Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Catalyst-Controlled Divergent Transformations of *N*-Sulfonyl-1,2,3triazoles into Isoquinolin-3-ones and 2-Aminoindanones

Kyu Ree Lee†, Da Jung Jung†, Subin Ahn, Ji Won Kim, Sang-gi Lee*

Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea sanggi@ewha.ac.kr

List of Contents

1. General Information	S2
2. General Procedure of Substrate 1 and 1a-d	S2
3. Table S1. Optimization for the Synthesis of 5a and 2a via Rh(II)- and Pd(0)-Catalysis	S3
4. Table S2. Optimization for the Synthesis of 2a Using Lewis Acid Catalyst	S4
5. Table S3. Optimization for the Synthesis of 3a via Tandem One-Pot Rh(II)/Pd(0) Catalysis	S5
6. All in One-Pot Rh(II)/Pd(0) Catalysis of 1a for the Synthesis of 3a	S5
7. General Procedure for the Synthesis of 2	S6
8. General Procedure for Synthesis of 3	S6
9. General Procedure for Tandem Synthesis of 3a	S6
10. Deuterium Labeling Experiment	S7
11. Characterization Data	S9
12. X-ray Crystal Structure and Data of 2a	S16
13. X-ray Crystal Structure and Data of 3a	S17
14. Copies of ¹ H and ¹³ C NMR Spectra	S18

1. General Information.

All reactions were performed under an argon atmosphere using standard Schelenk techniques. Reaction flasks were flame-dried under vacuum. All purchased reagents were used without further purification. Dry toluene was distilled prior to be used. Anhydrous solvent was transferred by an oven dried syringe of a cannula. All reactions were monitored by TLC with silica gel coated plates. Visualization on TLC was achieved by use of UV light (254 nm) or by staining with Cerium Ammonium Molybdate (CAM). NMR spectra were recorded on a Bruker 300 MHz for ¹H, 75.5 MHz for ¹³C, and 282 MHz for ¹⁹F. The melting points were measured on a Fisher-Johns apparatus and uncorrected. HRMS, high resolution mass spectra were obtained by electron ionization (EI), fast atom bombardment (FAB) with a magnetic sector-electronic sector double focusing mass analyzer at the Daegu Center of the Korea Basic Science Institute.

2. General Procedure of Substrate 1 and 1a-d.

The compound **S1** was prepared according to the literature procedures.¹ The substrate **1** was prepared according to the general *N*-sulfonyl-1,2,3-triazole synthesis.²(*Note.* The compound **1** should be stored at low temperatures, otherwise it would decompose as it turns green. Also, the catalytic reactivity of the starting material **1** decreases over time, therefore it must be used within a week after synthesis.)

Under a nitrogen atmosphere, to a solution of dry THF (0.2 M) in a flame-dried round bottom flask was added acetylene **S1a** (1 equiv.) and stirred at -78 °C then added nBuLi (1.6 M in hexane, 1.1 equiv.) dropwise. The reaction mixture was stirred for an hour, then diluted with Et_2O and quenched with D_2O (10 equiv.). The resulting suspension was dried over MgSO₄ and filtered. The residue was concentrated under reduced pressure to afford compound **S2**.

1a-*d* was prepared from **S2a** according to the ref. (2) with additional D_2O (20 equiv.).

Reference

- M. Rosillo, G. Domínguez, L. Casarrubios, U. Amador and J. Pérez-Castells, Tandem Enyne Methathesis-Diels-Alder Reaction for Construction of Natural Product Frameworks. J. Org. Chem. 2004, 69, 2084-2093.
- (2) J. Raushel and V. V. Fokin, Efficient Synthesis of 1-Sulfonyl-1,2,3-Triazoles. Org. Lett. 2010, 12, 4952-4955.

