Straightforward synthesis of chiral non-racemic α -boryl isocyanides

Francesco Fini, *^a Alessandro Zanni,^a Maria Luisa Introvigne,^{ab} Mattia Stucchi,^a Emilia Caselli^a and Fabio Prati. *^a

^a Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 103, 41125, Modena, Italy. E-mail: francesco.fini@unimore.it, fabio.prati@unimore.it

^b International Doctorate School in Clinical and Experimental Medicine (CEM), Università degli Studi di Modena e Reggio Emilia, via G. Campi 287, 41125, Modena, Italy

Electronic Supplementary Information

Contents:

•	General methods and materials	S2
•	Determination of enantiomeric ratio of α -boryl isocyanides 1a	S3-S4
•	Synthesis and characterization of compounds 4f, 3a-f, 2a-f, 1a-f	S5-S15
•	Copies of the ¹ H, ¹³ C and ¹¹ B NMR spectra of compounds 4f , 3a–f , 2a–f , 1a–f and ¹ H- ¹³ C HSQC of 2a–f and 1b–f	S16-S68

General methods and materials.

All reactions were carried out under argon atmosphere with dry solvents under anhydrous conditions by using oven dried glassware at 120°C. CH₂Cl₂ and toluene were dried by filtering over a pad of neutral alumina prior the use. Triethylamine was distilled off from CaH₂ and stored over KOH_(S) under argon atmosphere. Reactions were monitored by using Thin Layer chromatography (TLC) by means of Macherey-Nagel silica gel 0.20mm (60-F₂₅₄) under UV light (λ = 254 nm) or developed with standard stain solution: KMnO₄, ninhydrin, curcumin, Cerium Ammonium Molybdate (Hanessian's Stain) followed by heating. Chromatographic purification and isolation of the compounds was performed on gravimetric silica gel (particle size 0.05-0.20 mm). ¹H, ¹³C and ¹¹B NMR spectra were recorded on a Bruker Avance 400 MHz or 600 MHz spectrometer. Chemical shifts (δ) are reported in ppm and were calibrated to the residual signals of the deuterated solvent (CDCl₃, CD₃OD, DMSO-d₆, CD₃CN).^{1 13}C NMR were recorded with ¹H broadband decoupling. Multiplicity is given as s = singlet, d = doublet, t = 1triplet, q = quartet, dd = double doublets, n = nonet, m = multiplet, br = broad signal and couplingconstants (J) are given in Hz. Two-dimensional NMR techniques (COSY, HMBC, HSQC) were used to aid in the assignment of signals in ¹H and ¹³C spectra. In particular the signal of the boron-bearing carbon atom in the ¹³C spectra tends to be broadened, and the signal is often beyond the detection limit, but its resonance was unambiguously determined by HSQC and HMBC. Mass spectra were determined on an Agilent Technologies LC-MS (n) Ion Trap 6310A (ESI, 70 eV). High-resolution mass spectra were recorded on a LC-MS apparatus: Thermo Scientific UHPLC Ultimate 3000 coupled with Q Exactive™ Hybrid Quadrupole-Orbitrap[™] Mass Spectrometer. Melting points were measured in open capillary tubes on a Stuart SMP30 Melting Point apparatus and are uncorrected. Optical rotations were determined at 20 °C on a Perkin-Elmer 241 polarimeter and are expressed in 10⁻¹ deg cm² g⁻¹.

Unless otherwise noted all commercially available reagents were used as received. *t*-Butylsulfynilimines 4a,² ent-4a,² 4b,³ 4c,⁴ 4d³ and 4e,⁵ and compound 6f⁶ were obtained following literature procedures.

¹ H. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem. 1997, **62**, 7512–7515.

² D. Staas, K. Savage, C. Homnick, N. Tsou and R. Ball J. Org. Chem., 2002, 67, 8276-8279.

³ F. Chemla, F. Ferreira, J. Org. Chem. 2004, 69, 8244-8250.

⁴ G. Liu, D. A. Cogan, J. A. Ellman, J. Am. Chem. Soc. 1997, 119, 9913

⁵ M. Maji, R. Frohlich, A. Studer, Org. Lett. 2008, 10, 1847–1850

⁶ L. Han, C. Liu, W. Zhang, X.-X. Shi and S.-L. You, *Chem. Commun.* 2014, **50**, 1231; M. C. DiPoto, R. P. Hughes and J. Wu, *J. Am. Chem. Soc.* 2015, **137**, 14861.

