Supplementary material

Synthesis and stability of 1-aminoalkylphosphonic acid quaternary ammonium salts

Anna Brol and Tomasz K. Olszewski

Faculty of Chemistry, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

Correspondence to: tomasz.olszewski@pwr.edu.pl

Table of contents

¹ H, ¹³ C{ ¹ H}, ³¹ P NMR Spectra and HRMS Data	
<i>N,N,N</i> -trimethyl- <i>N</i> -(phosphonomethyl)ammonium chloride 2 ' a	
<i>N,N,N</i> -trimethyl- <i>N</i> -(1-phosphonoethyl)ammonium chloride 2'b	4
<i>N,N,N</i> -trimethyl- <i>N</i> -(2-methyl-1-phosphonopropyl)ammonium chloride 2'c	6
<i>N,N,N</i> -trimethyl- <i>N</i> -[phenyl(phosphono)methyl]amonium chloride 2'd	8
<i>N,N,N</i> -trimethyl- <i>N</i> -(1-methyl-1-phosphonoethyl)ammonium chloride 2'e	10
<i>N,N,N</i> -trimethyl- <i>N</i> -(1-phenyl-1-phosphononoethyl)ammonium chloride 2'f	12
<i>N,N,N</i> -trimethyl- <i>N</i> -(1-methyl-2-phenyl-1-phosphonoethyl)ammonium chloride 2'g	14
<i>N,N,N</i> -trimethyl- <i>N</i> -(1-phosphonocyclopentyl)ammonium chloride 2'i	18
<i>N,N,N</i> -trimethyl- <i>N</i> -[(4-methoxyphenyl)(phosphono)methyl]amonium chloride 2'j	20
Identification of degradation products	22
Spectra of reference materials	23
1-Hydroxy-1-phenylethylphosphonic acid 6 (prepared and used as reference material)	23
1-Hydroxycyclohexylphosphonic acid 10 (prepared and used as reference material)	25
Spectra of reaction mixtures after heating with NaOH	27
Experimental Section	32

¹H, ¹³C{¹H}, ³¹P NMR Spectra and HRMS Data

N,*N*,*N*-trimethyl-*N*-(phosphonomethyl)ammonium chloride **2'a** ¹H NMR (50mg, 600uL D₂O, 400MHz) spectrum of **2'a**

 $^{13}C\{^1H\}$ NMR (50mg, 600uL D₂O, 100MHz) spectrum of 2'a

 ^{31}P NMR (50mg, 600uL D₂O, 162MHz) spectrum of 2'a

HRMS (TOF-ES+) calcd for C₄H₁₂NO₃P [M+H]+ m/z: 154.0633, found: 154.0627

 $^{13}C\{^1H\}$ NMR (22mg, 600uL D₂O, 100MHz) spectrum of 2'b

 ^{31}P NMR (22mg, 600uL D₂O, 162MHz) spectrum of $\pmb{2'b}$

HRMS (TOF-ES+) calcd for C₅H₁₄NO₃P [M+H]+ m/z: 168.0790, found: 169.0794

N,N,N-trimethyl-*N*-(2-methyl-1-phosphonopropyl)ammonium chloride **2'c** ¹H NMR (17mg, 600uL D₂O, 400MHz) spectrum of **2'c**

¹³C{¹H} NMR (21mg, 600uL D₂O, 100MHz) spectrum of **2'c**

³¹P NMR (17mg, 600uL D₂O, 162MHz) spectrum of **2'c**

HRMS (TOF-ES+) calcd for C₇H₁₈NO₃P [M+H]+ m/z: 196.1103, found: 196.1100

N,N,N-trimethyl-N-[phenyl(phosphono)methyl]ammonium chloride **2'd** ¹H NMR (31mg, 550uL D₂O, 400MHz) spectrum of **2'd**

 $^{13}C\{^1H\}$ NMR (31mg, 550uL D₂O, 100MHz) spectrum of 2'd

 ^{31}P NMR (31mg, 550uL D₂O, 162MHz) spectrum of 2'd

HRMS (TOF-ES+) calcd for C₁₀H₁₇NO₃P [M+H]+ m/z: 230.0946, found: 230.0942

N,*N*,*N*-trimethyl-*N*-(1-methyl-1-phosphonoethyl)ammonium chloride **2'e** 1 H NMR (33mg, 550uL D₂O, 400MHz) spectrum of **2'e**