3. Table S1. Optimization for the Synthesis of 5a and 2a via Rh(II)- and Pd(0)-Catalysis.

In a glovebox, a flame-dried vial equipped with a stirrer bar was charged with triazole **1a** (0.2 mmol), catalyst, 4 Å molecular sieves and sealed under an argon atmosphere. A solvent was added to the mixture and the solution was heated until all triazole was consumed (determined by TLC analysis). After being cooled to room temperature, the solvent was evaporated, dried under vacuum, and determined the product ratio from crude ¹H NMR spectrum. The product was purified by silica-gel column chromatography. (*Note.* ¹H NMR analysis should be conducted immediately after completion of the reaction, since compound **5a** was readily decomposed in one day even at -20 °C.)

Entry	Rh Catalyst	Pd Catalyst	Ligand (mol%)	Solvent (M)	T (°C)	Yield	2a : 5a
Lifti y	(mol%)	(mol%)	Ligand (mor/o)	Solvent (W)	/time (h) ^b	(%) ^c	ratio ^d
1	Rh ₂ (TMA) ₄ (2)	$Pd(PPh_{3})_{4}(2)$	-	Toluene (0.2)	90 / 21	31	99>1
2	Rh ₂ (TMA) ₄ (3)	Pd ₂ (dba) ₃ (1)	Dppp (2)	Toluene (0.2)	120 / 1	53	1.63:1
3	Rh ₂ (TMA) ₄ (2)	-	-	Toluene (0.2)	90 / 2	75	1:9
4	Rh ₂ (TMA) ₄ (2)	-	-	Toluene (0.2)	<80	N.R.	-
5	Rh ₂ (TMA) ₄ (2)	-	-	1,2-DCE (0.2)	90 / 2	64	1:10
6	Rh ₂ (TMA) ₄ (2)	-	-	PhCl (0.2)	90 / 3	69	1:5
7	Rh ₂ (TMA) ₄ (2)	-	-	MeCN (0.2)	90 / 7	13	3.7:1
8	Rh ₂ (TMA) ₄ (2)	-	-	Toluene (0.2)	120 / 0.5	89	1<99
9	Rh ₂ (TMA) ₄ (4)	-	-	Toluene (0.2)	70 / 2.5	72	1<99
10	Rh ₂ (oct) ₄ (4)	-	-	Toluene (0.2)	70 / 21	30	1:2.3
11	Rh ₂ (OAc) ₄ (4)	-	-	Toluene (0.2)	70 / 21	43 ^e	1.87:1
12	$Rh_2(esp)_2(4)$	-	-	Toluene (0.2)	70 / 4	68	1<99
13	Rh ₂ (S-DOSP) ₄ (4)	-	-	Toluene (0.2)	70 / 5	80	1:9
14	Rh ₂ (TMA) ₄ (4)	-	-	Toluene (0.2)	80 / 1	76	1<99
15	Rh ₂ (TMA) ₄ (4)	-	-	Toluene (0.2)	90 / 1	80	1<99
16	Rh ₂ (TMA) ₄ (4)	-	-	Toluene (0.2)	100 / 1	83	1:32
17	-	$Pd(PPh_3)_4(4)$	-	1,2-DCE (0.13)	80 / 6	61	99>1
18	-	Pd ₂ (dba) ₃ (2)	$P(4-MeOPh)_{3}(8)$	1,2-DCE (0.13)	80 / 5	76	99>1
19	-	Pd ₂ (dba) ₃ (2)	P(4-MeOPh) ₃ (8)	MeCN (0.13)	80 / 3	70	99>1
20	-	Pd ₂ (dba) ₃ (2)	P(4-MeOPh) ₃ (8)	Toluene (0.13)	80 / 7	35	99>1
21	-	Pd ₂ (dba) ₃ (2)	$P(4-MeOPh)_{3}(8)$	1,4-dioxane (0.13)	80 / 7	31	99>1
22	-	Pd ₂ (dba) ₃ (2)	Dppf (4)	1,2-DCE (0.13)	80 / 6	30	99>1
23	-	Pd ₂ (dba) ₃ (2)	$PPh_3(8)$	1,2-DCE (0.13)	80 / 6	41	99>1
24	-	Pd ₂ (dba) ₃ (2)	Xantphos (4)	1,2-DCE (0.13)	80 / 5	15	99>1
25	-	Pd ₂ (dba) ₃ (2)	rac-BINAP (4)	1,2-DCE (0.13)	80 / 5	$N.D^{\mathrm{f}}$	99>1
26	-	Pd ₂ (dba) ₃ (2)	Segphos (4)	1,2-DCE (0.13)	80 / 5	$N.D^{\mathrm{f}}$	99>1
27	-	Pd ₂ (dba) ₃ (2)	P(o-tolylPh) ₃ (8)	1,2-DCE (0.13)	80 / 5	72	99>1
28	-	Pd ₂ (dba) ₃ (2)	P(4-MeOPh) ₃ (8)	1,2-DCE (0.13)	90 / 3	80	99>1