Determination of enantiomeric ratio of α-boryl isocyanides 1a

The chiral purity of isocyanide **1a** has been verified by using ¹H NMR technique and Pirkle's alcohol as chiral shift reagent.⁷

Condition for the visualisation of both enantiomers 1a / ent-1a with CSA by using ¹H NMR spectroscopy. To a 50:50 mixture of 1a (2.2 mg) and ent-1a (2.2 mg) in 0.7 mL of CDCl₃ was added (*R*)-1-Anthracen-9-yl-2,2,2-trifluoroethanol in proportion 1:1, 1:2, 1:4, 1:10, 1:20. After each additions an ¹H NMR spectrum (600 MHz) was recorded (Figure S1).

Figure S1. ¹H-NMR spectra (600 MHz, CDCl₃) of racemic mixture **1a** and **ent-1a** with different amount of Pirkle's alcohol. **a**) racemic: Pirkle 1:1; **b**) racemic: Pirkle 1:2; **c**) racemic: Pirkle 1:4; **d**) racemic: Pirkle 1:10; **e**) racemic: Pirkle 1:20.

⁷ a) W. Pirkle, D. Sikkenga, M. Pavlin, *J. Org. Chem.* 1977, **42**, 384–387; b) J. Redondo, A. Capdevila, I. Latorre *Chirality*, 2010, **22**, 472

With the optimal condition in hand a second experiment has been repeated with **1a** : Pirkle's alcohol 1:20 (enlargement **c**, Figure S2) where it has been confirmed the enantiomeric ratio of **1a** of 98:2. This result has been verified by the final addition of a small amount of **ent-1a** to the sample **1a** : Pirkle's alcohol 1:20 (enlargement **d**, Figure S2).

The enantiomeric ratio remained 98:2 along the synthetic sequence.

Figure S2. Determination of enantiomeric ratio. ¹H NMR spectra (600 MHz, CDCl₃): a) racemic; b) racemic : Pirkle 1:20; c) 1a : Pirkle 1:20; d) (1a : Pirkle 1:20) + ent-1a.

Synthesis of Imines 4f

A 100 ml round bottom flasks equipped with magnetic stir bar was charged with **6f** (1.05 g, 4.18 mmol), CH₃CN (21 ml) and IBX (2-iodoxybenzoic acid, 3.51 g, 12.54 mmol). The reaction mixture was refluxed for 2 h, filtered through a thin pad of celite and concentrate under reduced pressure. The resulting residue was dissolved in CH₂Cl₂ (20 mL) and was sequentially charged with (*R*)-2-methylpropane-2-sulfinamide (405 mg, 3.34 mmol), MgSO₄ (2.41g, 20.04 mmol) and PPTS (pyridinium *p*-toluenesulfonate, 84 mg, 0.334 mmol). After 24 h, the resulting suspension was filtered off a pad of celite and evaporated *in vacuo*. The crude was purified by using silica gel (petroleum ether/AcOEt 8:2), obtaining 666 mg of **4f** as orange oil (1.80 mmol, 43 % from **6f**), with a purity of 95% due to the presence of ethyl acetate. The imine has been used for the next step without further manipulation.

(*R*,*E*)-*N*-(2-(1-benzyl-1*H*-indol-3-yl)ethylidene)-2-methylpropane-2-sulfinamide 4f. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (t, *J* = 5.2 Hz, 1H), 7.61 (dt, *J* = 7.8 Hz, 1.0 Hz, 1H), 7.33 – 7.24 (m, 4H), 7.23 – 7.17 (m, 1H), 7.16 – 7.08 (m, 3H), 7.03 (s, 1H), 5.29 (s, 2H), 4.00 – 3.94 (m, 2H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 137.5, 136.8, 128.9, 128.1, 127.8, 126.9, 126.8, 122.3, 119.6, 119.1, 109.9, 108.3, 56.9, 50.1, 32.6, 22.5. ESIMS: 353 [M+H]⁺. [α]²⁰_D -153.4 (c = 0.96, CHCl₃).

Borylation of imines 4a–f and subsequent hydrolysis for the synthesis of 3a–f.