¹³C{¹H} NMR (33mg, 550uL D₂O, 100MHz) spectrum of **2'e**

 ^{31}P NMR (33mg, 550uL D₂O, 162 MHz) spectrum of 2'e

HRMS (TOF-ES+) calcd for C₆H₁₇NO₃P [M+H]+ m/z: 182.0946, found: 182.0947

N,N,N-trimethyl-N-(1-phenyl-1-phosphononoethyl)ammonium chloride **2'f** ¹H NMR (40mg, 600uL D₂O, 400MHz) spectrum of **2'f**

 $^{13}\text{C}\{^1\text{H}\}$ NMR (40mg, 600uL D₂O, 100MHz) spectrum of 2'f

 ^{31}P NMR (40mg, 600uL D₂O, 162MHz) spectrum of $\mathbf{2'f}$

HRMS (TOF-ES+) calcd for C₁₁H₁₈NO₃P [M+H]+ m/z: 244.1103, found: 244.1099

N,N,N-trimethyl-N-(1-methyl-2-phenyl-1-phosphonoethyl)ammonium chloride **2'g** ¹H NMR (21mg, 600uL D₂O, 400MHz) spectrum of **2'g**

 $^{13}\text{C}\{^1\text{H}\}$ NMR (21mg, 600uL D₂O, 100MHz) spectrum of 2'g

 ^{31}P NMR (21mg, 600uL D₂O, 162MHz) spectrum of $\mathbf{2'g}$

HRMS (TOF-ES+) calcd for C₁₂H₂₀NO₃P [M+H]+ m/z: 258.1259, found: 258.1251

N,N,N-trimethyl-N-(1-phosphonocyclohexyl) ammonium chloride~2'h

 $^{13}C\{^1H\}$ NMR (21mg, 550uL D₂O, 100MHz) spectrum of 2'h

 ^{31}P NMR (23mg, 550uL D₂O, 162MHz) spectrum of $\pmb{2'h}$

HRMS (TOF-ES+) calcd for C₉H₂₀NO₃P [M+H]+ m/z: 222.1259, found: 222.1255

N,N,N-trimethyl-*N*-(1-phosphonocyclopentyl)ammonium chloride **2'i** ¹H NMR (29mg, 550uL D₂O, 400MHz) spectrum of **2'i**

 $^{13}C\{^1H\}$ NMR (40mg, 550uL D₂O, 100MHz) spectrum of $2^{\prime}i$

³¹P NMR (29mg, 550uL D₂O, 162MHz) spectrum of **2'i**

HRMS (TOF-ES+) calcd for C₈H₁₈NO₃P [M+H]+ m/z: 208.1103, found: 208.1105

N,*N*,*N*-trimethyl-*N*-[(4-methoxyphenyl)(phosphono)methyl]ammonium chloride **2'j** ¹H NMR (33mg, 550uL D₂O, 100MHz) spectrum of **2'j**

¹³C{¹H} NMR (24mg, 550uL D₂O, 100MHz) spectrum of **2'j**

³¹P NMR (33mg, 550uL D₂O, 162MHz) spectrum of **2'j**

HRMS (TOF-ES+) calcd for C₁₁H₁₈NO₄P [M+H]+ m/z: 260.1052, found: 260.1058

Identification of degradation products

The degradation products (olefins) were identified by comparison of the chemical shifts of signals on ¹H and ³¹P NMR spectra with values reported in literature for exact or similar structures (Scheme S1) while the formation of 1-hydroxyalkylphosphonic acids 7 and **10** was confirmed by the addition of standards (synthesised appropriate 1-hydroxyalkylphosphonic acids). Given references correspond to those cited in the main article.