^aReaction conditions: **1a** (0.2 mmol), catalyst, and MS 4 Å in solvent at designated temperature. ^bTime for complete conversion of **1a** determined by TLC. ^cIsolated yield. N.R.: No reaction occured at all. ^d**2a:5a** ratio were determined by ¹H NMR analysis. ^eStarting material was recovered in 46% yield. ^fOnly cyclic imidate intermediate **4a** was detected.

4. Table S2. Optimization for the Synthesis of 2a Using Lewis Acid Catalyst.^a

In a glovebox, a flame-dried vial equipped with a stirrer bar was charged with triazole **1a** (0.2 mmol), catalyst, 4 Å molecular sieves and sealed under an argon atmosphere. A solvent was added to the mixture and the solution was heated until all triazole was consumed (determined by TLC analysis). After being cooled to room temperature, the solvent was evaporated, dried under vacuum, and determined the product from crude ¹H NMR spectrum.

Entry	Lewis acid Catalyst (mol%)	time (h) ^b	Yield (%)
1	$PdCl_2(PhCN)_2(4)$	12	N.D ^c
2	$PdCl_2(MeCN)_2$ (4)	12	$N.D^{c}$
3	PPh ₃ (2)	12	No reaction
4	$Sc(OTf)_3(2)$	12	Decomposed
5	$Cu(OTf)_2(2)$	12	Decomposed
6	$Zn(OTf)_2(2)$	6	$\mathbf{N}.\mathbf{D}^{c}$

^aReaction conditions: **1a** (0.2 mmol) Lewis acid cat. and MS 4 Å in 1,2-DCE (1.5 ml) at 80 °C. ^bTime for complete conversion of **1a** determined by TLC. ^cOnly cyclic imidate intermediate was detected.

5. Table S3. Optimization for the Synthesis of 3a via Tandem One-Pot Rh(II)/Pd(0) Catalysis.^a

To a flame-dried vial equipped with a stirrer bar was added $Rh_2(TMA)_4$, MS 4 Å, triazole **1a** (0.2 mmol), and toluene (1 mL, 0.2 M) then the vial was sealed by the cap in a glove box. The solution was stirred and heated for 0.5 h to 1 h. After completion of the reaction, the mixture was cooled to room temperature, and charged with Pd cat. and ligand in a glovebox. The solution was stirred and heated until the reaction was completed (determined by TLC). The crude mixture was purified by column chromatography to afford the corresponding 2-aminoindanone **3a**.

Note. Initial configuration of the product **3a** was exclusively *trans* which was determined by ¹H NMR analysis of the crude reaction mixture. However, the configuration of **3a** was changed to *trans/cis* mixture after column chromatography due to highly enolizable α -proton to the carbonyl.

