
c/Å	21.719(2)
$\alpha/^{\circ}$	90
β/°	96.488(11)
γ/°	90
Volume/Å ³	1573.1(3)
Ζ	4
$\rho_{calc}g/cm^3$	1.285
μ/mm^{-1}	0.085
F(000)	640.0
Crystal size/mm ³	$0.2\times0.15\times0.14$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	° 4.64 to 50.018
Index ranges	$-8 \le h \le 10, -9 \le k \le 9, -25 \le l \le 25$
Reflections collected	7217
Independent reflections	2776 [$R_{int} = 0.0245$, $R_{sigma} = 0.0281$]
Data/restraints/parameters	2776/0/209
Goodness-of-fit on F ²	1.042
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0485, wR_2 = 0.1378$
Final R indexes [all data]	$R_1 = 0.0714, wR_2 = 0.1575$
Largest diff. peak/hole / e Å	³ 0.14/-0.17

Table 8 Crystal data and structure refinement for A200710A.

	-			
Atom	Х	у	Z	U(eq)
01	9776.0(18)	3251.5(18)	3854.5(8)	77.0(5)
O2	5445.4(18)	8329.5(16)	4676.5(7)	69.7(4)
N1	6305(2)	2447(2)	3309.3(10)	84.7(6)
N2	5485.4(18)	5884.0(18)	4167.0(7)	53.3(4)
C1	9489(2)	415(2)	3770.9(9)	55.5(5)
C2	10431(3)	321(3)	3309.7(12)	79.9(7)
C3	10829(3)	-1159(3)	3077.1(14)	96.0(9)
C4	10290(3)	-2566(3)	3311.0(12)	77.5(7)
C5	9346(3)	-2487(3)	3761.3(12)	72.2(6)
C6	8939(3)	-1015(2)	3988.4(10)	65.2(6)
C7	9115(2)	2056(2)	4013.1(9)	57.3(5)
C8	7995(2)	2170(2)	4484.4(10)	64.5(6)
C9	7299(2)	3823(2)	4534.2(9)	55.3(5)
C10	6112(2)	4394(2)	4116.3(8)	50.4(5)
C11	6031(2)	6823(2)	4627.7(9)	55.7(5)
C12	7203(2)	6370(3)	5070.9(9)	61.2(6)
C13	7833(2)	4868(3)	5018.3(9)	61.5(6)
C14	5413(2)	3467(2)	3572.8(9)	54.6(5)
C15	5719(4)	1700(4)	2791.6(16)	112.5(11)
C16	4247(4)	1892(4)	2532.2(14)	102.3(10)
C17	3322(3)	2911(3)	2809.1(11)	77.8(7)
C18	3909(3)	3716(2)	3342.3(10)	61.5(6)
C19	4282(3)	8815(3)	4201.2(12)	80.1(7)

Table 9 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for A200710A. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
O1	75.7(10)	62.3(9)	96.2(12)	1.1(8)	23.4(9)	-17.5(8)
02	83(1)	58.1(8)	67.6(10)	-15.9(7)	6.6(8)	1.5(7)
N1	86.7(13)	76.0(13)	90.5(15)	-37.6(11)	6.1(12)	0.3(11)
N2	58.6(10)	51.5(9)	50.1(9)	-4.1(7)	8.1(8)	-5.5(8)
C1	47.1(11)	60.3(12)	58.0(12)	7.6(9)	1.6(9)	-1.1(9)
C2	79.0(15)	70.9(15)	94.9(18)	10.5(13)	31.5(14)	-0.5(12)
C3	97(2)	96(2)	103(2)	0.9(16)	42.0(17)	15.4(16)
C4	75.4(15)	70.2(15)	84.9(17)	-3.7(13)	0.0(14)	18.4(13)
C5	77.7(15)	57.2(13)	80.0(16)	9.1(11)	2.0(13)	4.2(11)
C6	69.9(13)	58.2(12)	68.9(14)	7.3(10)	13.3(11)	-1.3(10)
C7	53.8(11)	57.2(11)	59.8(13)	9.5(10)	1.8(10)	-2.9(10)
C8	70.2(13)	60.8(12)	63.8(14)	7.6(10)	13.4(11)	0(1)
C9	59.8(12)	55.1(11)	52.4(12)	3.6(9)	11.9(10)	-5.2(9)
C10	55.4(11)	50.4(11)	46.8(11)	-0.8(8)	12.0(9)	-8.9(9)
C11	63.0(12)	55.1(11)	50.3(12)	-6.6(9)	12.6(10)	-8.4(10)
C12	69.1(13)	67.1(13)	47.7(12)	-8.9(10)	7.9(10)	-12.2(11)
C13	63.6(13)	74.5(14)	46.2(11)	3.3(10)	5.3(10)	-6.1(11)
C14	66.0(13)	47.5(10)	51.4(12)	-2.3(9)	11.5(10)	-9.6(9)
C15	121(2)	103(2)	111(2)	-61.1(19)	1(2)	0.1(18)
C16	133(3)	87.8(18)	82.4(19)	-37.3(15)	-4.3(19)	-28.6(18)
C17	87.3(16)	77.1(15)	65.2(15)	4.5(12)	-8.3(13)	-29.0(13)
C18	68.9(14)	61.9(12)	53.2(12)	2.7(10)	4.7(11)	-11.2(10)
C19	93.8(18)	66.7(14)	77.7(17)	-10.5(12)	0.7(14)	12.7(12)