Chemical shifts on ³¹P NMR spectra of phosphonic compounds are strongly dependent on pH of the measured solutions.¹ Thus, the differences in measured chemical shifts of compounds **5** and **9** compared to the literature values (ref. ^{24a}) are caused by different pH of the solutions. For compound **5** chemical shift measured in 3.3M NaOH is $\delta_P = 10.41$, whereas in the literature spectrum was measured for disodium salt in H₂O (slightly basic conditions) and $\delta_P = 14.4$. Similarly, for compound **9** chemical shift measured in 3.3M NaOH is $\delta_P = 14.2$, whereas in the literature spectrum was measured for disodium salt in H₂O (slightly basic conditions) and $\delta_P = 14.0$.

Scheme S1. Identification of degradation products by comparison of chemical shifts and coupling constants.

Spectra of reference materials

1-Hydroxy-1-phenylethylphosphonic acid **6** (prepared and used as reference material) ¹H NMR (17mg, 550uL D₂O, 400MHz) spectrum of crude **6**

 $^{13}C\{^1H\}$ NMR (17mg, 550uL D2O, 100MHz) spectrum of crude $\boldsymbol{6}$

HRMS (TOF-ES+) calcd for C₈H₁₁O₄P [M]+ m/z: 203.0473, found: 203.0478

1-Hydroxycyclohexylphosphonic acid **10** (prepared and used as reference material) 1 H NMR (17mg, 550uL D₂O, 400MHz) spectrum of **10**

 $^{13}C\{^1H\}$ NMR (22mg, 550uL D2O, 100MHz) spectrum of 10

HRMS (TOF-ES+) calcd for $C_6H_{13}NO_4P$ [M]+ m/z: 181.0630, found: 181.0632

Spectra of reaction mixtures after heating with NaOH ³¹P NMR spectrum of reaction mixture after heating **2'f** with 3.3M NaOH

³¹P NMR spectrum of reaction mixture after heating **2'f** with 3.3M NaOH after addition of 1-hydroxy-1-phenylethylphosphonic acid **6** (as standard)

¹H NMR spectrum of reaction mixture after heating **2'f** with 3.3M NaOH

¹H NMR spectrum of reaction mixture after heating **2'f** with 3.3M NaOH after addition of 1-hydroxy-1-phenylethylphosphonic acid **6** (as standard)

 ^{31}P NMR spectrum of reaction mixture after heating 2'g with 3.3M NaOH

¹H NMR spectrum of reaction mixture after heating **2'g** with 3.3M NaOH

 ^{31}P NMR spectrum of reaction mixture after heating $2^{\prime}h$ (contaminated with 6% of HPO_3H_2) with 3.3M NaOH

³¹P NMR spectrum of reaction mixture after heating **2'h** (contaminated with 6% of HPO₃H₂) with 3.3M NaOH after addition of 1-cyclohexylphosphonic acid **10** (as reference material).

 ^1H NMR spectrum of reaction mixture after heating $2^{\prime}h$ (contaminated with 6% of HPO_3H_2) with 3.3M NaOH

¹H NMR spectrum of reaction mixture after heating **2'h** (contaminated with 6% of HPO₃H₂) with 3.3M NaOH after addition of 1-cyclohexylphosphonic acid **10** (as reference material).

Experimental Section

General

Solvents and NaOH were purchased from Chempur and Stanlab and used without purification. Dimethyl sulfate and deuterium oxide was purchased from Sigma-Aldrich. Reactions that required heating were performed in heating mantle or in heating block apparatus with external temperature control. ¹H, $^{13}C{^{1}H}$ and ^{31}P NMR spectra were collected on Jeol 400yh instrument (400MHz for ¹H NMR, 162MHz for ³¹P NMR and 100MHz for ¹³C NMR) and were processed with dedicated software (Delta 5.0.5). NMR experiments recorded in D₂O were referenced to the respective residual ¹H or ¹³C signals of the solvent. Multiplicities are reported using the following abbreviations: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). The reported *J* values are those observed from the splitting patterns in the spectrum and may not reflect the true coupling constant values. High resolution mass spectra were collected using electrospray ionization on Waters LCT Premier XE TOF instrument. Since all compounds **2**' melted with vigorous decomposition therefore the melting/decomposition points were determined at constant 5°C/min at Digimelt Apparatus.