Entry	Rh catalyst (mol%)	T (°C)	Pd Catalyst	Ligand	T (°C)	Yield (%) ^b
		/time (h) ^b			/time (h)	
1	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd(PPh ₃) ₄	-	60 / 12	trace
2	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd(PPh ₃) ₄	-	120 / 1	decomposed
3	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd ₂ (dba) ₃ ·CHCl ₃	rac-BINAP	60 / 2	50
4	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd ₂ (dba) ₃ ·CHCl ₃	(R)-Segphos	60 / 12	12
5	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd ₂ (dba) ₃ ·CHCl ₃	dppp	60 / 12	12
6	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd ₂ (dba) ₃ ·CHCl ₃	dppb	60 / 12	30
7	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd ₂ (dba) ₃ ·CHCl ₃	dppf	60 / 12	20
8	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd ₂ (dba) ₃ ·CHCl ₃	xantphos	60 / 2	72
9	Rh ₂ (TMA) ₄ (2)	120 / 0.5	$Pd_2(dba)_3$	xantphos	60 / 2.5	15
10	Rh ₂ (TMA) ₄ (2)	120 / 0.5	$Pd(OAc)_2$	xantphos	60 / 1	74
11	Rh ₂ (TMA) ₄ (2)	120 / 0.5	Pd ₂ (dba) ₃ ·CHCl ₃	xantphos	80 / 1	61
12°	Rh ₂ (TMA) ₄ (4)	90 / 1	Pd ₂ (dba) ₃ ·CHCl ₃	xantphos	60 / 2	72

^aReaction conditions: **1a** (0.2 mmol) Rh₂(TMA)₄ (4.0 x 10⁻³ mmol) and MS 4 Å in toluene (1.0 ml) at designated temperature. ^bIsolated yield of the *cis* and *trans* mixture. ^cThe reaction conditions with 4 mol% Rh₂(TMA)₄ at 90 °C were more suitable for other substrates than with 2 mol% Rh₂(TMA)₄ at 120 °C.

6. All in One-Pot Rh(II)/Pd(0) Catalysis of 1a for the Synthesis of 3a.

To a flame-dried vial equipped with a stirrer bar was added $Rh_2(TMA)_4$ (4.9 mg, 8.0 x 10⁻³ mmol), $Pd_2(dba)_3$ ·CHCl₃ (5.5 mg, 5.0 x 10⁻³ mmol), Xantphos (6.4 mg, 1.1 x 10⁻² mmol), MS 4 Å, triazole **1a** (0.2 mmol), and toluene (1 mL, 0.2 M) then the vial was sealed by the cap in a glove box. The solution was stirred and heated to 120 °C for 1 h. The diastereomeric ratio of **3a** was determined by ¹H NMR of crude mixture (*trans:cis*=10:1). The reaction mixture was purified by column chromatography to afford the products **2a** (8%) and **3a** (53%).

7. General Procedure for the Synthesis of 2.

In a glovebox, a flame-dried vial equipped with a stir bar was charged with $Pd_2(dba)_3$ (3.7 mg, 4.0 x 10^{-3} mmol), P(4-MeOPh)_3 (5.6 mg, 1.6 x 10^{-2} mmol), MS 4 Å and triazole **1** (0.2 mmol), then sealed by the pressure tube cap. To that mixture, 1,2-DCE (1.5 ml, 0.13 M) was added. The solution was heated at 90 °C until all triazole **1** was consumed (determined by TLC analysis). After being cooled to room temperature, the crude mixture was concentrated under reduced pressure. The residue was purified by column chromatography to afford the corresponding 1,4-dihydro-isoquinolin-3(2*H*)-one **2**.

8. General Procedure for Synthesis of 3.

In a glovebox, a flame-dried vial equipped with a stirrer bar was charged with $Rh_2(TMA)_4$ (4.9 mg, 8.0 x 10⁻³ mmol), MS 4 Å, triazole (0.2 mmol) and toluene (1.0 mL, 0.2 M), then the vial was sealed by the cap. The solution was stirred and heated until all triazole **1** was consumed (determined by TLC). After cooled to room temperature, the reaction mixture was moved to a glovebox and charged with $Pd_2(dba)_3$ ·CHCl₃ (5.5 mg, 5.0 x 10⁻³ mmol), and Xantphos (6.4 mg, 1.1 x 10⁻² mmol). The solution was stirred at 60 °C until the reaction was completed. The crude mixture was purified by column chromatography to afford the corresponding 2-aminoindanone **3**.