Table 10 Anisotropic Displacement Parameters (Å²×10³) for A200710A. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 11 Bond Lengths for A200710A.

Aton	1 Atom	1	Length/Å			Aton	1	Atom	ı	Length/Å
01	C7		1.216(2)			C5		C6		1.374(3)
02	C11		1.355(2)			C7		C8		1.505(3)
02	C19		1.429(3)			C8		C9		1.505(3)
N1	C14		1.326(3)			C9		C10		1.390(3)
N1	C15		1.335(3)			C9		C13		1.400(3)
N2	C10		1.357(2)			C10		C14		1.481(3)
N2	C11		1.313(2)			C11		C12		1.384(3)
C1	C2		1.375(3)			C12		C13		1.368(3)
C1	C6		1.379(3)			C14		C18		1.382(3)
C1	C7		1.502(3)			C15		C16		1.367(4)
C2	C3		1.382(4)			C16		C17		1.359(4)
C3	C4		1.374(4)			C17		C18		1.384(3)
C4	C5		1.357(3)							
Table 12 Bond Angles for A200710A.										
Atom	1 Atom	n Atom			Angle/°		Atom	n Aton	n Atom	Angle/°
C11	02	C19			116.76(16))	C13	C9	C8	120.45(19)
C14	N1	C15			117.6(2))	N2	C10	C9	122.60(17)
C11	N2	C10			118.57(18))	N2	C10	C14	113.28(17)
C2	C1	C6			117.8(2))	C9	C10	C14	124.12(17)
C2	C1	C7			118.74(18))	02	C11	C12	117.12(17)
C6	C1	C7			123.41(18))	N2	C11	O2	119.36(19)
C1	C2	C3			121.1(2))	N2	C11	C12	123.51(18)
C4	C3	C2			119.9(2))	C13	C12	C11	117.78(18)
C5	C4	C3			119.5(2))	C12	C13	C9	121.0(2)
C4	C5	C6			120.5(2))	N1	C14	C10	117.20(18)
C5	C6	C1			121.1(2))	N1	C14	C18	122.16(19)
01	C7	C1			120.03(18))	C18	C14	C10	120.59(18)
01	C7	C8			121.04(19))	N1	C15	C16	123.6(3)
C1	C7	C8			118.80(17))	C17	C16	C15	118.8(2)
C9	C8	C7			114.26(16))	C16	C17	C18	118.7(2)
C10	C9	C8			123.01(18))	C14	C18	C17	119.1(2)
C10	C9	C13			116.53(18))				