Synthesis of starting materials

1-Aminoalkylphosphonic acid **1a-1j** were obtained by Sorokas' protocol² in reaction of appropriate carbonyl compound with acetamide, acetyl chloride and PCl₃ in acetic acid.

Experimental procedures

Caution note: Dimethyl sulfate is extremely toxic. Contact with the liquid or inhaling the vapor should be avoided. This reagent should be handled with great caution and all actions should be performed under the hood.

Synthesis of quaternary ammonium methylsulfates 2 and 4

Method A

The appropriate 1-aminoalkylphosphonic acid 1 (5.0 mmol) was dissolved in NaOH solution (25 mmol, 1.00 g in 8 ml of water) and stirred for 10 minutes. Subsequently, Me_2SO_4 (20 mmol, 2.52 g, 1.89 ml) was added dropwise over 3 minutes. The initially two-phase mixture

homogenized after 60 minutes. Stirring was continued for 48 hours at 20 °C. The progress of the reaction was controlled by means of ³¹P NMR.

Method B

The appropriate 1-aminoalkylphosphonic acid **1** (5.0 mmol) was dissolved in NaOH solution (30 mmol, 1.20 g in 10 ml of water) and stirred for 10 minutes. Subsequently, Me₂SO₄ (30 mmol, 3.78 g, 2.84 ml) was added dropwise over 3 minutes. The initially two-phase mixture homogenized after 60 minutes. Stirring was continued for 48 hours at 20 °C. The progress of the reaction was controlled by means of ³¹P NMR. If conversion was not satisfactory, another portion of NaOH solution (10 mmol, 0.40 g, in 2 ml of water) was added to a stirred solution and after 10 minutes Me₂SO₄ (10 mmol, 1.26 g, 0.95 ml) was added dropwise. The progress of the was controlled by means of ³¹P NMR. This step was repeated until result was satisfactory (full conversion of the substrate).

Hydrolysis of quaternary ammonium methylsulfates 2 and 4 and isolation of 2'a - 2'j

Reaction mixture was added to aq. 12M HCl (1 ml of acid per 1 ml of mixture) and subsequently refluxed for 4 hours. After that time reaction was cooled down and aqueous solution of BaCl₂ (1.0 mmol per 1.0 mmol of Me₂SO₄) was added dropwise. After 1 hour, precipitated BaSO₄ was removed by centrifugation (5000 rpm, 5 minutes), washed with water and centrifuged again. Combined aqueous layers were evaporated under reduced pressure to dryness. To resulting semisolid residue 10 ml of EtOH (99.8%) was added and the mixture was refluxed for 3 minutes. After cooling, precipitated NaCl was removed by suction and washed with EtOH (99.8%) (4 x 3 ml). Collected filtrates were evaporated under reduced pressure, yielding crude phosphonic acid quaternary ammonium derivatives **2**'. Crude products **2**' were purified by crystallization from EtOH (99.8%) (1.5 ml of EtOH per 1.0 g of crude product) and precipitated by addition of Et₂O (4.5 to 6.0 ml) and cooling in -20 °C. Precipitated products were filtered off, washed with cold Et₂O (4 x 2 ml) and dried in vacuo.

N,*N*,*N*-*trimethyl*-*N*-(*phosphonomethyl*)*ammonium chloride (2'a)*. Compound 2'a was prepared by following the method A procedure, starting from 1a (1.11 g, 10.0 mmol). 2'a was obtained (0.88 g, 48% isolated yield) as a white solid which decomposes at 146 °C. ¹H NMR

(50 mg, 0.60 ml D₂O): δ 3.39 (d, 2H, J = 12.8 Hz), 3.05 (s, 9H). ³¹P NMR (50 mg, 0.60 ml D₂O): δ 6.75 (t, J = 13.1 Hz). ¹³C{¹H} NMR (50 mg, 0.60 ml D₂O): δ 62.3 (d, J = 136.1 Hz), 55.3 (3C). HRMS (TOF-ES+) calcd for C₄H₁₂NO₃P [M+H]⁺ m/z: 154.0633, found: 154.0627.