9. General Procedure for Tandem Synthesis of 3a.

A solution of **S1a** (47 mg, 0.3 mmol, 1.0 equiv), tosyl azide (71 mg, 0.36 mmol, 1.2 equiv), CuTC (2.9 mg, TC= thiophene-2carboxylate), Rh₂(TMA)₄ (7.3 mg, 1.2 x 10^{-2} mmol), and MS 4 Å in toluene (1.5 mL, 0.2 M) was stirred for 1.5 h at room temperature. Then, the mixture was heated to 90 °C for 0.5 h. After cooled to room temperature, the reaction mixture was moved to a glovebox and charged with Pd₂dba₃·CHCl₃ (7.8 mg, 7.5 x 10^{-3} mmol), and Xantphos (9.5 mg, 1.65 x 10^{-2} mmol). The solution was stirred at 60 °C for 4 h, then the crude mixture was purified by column chromatography to afford the corresponding **3a** in 45 % overall yield.

10. Deuterium Labeling Experiment.

Deuterium labelled 2a- $d_{60\%}$ was produced from 1a- $d_{85\%}$ according to the general procedure.

Deuterium labelled **3a**- $d_{77\%}$ was produced from **1a**- $d_{85\%}$ according to the general procedure. The deuterium incorporation was observed by only in ¹H NMR of the crude mixture since proton exchange occured while conducting column chromatography.

Copies of ¹H spectra of compound **1a**-*d*_{85%}

Copies of ¹H spectra of compound $2\mathbf{a}$ - $d_{60\%}$

Copies of ¹H spectra of crude mixture of compound $3a-d_{77\%}$

8360 8356 81364 81368 81368 81368 81368 69828 69828 69828 69828 6153 6153 6153 6153 6153 6153	4162 33223 33222 33222 33224 33587 35874 33587 33567 33567 33567 33567 33567 33567 33567 1269 41269 33267 11715 116644 116644 116644 116644 116644 116644 116644 116644 116644 116644 1166	8685 55269 3104 3104 22892 22892 22892 22892 22850 22850 22850 22850 22850 22850 22850 22850 22850 22850 22850 28856 88260 8860 88
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	1//////////////////////////////////////	· · · · · · · · · · · · · · · · · · ·



## 11. Characterization Data

#### 1-{2-[1-(4-Methylbenzene-1-sulfonyl)-1H-1,2,3-triazol-4-yl]phenyl}prop-2-en-1-ol (1a).



Yield: 75%; Eluent: *n*-hexane/ethyl acetate = 4/1; White solid; mp: 100–102 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.47 (s, 1H), 3.94 (brs, O–H), 5.09–5.20 (m, 1H), 5.26–5.39 (m, 2H), 5.96–6.12 (m, 1H), 7.32–7.47 (m, 4H), 7.47–7.60 (m, 2H), 8.00–8.09 (m, 2H), 8.34 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  22.0, 71.8, 115.2, 121.6, 127.9, 128.3, 128.7, 129.0, 129.8, 130.0, 130.7, 132.9, 138.7,

141.1, 147.0, 147.8 ppm; HRMS (EI) Calcd *m*/*z* for C₁₈H₁₇N₃O₃S [M]⁺: 355.0991. Found: 355.0989.

#### 1-{4-Methyl-2-[1-(4-methylbenzene-1-sulfonyl)-1H-1,2,3-triazol-4-yl]phenyl}prop-2-en-1-ol (1b).



Yield: 70%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 98–100 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.36 (s, 3H), 2.47 (s, 3H), 3.89 (brs, O–H), 5.08–5.16 (m, 1H), 5.22–5.35 (m, 2H), 5.94–6.10 (m, 1H), 7.21 (dd, *J* = 7.9 Hz, *J* = 1.2 Hz, 1H), 7.30–7.37 (m, 1H), 7.38–7.46 (m, 3H), 8.00–8.10 (m, 2H), 8.35 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.1, 22.0, 71.6, 115.0,

121.5, 127.7, 128.7, 128.9, 130.4, 130.6, 130.7, 133.0, 138.1, 138.2, 138.9, 147.0, 147.7 ppm; HRMS (EI) Calcd *m/z* for C₁₉H₁₉N₃O₃S [M]⁺: 369.1147. Found: 369.1144.