(R)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-aminium chloride 3a

Following the general procedure, starting from imines **4a** (452 mg, 2.39 mmol), compound **3a** has been prepared as a white solid (507 mg, 1.9 mmol) with 85% yield. Spectroscopic data are in agreement with the ones reported in literature.⁸ ¹H NMR (400

MHz, DMSO-d₆) δ 7.94 (s, 3H), 2.71 – 2.61 (m, *J* = 7.4, 1H), 1.70 (n, *J* = 6.7 Hz, 1H), 1.55 – 1.38 (m, 2H), 1.242 (s, 6H), 1.236 (s, 6H), 0.86 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 84.5, 38.2, 34.6 (CHB, br), 24.6, 24.4, 24.3, 22.4, 22.2.

(S)-3-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-aminium chloride ent-3a

Following the general procedure, starting from imines ent-4a (621 mg, 3.28 mmol), compound ent-3a has been prepared as a white solid (603 mg, 2.42 mmol) with 74% yield. Spectroscopic data are in agreement with the ones reported in literature.⁸ ¹H NMR (400 MHz, DMSO-d₆) δ 7.95 (s, 3H), 2.72 – 2.60 (m, 1H), 1.70 (n, *J* = 6.8 Hz, 1H), 1.55 – 1.38 (m, 2H), 1.24 (s, 6H), 1.23 (s, 6H), 0.86 (d, *J* = 6.5 Hz, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 84.5, 38.2, 34.6 (CHB, br), 24.6, 24.40, 24.35, 22.4, 22.2.

(R)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-1-aminium chloride 3b

Following the general procedure, starting from imines **4b** (500 mg, 2.90 mmol), Compound **3b** has been prepared as a white solid (473 mg, 2.00 mmol) with 69% yield. M.p. 124.8–126.8 °C. ¹H NMR (400 MHz, DMSO-d₆) δ 7.79 (br s, 3H), 2.76 – 2.66 (m, 1H), 1.56 (q, J = 7.6 Hz, 2H), 1.45 – 1.27 (m, 2H), 1.25 (s, 6H), 1.24 (s, 6H), 0.87 (t, J = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CD₃OD) δ 86.5, 75.8, 38.8 (CHB, br), 32.8, 25.1, 20.7, 14.1. ¹¹B NMR (128 MHz, CDCl₃) δ 31.4. HRMS [M]⁺: calc. for C₁₀H₂₃BNO₂ 200.1816, found 200.1820; [α]²⁰_D -1.3 (c = 1.1, CH₃OH).

⁸ M. Beenen, C. An, J. Ellman, J. Am. Chem. Soc. 2008, 130, 6910-6911

(R)-2-methyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propan-1-aminium chloride 3c

(R)-cyclohexyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methanaminium chloride 3d

Following the general procedure, starting from imines **4d** (1.54 g, 7.15 mmol), compound **3d** has been prepared as a white solid (1.79 g, 6.49 mmol) with 91% yield. M.p. 125.1–127.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (br s, 3H), 2.78 (br s, 1H), 2.06 – 1.82 (m, 4H), 1.80 – 1.57 (m, 4H), 1.29 (s, 6H,), 1.28 (s, 6H), 1.19 – 1.01 (m, 1H). ¹³C NMR (101 MHz, DMSO-d₆) δ 84.5, 73.5, 42.2 (CHB), 38.2, 29.8, 29.3, 25.7, 25.5, 24.9, 24.4. ¹¹B NMR (128 MHz, CDCl₃) δ 33.1. ESIMS: 240.1 [M-Cl]⁺; [α]²⁰_D -3.4 (c = 1.2, CH₃OH).

(R)-2-phenyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethan-1-aminium chloride 3e

Following the general procedure, starting from imines **4e** (550 mg, 2.46 mmol), are been prepared as a pale yellow solid (419 mg, 1.48 mmol) with 60% yield. M.p. 169.5–171.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (br s, 3H), 7.38 – 7.27 (m, 4H), 7.25 – 7.19 (m, 1H), 3.33 – 3.12 (m, 2H+1H, CHB), 1.20 (s, 6H), 1.19 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 136.5, 129.8, 129.0, 127.4, 85.5, 39.4 (CHB), 35.4, 25.0, 24.9. ¹¹B NMR (128 MHz, DMSO-d₆) δ 32.9. ESIMS: 166 [M-pin-Cl]⁺; [α]²⁰_D -11.4 (c = 1.0, CH₃OH).