N,*N*,*N*-*trimethyl*-*N*-(*1*-*phosphonoethyl*)*ammonium chloride* (*2'b*). Compound **2'b** was prepared by following the method A procedure, starting from **1b** (0.63 g, 5.0 mmol). **2'b** was obtained (0.60 g, 59% isolated yield) as a white solid which decomposes at 200 °C. ¹H NMR (22 mg, 0.60 ml D₂O): δ 3.47 (doublet of quartets, J = 7.3 Hz, J = 14.1 Hz, 1H), 3.10 (s, 9H), 1.45 (dd, 3H, J = 7.3 Hz, J = 13.8 Hz). ³¹P NMR (22 mg, 0.60 ml D₂O): δ 10.92 (quintet, J = 14.0 Hz). ¹³C{¹H} NMR (22 mg, 0.60 ml D₂O): δ 67.8 (d, J = 137.3 Hz), 53.0 (3C), 11.5. HRMS (TOF-ES+) calcd for C₅H₁₄NO₃P [M+H]⁺ m/z: 168.0790, found: 169.0794.

N,N,N-trimethyl-N-(2-methyl-1-phosphonopropyl)ammonium chloride (2'c). Compound **2'c** was prepared by following the method B procedure (8.0 moles of NaOH and Me₂SO₄ per 1 mole of 1-APA in total), starting from **1c** (0.77 g, 5.0 mmol). **2'c** was obtained (0.91g, 67% isolated yield) as a white solid which decomposes at 120 °C. ¹H NMR (17 mg, 0.60ml D₂O): δ 3.22 (d, *J* = 16.8 Hz, 1H), 3.11 (s, 9H), 2.26-2.33 (m, 1H), 1.14 (d, *J* = 7.0 Hz, 3H), 1.07 (d, *J* = 7.3 Hz, 3H). ³¹P NMR (17 mg, 0.60 ml D₂O): δ 8.50 (dd, *J* = 16.8 Hz, *J* = 22.4 Hz). ¹³C {¹H} NMR (21 mg, 0.60 ml D₂O): δ 77.4 (d, *J* = 134.4 Hz), 53.7 (3C), 26.6, 22.9, 18.6 (d, *J* = 5.8 Hz). HRMS (TOF-ES+) calcd for C₇H₁₈NO₃P [M+H]⁺ m/z: 196.1103, found: 196.1100.

N,N,N-trimethyl-N-[phenyl(phosphono)methyl]ammonium chloride (2'd). Compound 2'd was prepared by following the method A procedure, starting from 1d (0.94 g, 5.0 mmol). 2'd was obtained (1.01 g, 76% isolated yield) as a white solid which decomposes at 188°C. ¹H NMR (31 mg, 0.55ml D₂O): δ 7.70 (d, 1H, *J* = 7.0 Hz), 7.25-7.42 (m, 4H), 4.49 (d, 1H, *J* = 17.1 Hz), 3.07 (s, 9H). ³¹P NMR (31 mg, 0.55ml D₂O): δ 7.68 (d, *J* = 16.8 Hz). ¹³C {¹H} NMR (31 mg, 0.55 ml D₂O): δ 134.4 (d, *J* = 9.8 Hz), 130.5, 130.1 (d, *J* = 3.5 Hz), 129.7 (d, *J* = 1.7Hz), 129.3, 129.0, 76.0 (d, *J* = 135.6 Hz), 53.8 (3C). HRMS (TOF-ES+) calcd for C₁₀H₁₇NO₃P [M+H]⁺ m/z: 230.0946, found: 230.0942.

N,*N*,*N*-*trimethyl*-*N*-(1-methyl-1-phosphonoethyl)ammonium chloride (2'e). Compound 2'e was prepared by following the method A procedure, starting from 1e (0.70 g, 5.0 mmol). 2'e was obtained (0.85 g, 78% isolated yield) as a white solid which decomposes at 213 °C. ¹H NMR

(33 mg, 0.55 ml D₂O): δ 3.04 (s, 9H), 1.41 (d, 6H, J = 13.1 Hz). ³¹P NMR (33 mg, 0.55 ml D₂O): δ 14.93 (septet, J = 13.1 Hz). ¹³C{¹H} NMR (33 mg, 0.55 ml D₂O): δ 71.4 (d, J = 142.5 Hz), 51.1 (3C), 19.4 (2C). HRMS (TOF-ES+) calcd for C₆H₁₇NO₃P [M+H]⁺ m/z: 182.0946, found: 182.0947.