Table 13 Torsion Angles for A200710A.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
01	C7	C8	C9	24.0(3)	C8	C9	C10	N2	179.61(17)
02	C11	C12	C13	-178.34(17)	C8	C9	C10	C14	-1.0(3)
N1	C14	C18	C17	-1.8(3)	C8	C9	C13	C12	-179.60(18)
N1	C15	C16	C17	0.7(5)	C9	C10	C14	N1	-31.0(3)
N2	C10	C14	N1	148.47(19)	C9	C10	C14	C18	151.44(19)
N2	C10	C14	C18	-29.1(2)	C10	N2	C11	02	178.34(16)
N2	C11	C12	C13	0.8(3)	C10	N2	C11	C12	-0.7(3)
C1	C2	C3	C4	-0.5(4)	C10	C9	C13	C12	0.1(3)
C1	C7	C8	C9	-160.15(18)	C10	C14	C18	C17	175.65(17)
C2	C1	C6	C5	1.4(3)	C11	N2	C10	C9	0.4(3)
C2	C1	C7	01	-8.5(3)	C11	N2	C10	C14	-179.07(16)
C2	C1	C7	C8	175.6(2)	C11	C12	C13	C9	-0.4(3)
C2	C3	C4	C5	1.2(4)	C13	C9	C10	N2	0.0(3)
C3	C4	C5	C6	-0.6(4)	C13	C9	C10	C14	179.34(17)
C4	C5	C6	C1	-0.7(4)	C14	N1	C15	C16	-2.0(5)
C6	C1	C2	C3	-0.8(4)	C15	N1	C14	C10	-175.0(2)
C6	C1	C7	01	171.3(2)	C15	N1	C14	C18	2.6(3)
C6	C1	C7	C8	-4.6(3)	C15	C16	C17	C18	0.2(4)
C7	C1	C2	C3	179.0(2)	C16	C17	C18	C14	0.4(3)
C7	C1	C6	C5	-178.39(19)	C19	02	C11	N2	-1.9(3)
C7	C8	C9	C10	79.4(2)	C19	02	C11	C12	177.26(19)
C7	C8	C9	C13	-101.0(2)					

Table 14 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for A200710A.

Atom	x	У	Z	U(eq)
H2	10806	1269	3152	96
Н3	11461	-1202	2763	115
H4	10571	-3566	3162	93
Н5	8971	-3438	3918	87
H6	8282	-982	4294	78
H8A	7185	1391	4378	77
H8B	8508	1868	4887	77
H12	7552	7064	5394	73
H13	8627	4537	5309	74
H15	6347	1009	2597	135
H16	3886	1336	2173	123
H17	2315	3063	2644	93

H18	3299	4415	3543	74
H19A	4674	8780	3807	120
H19B	3961	9899	4281	120
H19C	3429	8091	4196	120

X-Ray crystallographic data of **4aa**:

Identification code	A200108A					
Empirical formula	$C_{18}H_{11}BrN_2O$					
Formula weight	351.20					
Temperature/K	293(2)					
Crystal system	monoclinic					
Space group	P2 ₁ /c					
a/Å	11.7732(5)					
b/Å	7.7539(3)					
c/Å	15.9751(7)					
$\alpha/^{\circ}$	90					
β/°	104.728(4)					
γ/°	90					
Volume/Å ³	1410.43(10)					
Ζ	4					
$\rho_{calc}g/cm^3$	1.654					
μ/mm^{-1}	3.992					
F(000)	704.0					
Crystal size/mm ³	$0.18 \times 0.17 \times 0.16$					
Radiation	$CuK\alpha (\lambda = 1.54184)$					
2Θ range for data collection	/° 7.764 to 134.09					
Index ranges	$-13 \le h \le 14, -6 \le k \le 9, -19 \le l \le 18$					
Reflections collected	4725					
Independent reflections	2512 [$R_{int} = 0.0850$, $R_{sigma} = 0.0876$]					
Data/restraints/parameters	2512/0/199					
Goodness-of-fit on F ²	1.045					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0845, wR_2 = 0.2077$					
Final R indexes [all data]	$R_1 = 0.0943, wR_2 = 0.2305$					
Largest diff. peak/hole / e Å-3 1.57/-1.71						

Table 15 Crystal data and structure refinement for A200108A.

Atom	X	У	Z	U(eq)
Br1	2333.8(4)	8755.3(7)	4567.1(4)	25.8(3)
01	9377(3)	6370(5)	5591(3)	25.3(9)
N1	7156(4)	5626(6)	4390(3)	18.9(9)
N2	4273(4)	7214(5)	4237(3)	20.5(9)
C1	5998(5)	5851(7)	3908(3)	20.3(11)
C2	5643(5)	5199(7)	3064(4)	24.8(11)
C3	6431(5)	4343(7)	2716(3)	27.0(12)
C4	7593(5)	4112(7)	3221(4)	24.2(11)
C5	7942(4)	4764(7)	4048(4)	23.8(11)
C6	7308(5)	6284(6)	5233(4)	19.0(11)
C7	6210(4)	6945(7)	5269(4)	21.1(11)
C8	5411(4)	6698(7)	4462(3)	19.4(10)
C9	3933(4)	8006(6)	4853(3)	20.2(10)
C10	4645(5)	8400(7)	5687(3)	20.3(10)
C11	5795(4)	7860(6)	5898(3)	20.2(10)
C12	8467(5)	6383(6)	5826(4)	19.0(12)
C13	8531(5)	6499(7)	6769(4)	20.1(11)
C14	7830(4)	5458(6)	7148(3)	20.9(11)
C15	8005(4)	5463(7)	8044(4)	23.1(11)
C16	8850(5)	6487(8)	8567(4)	24.8(12)
C17	9537(5)	7558(7)	8190(4)	26.4(11)
C18	9389(4)	7539(7)	7296(4)	24.1(11)