#### 1-{5-Methoxy-2-[1-(4-methylbenzene-1-sulfonyl)-1H-1,2,3-triazol-4-yl]phenyl}prop-2-en-1-ol (1c).



Yield: 50%; Eluent: *n*-hexane/ethyl acetate = 2/1; Yellow sticky solid; ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.46 (s, 3H), 3.83 (s, 3H), 4.00–4.13 (m, 1H), 5.07-5.21 (m, 1H), 5.21–5.39 (m, 2H), 5.91–6.11 (m, 1H), 6.89 (dd, *J* = 8.6 Hz, *J* = 2.7 Hz, 1H), 7.07 (d, *J* = 2.7 Hz, 1H), 7.38–7.47 (m, 3H), 8.00–8.09 (m, 2H), 8.26 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  22.0, 55.5, 71.8,

113.7, 114.0, 115.3, 120.2, 120.9, 128.9, 130.7, 131.3, 133.0, 138.5, 142.8, 146.9, 147.7, 160.6 ppm; HRMS (EI) Calcd *m*/*z* for C₁₉H₁₉N₃O₄S [M]⁺: 385.1096. Found: 385.1093.

#### 1-{6-[1-(4-Methylbenzene-1-sulfonyl)-1H-1,2,3-triazol-4-yl]-2H-1,3-benzodioxol-5-yl}prop-2-en-1-ol (1d).



Yield: 35%; Eluent: *n*-hexane/ethyl acetate = 2/1; Yellow solid; mp: 101–103 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.47 (s, 3H), 3.53–3.70 (m, O–H), 5.09–5.26 (m, 2H), 5.26–5.45 (m, 1H), 5.92–6.07 (m, 3H), 6.98 (d, *J* = 19.7, 2H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.96–8.15 (m, 2H), 8.27 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  22.0, 71.0, 101.8, 108.7, 109.6, 115.2, 121.2, 129.0,

130.7, 133.0, 135.8, 138.7, 146.6, 147.5, 147.8, 148.8 ppm; HRMS (FAB) Calcd *m*/*z* for C₁₉H₁₈N₃O₅S [M+H]⁺: 400.0967. Found: 400.0965.

#### 1-{5-Fluoro-2-[1-(4-methylbenzene-1-sulfonyl)-1H-1,2,3-triazol-4-yl]phenyl}prop-2-en-1-ol (1e).



Yield: 69%; Eluent: *n*-hexane/ethyl acetate = 4/1; Colorless oil; ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.47 (s, 3H), 3.98 (brs, O–H), 5.12–5.22 (m, 1H), 5.25–5.35 (m, 2H), 5.88–6.09 (m, 1H), 6.98–7.07 (m, 1H), 7.22–7.29 (m, 1H), 7.41–7.45 (d, *J* = 8.1 Hz, 2H), 7.48 (dd, *J* = 8.5 Hz, *J* = 5.6 Hz, 1H), 7.99–8.08 (m, 2H), 8.33 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  22.0, 71.1 (d, *J* = 1.0

Hz), 115.2 (d, J = 22.0 Hz), 115.5 (d, J = 22.6 Hz), 115.8, 121.5, 123.8 (d, J = 3.3 Hz), 128.9, 130.7, 131.8 (d, J =

8.4 Hz), 132.8, 138.0, 143.8 (d, J = 6.9 Hz), 146.0, 147.9, 163.3 (d, J = 249.8 Hz) ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ -111.10 - -111.02 (m) ppm; HRMS (EI) Calcd *m*/*z* for C₁₈H₁₆FN₃O₃S [M]⁺: 373.0896. Found: 373.0894.