N,*N*,*N*-*trimethyl*-*N*-(*1*-*phenyl*-*1*-*phosphononoethyl*)*ammonium chloride* (*2'f*). Compound **2'f** was prepared by following the method B procedure (8.0 moles of NaOH and Me₂SO₄ per 1.0 mole of 1-APA in total), starting from **1f** (0.50 g, 2.5 mmol). **2'f** was obtained (0.47 g, 67% isolated yield) as a white solid which turn into yellow gum during storing. ¹H NMR (40 mg, 0.60 ml D₂O): δ 7.40-8.40 (m, 2H), 7.10-7.20 (m, 3H), 2.98 (s, 9H), 1.95 (d, *J* = 13.1 Hz, 3H). ³¹P NMR (40mg, 0.60 ml D₂O): δ 12.67 (quartet, *J* = 13.1 Hz). ¹³C {¹H} NMR (40 mg, 0.60 ml D₂O): δ 133.1 (broad, 1C), 131.9, 130.3 (2C), 128.4 (broad, 2C), 76.7 (broad d, *J* = 138.5 Hz), 51.8 (3C), 17.6. HRMS (TOF-ES+) calcd for C₁₁H₁₈NO₃P [M+H]⁺ m/z: 244.1103, found: 244.1099.

N,N,N-trimethyl-N-(1-methyl-2-phenyl-1-phosphonoethyl)ammonium chloride (2'g). Compound **2'g** was prepared by following the method A procedure, starting from **1g** (0.51 g, 2.5 mmol). **2'g** was obtained (0.59 g, 80% isolated yield) as a white solid which decomposes at 140 °C. ¹H NMR (21 mg, 0.60 ml D₂O): δ 7.16-7.33 (m, 5H), 3.37 (dd, *J* = 9.6 Hz, J = 14.8 Hz, 1H), 3.22 (dd, *J* = 14.4 Hz, *J* = 14.4 Hz, 1H), 3.12 (s, 9H), 1.47 (d, *J* = 13.8 Hz, 3H). ³¹P NMR (21 mg, 0.60 ml D₂O): δ 14.05 (doublet of doublets of quartets, *J* unmarked). ¹³C{¹H} NMR (21 mg, 0.60 ml D₂O): δ 135.5 (d, *J* = 6.3 Hz), 131.6 (2C), 128.4 (2C), 127.4, 75.6 (d, *J* = 139.0 Hz), 52.1 (3C), 36.7, 16.4. HRMS (TOF-ES+) calcd for C₁₂H₂₀NO₃P [M+H]⁺ m/z: 258.1259, found: 258.1251.

N,*N*,*N*-*trimethyl*-*N*-(*1*-*phosphonocyclohexyl*)*ammonium chloride* (*2*'*h*). Compound **2**'h was prepared by following the method B procedure (10.0 moles of NaOH and Me₂SO₄ per 1.0 mole of 1-APA in total), starting from **1h** (0.90 g, 5.0 mmol). **2**'h was obtained (0.51 g, 40% isolated yield) as a white solid which decomposes at 183°C. ¹H NMR (23 mg, 0.55 ml D₂O): δ 3.06 (s, 9H), 2.01-2.17 (m, 2H), 1.41-1.80 (m, 7H), 0.97-1.15 (1H). ³¹P NMR (23 mg, 0.55 ml D₂O): δ 14.88m. ¹³C{¹H} NMR (21 mg, 0.60 ml D₂O): δ 76.7 (d, *J* = 138.5 Hz), 50.9 (3C), 26.6 (2C), 23.0, 22.1 (2C). HRMS (TOF-ES+) calcd for C₉H₂₀NO₃P [M+H]⁺ m/z: 222.1259, found: 222.1255.