Table 16 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for A200108A. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Br1	10.1(5)	28.4(5)	35.0(5)	3.5(2)	-1.3(3)	1.54(17)
O1	12.0(19)	35(2)	27(2)	0.2(16)	0.5(16)	1.6(14)
N1	13.1(19)	19(2)	21.7(19)	1.9(18)	-1.2(16)	-2.2(17)
N2	13.3(19)	18(2)	26(2)	1.3(17)	-3.3(17)	-2.8(16)
C1	16(3)	19(2)	22(3)	6(2)	-2(2)	-4(2)
C2	20(2)	26(3)	24(2)	1(2)	-2(2)	-3(2)
C3	35(3)	24(3)	20(2)	-3(2)	4(2)	-3(2)
C4	28(3)	21(2)	27(3)	1(2)	13(2)	0(2)
C5	16(2)	21(2)	33(3)	-1(2)	4(2)	-1(2)
C6	16(3)	16(3)	22(3)	-0.2(18)	0(2)	0.1(18)
C7	14(2)	21(2)	25(2)	4(2)	-1(2)	-5(2)
C8	12(2)	20(2)	22(2)	2(2)	-2(2)	-4(2)
C9	13(2)	21(2)	23(2)	8(2)	-2.2(19)	-0.4(19)
C10	16(2)	21(2)	24(3)	0(2)	4(2)	-2(2)
C11	11(2)	20(2)	25(2)	0(2)	-5.2(19)	-1.9(18)
C12	9(3)	15(2)	30(3)	3.6(18)	1(2)	0.0(16)
C13	11(2)	23(2)	24(3)	3(2)	-1(2)	3.5(19)
C14	13(2)	21(2)	25(3)	-1(2)	-3(2)	0.2(19)
C15	17(2)	22(3)	29(3)	3(2)	4(2)	3.0(19)
C16	19(3)	29(3)	21(3)	0(2)	-4(2)	7(2)
C17	15(2)	25(2)	31(3)	-5(2)	-8(2)	1(2)
C18	13(2)	24(2)	32(3)	-1(2)	-1(2)	-2(2)

Table 17 Anisotropic Displacement Parameters (Å²×10³) for A200108A. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 18 Bond Lengths for A200108A.

Atom Atom		Length/Å		n Atom	Length/Å		
Br1	C9	1.912(5)	C6	C12	1.452(7)		
01	C12	1.223(7)	C7	C8	1.402(8)		
N1	C1	1.396(7)	C7	C11	1.414(8)		
N1	C5	1.364(7)	С9	C10	1.415(8)		
N1	C6	1.408(7)	C10	C11	1.374(7)		
N2	C8	1.356(7)	C12	C13	1.491(8)		
N2	C9	1.306(7)	C13	C14	1.398(8)		
C1	C2	1.401(8)	C13	C18	1.395(8)		
C1	C8	1.415(8)	C14	C15	1.393(7)		
C2	C3	1.369(9)	C15	C16	1.377(8)		
C3	C4	1.413(8)	C16	C17	1.398(9)		
C4	C5	1.375(8)	C17	C18	1.394(8)		
C6	C7	1.405(8)					