(*R*)-2-(1-benzyl-1H-indol-3-yl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethan-1-aminium chloride 3f

Following the general procedure, starting from imines **4f** (650 mg, 1.84 mmol), compound **3f** has been prepared as a pale yellow solid (618 mg, 1.50 mmol) with 81% yield. M.p. 202.0–203.5 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.10 (br s,

3H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 8.1 Hz, 1H), 7.33 (s, 1H), 7.32 – 7.18 (m, 5H), 7.10 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.5 Hz, 1H), 5.36 (s, 2H), 3.15 (dd, *J* = 13.3, 5.3 Hz, 1H) 3.09 – 2.94 (m, 2H,

BCHC H_2 + CHB), 1.11 (s, 6H), 1.06 (s, 6H). ¹³C NMR (101 MHz, DMSO- d_6) δ 138.2, 136.0, 128.4, 127.7, 127.6, 127.3, 127.0, 121.4, 118.8, 118.7, 110.1, 109.0, 84.4, 49.0, 37.0 (CHB), 24.9, 24.5, 24.4. ¹¹B NMR (128 MHz, DMSO- d_6) δ 33.1. HRMS [M]⁺: calc. for C₂₃H₃₀BN₂O₂ 377.2395, found 377.2399; [α]²⁰_D -13.2 (c = 1.0, CH₃OH).

Synthesis and characterization of compounds 2a-f.

(R)-N-(3-methyl-1-(MIDA-boryl)butyl)formamide 2a

Following the general procedure (reaction time= 2.5 h), starting from chloride **3a** (150 mg, 0.60 mmol), compound 2a has been synthesised as an off white solid (105 mg, 0.39 mmol) with 65% yield. M.p. 233.5–234.9 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.97 (d, *J* = 2.0 Hz, 1H), 7.48 (dd, *J* = 10.2, 2.1 Hz, 1H), 4.25 (d, *J* = 17.2 Hz, 1H), 4.16 (d, J = 16.8 Hz, 1H), 4.04 (d, J = 17.2 Hz, 1H), 3.87 (d, J = 16.9 Hz, 1H), 3.61 - 3.51 (m, 1H, CHB),2.89 (s, 3H), 1.62 - 1.46 (m, 1H), 1.38 - 1.27 (m, 1H), 1.24 - 1.14 (m, 1H), 0.87 (d, J = 6.7 Hz, 3H), 0.84 (d, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.8, 168.5, 161.0, 62.3, 62.1, 45.6, 40.4, 34.1 (CHB), 24.0, 23.8, 21.2. ¹¹B NMR (128 MHz, DMSO-d₆) δ 11.0. ESIMS: 268.9 [M-H]⁻; $[\alpha]^{20}$ _D - $40.5 (c = 1.1, CH_3OH).$

(S)-N-(3-methyl-1-(MIDA-boryl)butyl)formamide ent-2a

Following the general procedure (reaction time= 2.5 h), starting from chloride ent-3a (280 mg, 1.12 mmol), compound ent-2a has been synthesised as an off white solid (197 mg, 0.73 mmol) with 65% yield. Spectral data were identical to compound 2a; ent-2a Me ¹H NMR (400 MHz, DMSO- d_6) δ 7.96 (d, J = 1.8 Hz, 1H), 7.48 (dd, J = 10.1, 1.3 Hz, 1H), 4.24 (d, J = 17.2 Hz, 1H), 4.15 (d, J = 16.8 Hz, 1H), 4.03 (d, J = 17.2 Hz, 1H), 3.86 (d 1H), 3.60 – 3.52 (m, 1H, CHB), 2.88 (s, 3H), 1.62 – 1.47 (m, 1H), 1.38 – 1.27 (m, 1H), 1.24 – 1.14 (m, 1H), 0.86 (d, J = 6.6 Hz, 3H), 0.84 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.8, 168.5, 161.0, 62.4, 62.1, 45.6, 40.4, 34.1 (CHB, br), 24.0, 23.8, 21.2. ¹¹B NMR (128 MHz, DMSO-d₆) δ 11.0. $[\alpha]^{20}$ _D +37.3 (c = 1.0, CH₃OH).