N,N,N-trimethyl-N-(1-phosphonocyclopentyl)ammonium chloride (2'i). Compound **2'i** was prepared by following the method B procedure (6.0 moles of NaOH and Me₂SO₄ per 1.0 mole of 1-APA in total), starting from **1i** (0.83 g, 5.0 mmol). **2'i** was obtained (1.04 g, 86% isolated yield) as a yellowish solid which decomposes at 201 °C. ¹H NMR (29 mg, 0.55 ml D₂O): δ 3.03 (s, 9H), 1.93-2.15 (m, 4H), 1.52-1.66 (m, 4H). ³¹P NMR (29 mg, 0.55 ml D₂O): δ 16.48 (tt, *J* = 10.3Hz, *J* = 15.0 Hz). ¹³C{¹H} NMR (40 mg, 0.55 ml D₂O): δ 81.5 (d, *J* = 144.8 Hz), 51.5 (3C), 21.7, 21.6. HRMS (TOF-ES+) calcd for C₈H₁₈NO₃P [M+H]⁺ m/z: 208.1103, found: 208.1105.

N,N,N-trimethyl-N-[(4-methoxyphenyl)(phosphono)methyl]ammonium chloride (2'j). Compound **2'j** was prepared by following the method A procedure, starting from **1j** (0.94 g, 5.0 mmol). **2'j** was obtained (1.29 g, 87% isolated yield) as a white solid which decomposes at 182 °C. ¹H NMR (33 mg, 0.55 ml D₂O): δ 7.63 (dd, 1H, *J* = 8.9 Hz, *J* unmarked), 7.21 (dd, 1H, *J* = 8.6 Hz, *J* = 2.1 Hz), 6.92 (dd, 1H, *J* = 8.9 Hz, J = 2.8 Hz), 6.88 (dd, *J* = 8.6 Hz, *J* = 2.8 Hz), 4.45 (d, 1H, *J* = 17.1 Hz), 3.68 (s, 3H), 3.03 (s, 9H). ³¹P NMR (33 mg, 0.55 ml D₂O): δ 7.96 (d, *J* = 16.8 Hz). ¹³C {¹H} NMR (24 mg, 0.55 ml D₂O): δ 160.4, 136.0 (d, *J* = 9.8 Hz), 131.6 (d, *J* = 2.9 Hz), 122.0 (d, 1.7 Hz), 114.6, 114.4, 75.5 (d, *J* = 136.7 Hz), 55.4, 53.5 (3C). HRMS (TOF-ES+) calcd for C₁₁H₁₈NO₄P [M+H]⁺ m/z: 260.1052, found: 260.1058.

Test of stability of compounds 2' in alkaline medium

Solution of *N*,*N*,*N*-trialkyl-*N*-(1-phosphonoalkyl)ammonium salt **2'** (0.15mmol) in 3.3M NaOH in D₂O (2.0mmol, 0.60ml) was heated at 100°C for 35hours. Inorganic solid precipitated in the test tube. Subsequently ¹H and ³¹P NMR spectra were recorded. Afterwards, reference materials (corresponding hydroxy- phosphonates) were added, and spectra were recorded again. In the case of salt **2'h** crude product, containing 6%mol of phosphonic acid, was used.

Identification of degradation products

The degradation products (olefins) were identified by comparison of the chemical shifts on ¹H and ³¹P NMR spectra with values reported in literature for exact or similar structures while the formation of 1-hydroxyalkylphosphonic acids **6** and **10** was confirmed by the addition of prepared standards.

1-Phenylvinylphosphonic acid (5). ¹H NMR (in 3.3M NaOH, D₂O): δ 5.54 dd, *J*= 1.2 Hz, *J*_{HP} = 18.3 Hz), 5.34(dd, *J* = 1.2 Hz, *J*_{HP} = 36.7 Hz). ³¹P NMR (in 3.3M NaOH, D₂O): δ 10.41 (dd, *J*_{HP} = 18.3 Hz, *J*_{HP} = 36.0 Hz).

(*E*)-1-Methyl-2-phenylvinylphosphonic acid (7a). ¹H NMR (in 3.3M NaOH, D₂O): δ 6.72 (doublet of quartets, J = 1.5 Hz, $J_{HP} = 20.8$ Hz, 1H), 1.65 (dd, J = 1.5 Hz, $J_{HP} = 12.8$ Hz, 3H). ³¹P NMR (in 3.3M NaOH, D₂O): δ 14.90 (doublet of quartets, $J_{HP} = 20.6$ Hz, J = 13.1 Hz).