Atom	Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C1	N1	C6	110.5(4)	N2	C8	C7	126.1(5)
C5	N1	C1	120.5(5)	C7	C8	C1	108.6(5)
C5	N1	C6	128.8(5)	N2	C9	Br1	115.8(4)
C9	N2	C8	114.2(4)	N2	C9	C10	126.1(5)
N1	C1	C2	119.7(5)	C10	C9	Br1	118.1(4)
N1	C1	C8	106.1(4)	C11	C10	C9	118.4(5)
C2	C1	C8	134.1(5)	C10	C11	C7	118.4(5)
C3	C2	C1	120.0(5)	01	C12	C6	123.4(6)
C2	C3	C4	119.2(5)	01	C12	C13	119.2(5)
C5	C4	C3	120.8(5)	C6	C12	C13	117.4(5)
N1	C5	C4	119.9(5)	C14	C13	C12	121.3(5)
N1	C6	C12	120.9(5)	C18	C13	C12	119.2(5)
C7	C6	N1	106.1(5)	C18	C13	C14	119.2(5)
C7	C6	C12	132.4(5)	C15	C14	C13	119.6(5)
C6	C7	C11	134.4(5)	C16	C15	C14	121.3(5)
C8	C7	C6	108.7(5)	C15	C16	C17	119.3(5)
C8	C7	C11	116.7(5)	C18	C17	C16	120.0(5)
N2	C8	C1	125.3(5)	C17	C18	C13	120.5(5)

Table 19 Bond Angles for A200108A.

Table 20 Torsion Angles for A200108A.

Α	B	С	D	Ar	ngle/°		A	В	С	D	Angle/°
Br1 C	29	C10	C11		179.8(4)	C	26	C7	C8	N2	-177.8(5)
01 C	212	C13	C14		-135.8(5)	C	26	C7	C8	C1	0.8(6)
01 C	212	C13	C18		37.6(7)	C	26	C7	C11	C10	176.3(6)
N1 C	21	C2	C3		0.0(8)	C	26	C12	2 C13	8 C14	43.9(7)
N1 C	21	C8	N2		177.6(5)	C	26	C12	2 C13	8 C18	-142.7(5)
N1 C	21	C8	C7		-1.0(6)	C	27	C6	C12	201	-149.7(6)
N1 C	6	C7	C8		-0.3(6)	C	27	C6	C12	2 C13	30.6(8)
N1 C	6	C7	C11		-175.3(5)	C	28	N2	C9	Br1	-179.9(3)
N1 C	6	C12	01		20.4(7)	C	28	N2	C9	C10	2.4(7)
N1 C	6	C12	C13		-159.3(4)	C	28	C1	C2	C3	-176.4(6)
N2 C	:9	C10	C11		-2.6(8)	C	28	C7	C11	C10	1.6(7)
C1 N	11	C5	C4		0.0(8)	C	29	N2	C8	C1	-178.5(5)
C1 N	11	C6	C7		-0.3(5)	C	29	N2	C8	C7	-0.2(7)
C1 N	11	C6	C12		-172.8(4)	C	29	C10	C11	C7	0.3(7)
C1 C	2	C3	C4		0.8(8)	C	211	C7	C8	N2	-1.8(8)
C2 C	21	C8	N2		-5.7(10)	C	211	C7	C8	C1	176.8(4)
C2 C	21	C8	C7		175.8(6)	C	212	C6	C7	C8	170.9(5)
C2 C	3	C4	C5		-1.3(9)	C	212	C6	C7	C11	-4.1(10)
C3 C	24	C5	N1		0.8(8)	C	212	C13	8 C14	C15	172.9(5)
C5 N	1	C1	C2		-0.5(7)	C	212	C13	C18	8 C 1 7	-174.4(5)
C5 N	11	C1	C8		176.8(5)	C	213	C14	C15	5 C16	0.6(8)
C5 N	11	C6	C7		-175.9(5)	C	214	C13	SC18	3 C 1 7	-0.9(8)
C5 N	11	C6	C12		11.6(8)	C	214	C15	5C16	5C17	0.7(8)
C6 N	11	C1	C2		-176.5(5)	C	215	C16	5C17	C18	-2.1(8)
C6 N	11	C1	C8		0.8(6)	C	216	C17	C18	8 C13	2.2(8)
C6 N	11	C5	C4		175.3(5)	C	218	C13	8 C14	C15	-0.6(7)

Atom	x	у	Z	U(eq)
H2	4872	5346	2741	30
Н3	6204	3919	2153	32
H4	8129	3512	2992	29
Н5	8712	4617	4372	29
H10	4343	9010	6083	24
H11	6288	8090	6441	24
H14	7250	4766	6805	25
H15	7542	4759	8295	28
H16	8963	6468	9165	30
H17	10093	8283	8535	32
H18	9866	8223	7049	29

Table 21 Hydrogen Atom Coordinates	$(\text{\AA}{\times}10^4)$ and Isotropic Displacement Parameters $(\text{\AA}^2{\times}10^3)$
for A200108A.	