(R)-N-(1-(MIDA-boryl)butyl)formamide 2b

Following the general procedure (reaction time= 2.5 h), starting from chloride **3b** (235 mg, 1.06 mmol), compound **2b** has been synthesised as an off white solid (220 mg, 0.86 mmol) with 81% yield. M.p. 178 – 180 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.98 (d, J = 1.9 Hz, 1H), 7.50 (d, J = 10.0 Hz, 1H), 4.22 (d, J = 17.2 Hz, 1H), 4.17 (d,

J = 17.0 Hz, 1H), 4.05 (d, J = 17.2 Hz, 1H), 3.86 (d, J = 17.0 Hz, 1H), 3.53 – 3.45 (m, 1H), 2.86 (s, 3H), 1.51 - 1.13 (m, 5H), 0.84 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.7, 168.6, 161.1, 62.2, 62.1, 45.5, 35.6 (br CHB), 33.4, 19.2, 13.9. ¹¹B NMR (128 MHz, DMSO-*d*₆) δ 10.9. HRMS [M-H]⁻: calc. $C_{10}H_{16}BN_2O_5$ 255.11468, found 255.1157. [α]²⁰_D -25.1 (c = 0.59, CH₃OH/CHCl₃ 1:1).

(R)-N-(2-methyl-1-(MIDA-boryl)propyl)formamide 2c

Following the general procedure (reaction time= 3 h), starting from chloride 3c (389 mg, 1.65 mmol), compound 2c has been synthesised as an off white solid (222 mg, 0.87 mmol) with 53% yield. M.p. 210 – 212 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.04 (d, J = 1.9 Hz, 1H), 7.46 (d, *J* = 10.3 Hz, 1H), 4.18 (d, *J* = 17.1 Hz, 1H), 4.16 (d, *J* = 17.0 Hz, 1H), 4.06 (d, J = 17.1 Hz, 1H), 3.83 (d, J = 17.0 Hz, 1H), 3.52 (dd, J = 10.5, 3.2 Hz, 1H), 2.82 (s, 3H), 1.94 - 1.80 (m, 1H), 0.84 (d, J = 6.9 Hz, 3H), 0.81 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.9, 168.6, 161.5, 61.8, 61.7, 45.5, 40.6 (br, CHB), 29.5, 21.1, 18.2. ¹¹B NMR (128 MHz, DMSO d_6) δ 11.2. HRMS [M-H]⁻: calc. for C₁₀H₁₆BN₂O₅ 255.11468, found 255.1158. [α]²⁰D -25.3 (c = 0.58, CH₃OH/CHCl₃ 1:1).

(R)-N-(cyclohexyl-(MIDA-boryl)methyl)formamide 2d

Following the general procedure (reaction time= 5 h), starting from chloride 3d (200 ΗN mg, 0.73 mmol), compound 2d has been synthesised as an off white solid 89 mg (0.29 mmol, with 40% yield), with a purity of 95% due to the presence of ethyl ether and then used for the next step without further manipulation. M.p. 63.5–65.0 °C. ¹H NMR 2d (400 MHz, DMSO- d_6) δ 8.01 (d, J = 2.2 Hz, 1H), 7.44 (dd, J = 10.6, 2.3 Hz, 1H), 4.18 (d, J = 17.0 Hz, 1H), 4.15 (d, J = 17.0 Hz, 1H), 4.06 (d, J = 17.1 Hz, 1H), 3.82 (d, J = 17.1 Hz, 1H), 3.49 (dd, J = 10.6, 2.9 Hz, 1H, CHB), 2.80 (s, 3H,), 1.75 – 1.41 (m, 6H), 1.28 – 0.93 (m, 5H). ¹³C NMR (101 MHz, DMSO d_6) δ 168.9, 168.7, 161.4, 61.8, 61.7, 45.5, 40.7 (br, CHB), 39.9, 31.0, 28.0, 26.24, 26.22, 18.6. ¹¹B NMR (128 MHz, CDCl₃) δ 11.1. ESIMS [M-H]⁻: 295.0. [α]²⁰_D +28.0 (c = 1.0, CH₃OH).

(R)-N-(1-(MIDA-boryl)-2-phenylethyl)formamide 2e

Following the general procedure (reaction time= 2.5 h), starting from chloride 3e (120 mg, 0.42 mmol), compound 2e has been synthesised as an off white solid 81 mg (0.26 mmol, 62% yield) with a purity of 95% due to the presence of ethyl ether and then used for the next step without further manipulation. M.p. 69.5–71.0 °C. ¹H

NMR (400 MHz, DMSO- d_6) δ 7.76 (d, J = 1.9 Hz, 1H), 7.62 (dd, J = 10.1, 2.2 Hz, 1H), 7.24 – 7.09 (m, 5H), 4.29 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 3.87 (d, *J* = 17.2 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 3.87 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 3.87 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.08 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.19 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 16.9 Hz, 1H), 4.19 (d, *J* = 17.2 Hz, 1H), 4.19 (d, J = 17.2 Hz, 1H), 4.19 (d 1H), 3.83 - 3.76 (m, 1H, CHB), 2.90 (s, 3H), 2.54 - 2.46 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.8, 168.5, 160.6, 140.2, 129.1, 127.7, 125.5, 62.4, 62.1, 45.7, 38.0 (CHB, br), 36.8. ¹¹B NMR (128 MHz, DMSO-*d*₆) δ 11.5. ESIMS [M-H]⁻: 302.9. [α]²⁰_D -12.3 (c = 1.0, CH₃OH).