(*Z*)-1-Methyl-2-phenylvinylphosphonic acid (7b). ¹H NMR (in 3.3M NaOH, D₂O): δ 6.41 (d, J_{HP} = 37.0 Hz, 1H), 1.75 (dd, J = 1.5Hz, J_{HP} = 10.7 Hz, 3H). ³¹P NMR (in 3.3M NaOH, D₂O): δ 10.23 (doublet of quartets, J_{HP} (trans) = 37.4 Hz, J_{HP} = 10.7 Hz).

2-Hydroxy-3-phenylpropan-2-ylophosphonic acid (8). ¹H NMR (in 3.3M NaOH, D₂O): δ 2.60 (dd, J = 13.8 Hz, J = 3.1 Hz, 1H), 0.79 (d, J = 12.8 Hz, 3H). ³¹P NMR (in 3.3M NaOH, D₂O): δ 21.43 (doublet of doublets of quartets, J = 12.6 Hz, J = 6.5 Hz, J = 2.8 Hz).

Cyclohex-1-enylphosphonic acid (9). ¹H NMR (in 3.3M NaOH, D₂O): δ 5.88 (broad doublet, $J_{HP} = 19.0$ Hz, 1H), ³¹P NMR (in 3.3M NaOH, D₂O): δ 14.18 (doublet of quintets, J = 19.6 Hz, J = 3.7 Hz).

Synthesis of 1-hydroxyalkylphosphonic acids used as reference materials (standards)

1-Hydroxy-1-(phenyl)ethylphosphonic acid (6) was obtained by Sekines' et al.³ method, starting from tris(trimethylsilyl)phospite and acetophenone (1.20 g, 10.0 mmol). Crude 6 (contaminated with 12%mol of phosphonic acid and 5%mol of phosphoric acid) was obtained (1.59 g, 72% yield) as white solid. Crystallization attempts failed, therefore crude 6 was used as a reference material. ¹H NMR (17 mg, 0.55 ml D₂O): δ 7.36-7.44 (m, 2H), 7.14-7.29 (m, 3H), 1.62 (d, *J* = 15.3 Hz, 3H). ³¹P NMR (17 mg, 0.55 ml D₂O): δ 23.51 (quartet, *J* = 15.3 Hz). ¹³C {¹H} NMR (27 mg, 0.55 ml D₂O): δ 141.3, 128.3, 128.3, 127.7 (d, *J* = 2.9 Hz), 126.0, 125.9, 73.2 (d, *J* = 159.7 Hz), 24.0 (d, *J* = 3.5 Hz). HRMS (TOF-ES+) calcd for C₈H₁₁O₄P [M]+ m/z: 203.0473, found: 203.0478.

1-Hydroxycyclohexylphosphonic acid (10) was synthesized according to Goldeman and Sorokas' protocol.⁴ Compound 10 was obtained (1.20 g, 70% isolated yield) as white solid. ¹H NMR (17 mg, 0.55 ml D₂O): δ 1.58-1.69 (m, 2H), 1.30-1.55 (m, 7H), 0.97-1.14 (m, 1H). ³¹P

NMR (17 mg, 0.55 ml D₂O): δ 27.3 (broad s). ¹³C{¹H} NMR (22mg, 550uL D₂O): δ 70.7 (d, J = 163.2 Hz), 30.4, 30.4, 24.7, 19.6, 19.5. HRMS (TOF-ES+) calcd for C₆H₁₃NO₄P [M]+ m/z: 181.0630, found: 181.0632.

References

- 1. S. Pietri, M. Miollan, S. Martel, F. Le Moigne, B. Blaive, M. Culcasi. J. Biol. Chem., 2000, 275, 19505-19512.
- 2. M. Soroka. Liebigs Ann. Chem. 1990. 4, 331-334.
- 3. M. Sekine, I. Yamamoto, A. Hashizume, T. Hata. Chemistry Letters, 1977, 6, 485-488.
- 4. W. Goldeman, M. Soroka. Synthesis, 2006, 18, 3019-3024.