## 1-(2-Fluoro-6-(1-tosyl-1H-1,2,3-triazol-4-yl)phenyl)prop-2-en-1-ol (1f).



Yield: 50%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 2.48 (s, 3H), 4.76–4.89 (m, 1H), 4.96–5.11 (m, 1H), 5.59–5.72 (m, 1H), 5.81–5.99 (m, 1H), 7.09–7.21 (m, 1H), 7.22–7.28 (m, 1H), 7.29–7.38 (m, 1H), 7.43 (d, *J* = 8.2 Hz, 2H), 8.00–8.10 (m, 2H), 8.28 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 22.0, 67.7 (d, *J* = 6.4 Hz), 114.8, 117.1 (d, *J* = 24.3 Hz),

122.1, 126.3 (d, J = 3.3 Hz), 128.9(6) (d, J = 13.8 Hz), 128.9(7), 129.5 (d, J = 9.8 Hz), 129.8 (d, J = 4.2 Hz), 130.7, 132.8, 138.6 (d, J = 1.7 Hz), 146.4 (d, J = 3.3 Hz), 147.9, 161.4 (d, J = 247.0 Hz) ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ -114.60 - -114.54 (m) ppm; HRMS (FAB) Calcd *m*/*z* for C₁₈H₁₇FN₃O₃S [M+H]⁺: 374.0975. Found: 374.0978.

## 1-{4-Chloro-2-[1-(4-methylbenzene-1-sulfonyl)-1H-1,2,3-triazol-4-yl]phenyl}prop-2-en-1-ol (1g).



Yield: 72%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 110–115 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.48 (s, 3H), 3.78 (brs, O–H), 5.12–5.22 (m, 1H), 5.24–5.39 (m, 2H), 5.93–6.08 (m, 1H), 7.34–7.40 (m, 1H), 7.42 (s, 1H), 7.45 (s, 1H), 7.47–7.54 (m, 2H), 8.00–8.11 (m, 2H), 8.37 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  22.0, 71.1, 115.6, 122.0, 129.0, 129.5, 129.6,

130.2, 130.8, 132.8, 133.9, 138.3, 139.5, 145.6, 148.0 ppm; HRMS (EI) Calcd m/z for C₁₈H₁₆³⁵ClN₃O₃S [M]⁺: 389.0601. Found: 389.0604.

## 1-{5-Bromo-2-[1-(4-methylbenzene-1-sulfonyl)-1H-1,2,3-triazol-4-yl]phenyl}prop-2-en-1-ol (1h).



CF

Yield: 76%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 108–112 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.48 (s, 3H), 3.83 (d, *J* = 5.4 Hz, O-H), 5.15–5.26 (m, 1H), 5.25–5.31 (m, 1H), 5.31–5.41 (m, 1H), 5.91–6.11 (m, 1H), 7.36–7.40 (m, 1H), 7.42 (s, 1H), 7.44 (s, 1H), 7.50 (dd, *J* = 8.3 Hz, *J* = 2.1 Hz, 1H), 7.69 (d, *J* = 2.0 Hz, 1H), 8.00–8.11 (m, 2H) 8.35 (s, 1H) ppm; ¹³C

NMR (75.5 MHz, CDCl₃) δ 22.1, 71.2, 116.0, 121.6, 124.1, 126.8, 129.0, 130.8, 131.3, 131.4, 131.8, 132.8, 137.9, 143.1, 146.0, 148.0 ppm; HRMS (EI) Calcd *m*/*z* for C₁₈H₁₆⁷⁹BrN₃O₃S [M]⁺: 433.0096. Found: 433.0097.

## 1-(2-(1-Tosyl-1H-1,2,3-triazol-4-yl)-5-(trifluoromethyl)phenyl)prop-2-en-1-ol (1i).

2H), 8.42 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) 22.1, 71.2, 116.2, 122.1, 122.3, 125.0–125.1 (m), 125.6–125.7 (m), 129.1, 130.3, 130.8, 131.4, 130.3–131.8 (m), 132.7, 137.8, 141.9, 145.6, 148.1  $\delta$  ppm; ¹⁹F NMR (282 MHz, CDCl₃)  $\delta$  -62.77 ppm; HRMS (EI) Calcd *m*/*z* for C₁₉H₁₆F₃N₃O₃S [M]⁺: 424.0943. Found: 424.0946.