(R)-N-(2-(1-benzyl-1H-indol-3-yl)-1-MIDAboryl)ethyl)formamide 2f

Following the general procedure (reaction time= 5 h), starting from chloride **3f** (590 mg, 1.43 mmol), compound **2f** has been synthesised as an off white solid (275 mg, 0.64 mmol) with 44% yield. M.p. 102.0–103.0 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 7.85 (d, J = 2.0 Hz, 1H), 7.65 (dd, J = 10.0, 2.0 Hz, 1H), 7.55 (d, J

= 7.8 Hz, 1H), 7.39 – 7.18 (m, 6H), 7.13 (d, J = 7.7 Hz, 1H,), 7.04 (t, J = 7.6 Hz, 1H), 6.98 (t, J = 7.3 Hz, 1H), 5.34 (br s, 2H), 4.30 (d, J = 17.3 Hz, 1H), 4.20 (d, J = 16.8 Hz, 1H), 4.09 (d, J = 17.2 Hz, 1H), 3.89 (d, J = 16.9 Hz, 1H), 3.86 – 3.80 (m, 1H, CHB), 3.05 – 2.97 (m, 1H), 2.69 (s, 3H), 2.73 – 2.65 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.8, 168.6, 160.9, 138.4, 135.9, 128.4, 128.3, 127.1, 127.0, 126.8, 120.8, 118.7, 118.3, 112.4, 109.7, 62.3, 62.1, 48.9, 45.6, 37.2 (br, CHB), 26.5. ¹¹B NMR (128 MHz, DMSO- d_6) δ 8.7. ESIMS [M-H]⁻: 432.1. [α]²⁰_D -20.5 (c = 1.0, CH₃OH).

Synthesis and characterization of α-boryl isocyanide 1a–f.

(R)-Isobutyl(MIDA boryl)methyl isocyanide 1a

Following the general procedure, starting from **2a** (80 mg, 0.30 mmol), compound **1a** has been synthesised as an off white solid (58 mg, 0.23 mmol) with 75% yield. Spectroscopic data are in agreement with the ones reported in literature.⁹ M.p. 193.3

-196.2 °C. ¹H NMR (400 MHz, CD₃CN) δ 4.10 (d, J = 17.0 Hz, 1H), 4.04 (d, J = 17.0 Hz, 1H), 3.94 (d, J = 17.4 Hz, 1H), 3.92 (d, J = 17.4 Hz, 1H), 3.30 (br d, J = 11.5 Hz, 1H, CHB), 3.09 (s, 3H), 1.9 – 1.8 (m, 1H), 1.74 – 1.66 (m, 1H), 1.34 – 1.22 (m, 1H), 0.99 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.31, 168.27, 155.7, 62.63, 62.59, 46.1, 42.0 (CHB, br), 38.4, 24.7, 23.2, 20.4. HRMS [M+H]⁺: calc. for C₁₁H₁₈BN₂O₄ 253.1356, found 253.1349. [α]²⁰_D -27.6 (c = 0.91, CH₃OH).

(S)-Isobutyl(MIDA boryl)methyl isocyanide ent-1a

Following the general procedure, starting from ent-2a (182 mg, 0.67 mmol), compound ent-1a has been synthesised as an off white solid (110 mg, 0.44 mmol) with 65% yield. Spectroscopic data are in agreement with 1a and the ones reported in literature.⁹ ¹H NMR (400 MHz, CD₃CN) δ 4.10 (d, *J* = 17.0 Hz, 1H), 4.06 (d, *J* = 17.0 Hz, 1H), 3.96 (d, *J* = 17.2 Hz, 1H), 3.92 (d, *J* = 17.2 Hz, 1H), 3.30 (br d, *J* = 11.7 Hz, 1H, CHB), 3.09 (s, 3H), 1.90 – 1.80 (m, 1H), 1.74 – 1.65 (m, 1H), 1.34 – 1.23 (m, 1H), 0.99 (d, *J* = 6.7 Hz, 3H), 0.93 (d, *J* = 6.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 168.31, 168.27, 155.7, 62.62, 62.59, 46.1, 42.0, 38.4, 24.7, 23.2, 20.4. HRMS [M-H]⁻: calc. for C₁₁H₁₆BN₂O₄ 251.1198, found 251.1208. [α]²⁰_D +24.5 (c = 1.1, CH₃OH).

(R)-Propyl(MIDA boryl)methyl isocyanide 1b

Following the general procedure, starting from **2b** (50 mg, 0.2 mmol), compound **1b** has been synthesised as a pale-yellow wax (26 mg, 0.11 mmol) with 53% yield.

1H NMR (400 MHz, DMSO- d_6) δ 4.38 (d, J = 17.2 Hz, 1H), 4.35 (d, J = 17.3 Hz, 1H), 4.09 (d, J = 17.1 Hz, 1H), 4.05 (d, J = 17.3 Hz, 1H), 3.39 – 3.33 (m, 1H, CHB), 3.09 (s, 3H), 1.63 – 1.46 (m, 3H), 1.44 – 1.29 (m, 1H), 0.92 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 168.4, 168.3, 155.6, 62.5, 46.1, 45.6, 43.3 (br, CHB), 31.80, 19.51, 13.23. ¹¹B NMR (128 MHz, DMSO- d_6) δ 9.9. HRMS [M-H]⁻: calc. for C₁₀H₁₄BN₂O₄ 237.1041, found 237.1047. [α]²⁰_D -9.52 (c = 0.9, CH₃OH).

⁹ A. Zajdlik, Z. Wang, J. Hickey, A. Aman, A. Schimmer, A. Yudin, A. Angew. Chem. Int. Ed. 2013, 52, 8411.

(R)-isopropyl(MIDA boryl)methyl isocyanide 1c

Following the general procedure, starting from **2c** (100 mg, 0.4 mmol), compound **1c** has been synthesised as a pale-yellow wax (40 mg, 0.17 mmol) with 42% yield.

¹H NMR (400 MHz, CD₃CN) δ 4.07 (d, J = 17.1 Hz, 1H), 4.04 (d, J = 17.2 Hz, 1H), 3.92 (d, J = 17.1 Hz, 1H), 3.88 (d, J = 17.2 Hz, 1H), 3.28 – 3.20 (m, 1H, CHB), 3.05 (s, 3H), 2.08 – 1.98 (m, 1H), 1.06 (d, J = 6.8 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CD₃CN) δ 168.6, 168.5, 158.4, 63.43, 63.37, 51.9 (br, CHB), 47.1, 29.2, 21.7, 18.1.¹¹B NMR (128 MHz, CD₃CN) δ 10.0. HRMS [M-H]⁻: calc. for C₁₀H₁₄BN₂O₄ 237.1041, found 237.1050. [α]²⁰_D -6.8 (c = 1.3, CH₃OH).

(R)-cyclohexyl(MIDA boryl)methyl isocyanide 1d

Following the general procedure, starting from **2d** (28 mg, 0.1 mmol), compound **1d** has been synthesised as a pale-yellow solid (17 mg, 0.06 mmol) with 65% yield. Spectroscopic data are in agreement with the ones reported in literature.⁹ M.p. 206.2 -209.0 °C. ¹H NMR (600 MHz, CD₃CN) δ 4.06 (d, *J* = 17.0 Hz, 1H), 4.03 (d, *J* = 17.0 Hz, 1H), 3.92 (d, *J* = 17.0 Hz, 1H), 3.88 (d, *J* = 17.1 Hz, 1H), 3.20 (br s, 1H, CHB), 3.05 (s, 3H), 1.85 – 1.74 (m, 2H), 1.69 – 1.61 (m, 2H), 1.42 – 1.09 (m, 7H). ¹³C NMR (151 MHz, CD₃CN) δ 169.5 (2C), 159.3, 64.4, 64.3, 52.2 (CHB), 48.1, 39.7, 33.3, 29.9, 28.0, 27.8, 27.7. HRMS [M-H]⁻: calc. for C₁₃H₁₈BN₂O₄ 277.1354, found 277.1366. [α]²⁰_D -42.6 (c = 0.70, CH₃OH).

(R)-benzyl(MIDA boryl)methyl isocyanide 1e

Following the general procedure, starting from 2e (55 mg, 0.18 mmol), compound 1e has been synthesised as a pale-yellow wax (37 mg, 0.13 mmol) with 70% yield. ¹H NMR (400 MHz, CD₃CN) δ 7.40 – 7.24 (m, 5H), 4.13 (d, *J* = 17.2 Hz, 1H), 4.11

(d, J = 17.3 Hz, 1H), 3.98 (d, J = 17.2 Hz, 1H), 3.96 (d, J = 17.3 Hz, 1H), 3.50 (br d, J = 11.7 Hz, 1H, CHB), 3.09 (s, 3H), 3.08 – 2.99 (m, 1H), 2.84 – 2.75 (m, 1H). ¹³C NMR (101 MHz, CD₃CN) δ 168.43, 168.40, 158.4, 139.9, 130.1, 129.4, 127.7, 63.9, 63.8, 48.2 (br, CHB), 47.2, 37.3.¹¹B NMR (193 MHz, CD₃CN) δ 10.1. HRMS [M-H]⁻: calc. for C₁₄H₁₄BN₂O₄ 285.1041, found 285.1052. [α]²⁰_D +42.6 (c = 0.7, CH₃OH).

(R)-(1-benzyl-1H-indol-3-yl)methyl (MIDA boryl)methyl isocyanide 1f

Following the general procedure, starting from 2f (80 mg, 0.18 mmol), compound 1f has been synthesised as a pale-yellow wax (74 mg, 0.17 mmol) with 96% yield.

¹H NMR (400 MHz, CD₃CN) δ 7.62 (d, J = 7.7 Hz), 7.37 – 7.02 (m, 9H), 5.36 (br s, 2H), 4.14 (d, J = 17.2 Hz, 1H), 4.11 (d, J = 17.3 Hz, 1H), 3.99 (d, J = 17.2 Hz, 1H), 3.96 (d, J = 17.3 Hz, 1H), 3.61 – 3.53 (m, 1H, CHB), 3.24 – 3.14 (m, 1H), 3.09 (s, 3H), 3.06 – 2.99 (m, 1H). ¹³C NMR (101 MHz, CD₃CN) δ 168.6, 168.5, 158.0, 139.4, 137.5, 129.6, 128.9, 128.7, 128.4, 127.9, 122.6, 119.94, 119.92, 112.5, 111.0, 63.9, 63.8, 50.5, 47.2, 46.6 (CHB), 27.5.¹¹B NMR (193 MHz, CD₃CN) δ 10.2. HRMS [M-H]⁻: calc. for C₂₃H₂₁BN₃O₄ 414.1620, found 414.1634. [α]²⁰_D – 56.9 (c = 0.51, CH₃OH).

Copies of the ¹H NMR and ¹³C NMR spectra of 4f, 3a–f, 2a–f, 1a–f and ent-3a, ent-2a and ent-1a and ¹H-¹³C HSQC of 2a–f and 1b–f.

S18

99 98 51	48	25	20	19	20	02	88	84	52	51	50	49	47	46	86	46	42	45	44	43	41	41	36	35	34	34	33	32	30	30	29	28	27	26	25	7 4	77	12	20	19	18	18	17	16	15	86	84	82
ファフ	~	4.	4, 4	4 4	4	4	, m	, m	, m	, m	с.	с.	m.	m.	N, N	нi -	ι,	-i	ц,	÷,	÷,	ц,	÷,	÷,	÷,	÷,	-i ,	-i -		i Hi	-i	÷,	÷,	μi,	۰i ا	-i -	-i -	-i	-i -	-ii	i H	-i	÷,	÷,	÷,	o o	o o	ح
			-		-	_			_			_	L				-		-	-	-			_	-		-	-			L		-	_	L							4	4	-	_			J

¹H NMR (400 MHz, DMSO-d₆)

S41

¹³C NMR (101 MHz, DMSO-d₆)

¹³C NMR (101 MHz, DMSO-d₆)

¹H NMR (400 MHz, DMSO-d₆)

¹³C NMR (101 MHz, DMSO-d₆)

¹H NMR (400 MHz, CD₃CN)

¹³C NMR (101 MHz, CD₃CN)

S59

S62

¹H NMR (400 MHz, CD₃CN)

¹³C NMR (101 MHz, CD₃CN)

¹³C NMR (101 MHz, CD₃CN)