#### 1-(3-(1-tosyl-1H-1,2,3-triazol-4-yl)benzo[b]thiophen-2-yl)prop-2-en-1-ol (1j).



Yield: 70%; Eluent: *n*-hexane/ethyl acetate = 4/1; Brown solid; mp: 148–156 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  3.60 (s, 1H), 5.17–5.29 (m, 1H), 5.32–5.42 (m, 2H), 7.36–7.50 (m, 2H), 7.53–7.62 (m, 2H), 8.36 (s, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃)  $\delta$  42.7, 71.6, 115.2, 121.5, 127.5, 128.3, 128.6, 129.8, 129.9, 138.6, 140.8, 146.8 ppm; HRMS (FAB) Calcd *m/z* for C₂₀H₁₈N₃O₃S₂ [M+H]⁺:

412.0790. Found: 412.0787.

#### 1-{2-(1-(Methylsulfonyl)-1H-1,2,3-triazol-4-yl)phenyl}prop-2-en-1-ol (1k).



Yield: 45%; Eluent: *n*-hexane/ethyl acetate = 4/1; Colorless oil; ¹H NMR (300 MHz, CDCl₃)  $\delta$  3.60 (s, 3H), 5.20–5.26 (m, 1H), 5.33–5.42 (m, 2H), 6.03–6.16 (m, 1H), 7.36–7.50 (m, 2H), 7.53–7.62 (m, 2H), 8.36 (s, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  42.7, 71.6, 115.2, 121.5, 127.5, 128.3, 128.6, 129.8, 129.9, 138.6, 140.9, 146.8 ppm; HRMS (FAB) Calcd *m*/*z* for C₁₂H₁₄N₃O₃S [M+H]⁺:

280.0756. Found: 280.0758.

#### 2-(Toluene-4-sulfonyl)-1-vinyl-1,4-dihydro-2H-isoquinolin-3-one (2a).

Yield: 80%; Eluent: *n*-hexane/ethyl acetate = 6/1; Light yellow solid; mp: 145–146 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.40 (s, 3H), 3.48 (d, J = 18.5 Hz, 1H), 3.71 (dd, J = 18.4 Hz, J = 1.1 Hz, 1H), 5.12 (dd, J = 17.0 Hz, J = 1.4 Hz, 1H), 5.17–5.28 (m, 1H), 5.97 (ddd, J = 16.9 Hz, J = 10.3 Hz, J = 4.7 Hz, 1H), 6.13–6.20 (m, 1H), 7.04–7.19 (m, 1H), 7.22–7.40 (m, 5H), 7.84–8.00 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 21.8, 39.5, 62.5, 116.7, 126.3, 127.6, 127.7, 128.6, 129.2, 129.4, 130.9, 133.6, 135.1, 136.0, 145.1, 169.0 ppm; HRMS (FAB) *m/z* Calcd for [M+H]⁺: C₁₈H₁₈NO₃S : 328.1007. Found: 328.1009.

#### 1-Ethenyl-2-[(4-methylphenyl)sulfonyl]-1,4-dihydroisoquinolin-3(2H)-one (2b).

Yield: 88%; Eluent: *n*-hexane/ethyl acetate = 4/1 to 2/1; White solid; mp: 140–142 °C; ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.32 (s, 1H), 2.39 (s, 1H), 3.42 (d, *J* = 18.4 Hz, 1H), 3.68 (d, *J* = 18.4 Hz, 1H), 5.11 (dd, *J* = 16.9 Hz, *J* = 1.6 Hz, 1H), 5.19 (dd, *J* = 10.2 Hz, *J* = 1.6 Hz, 1H), 5.88–6.03 (m, 1H), 6.09–6.17 (m, 1H), 6.93 (s, 1H), 7.07–7.15 (m, 1H), 7.18–7.24 (m, 1H), 7.25 (m, 1H), 7.28 (m, 1H), 7.85–7.95 (m, 1H), 7.18–7.24 (m, 1H), 7.25 (m, 1H), 7.28 (m, 1H), 7.85–7.95 (m, 1H), 7.85–7.95

2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 21.2, 21.7, 39.5, 62.4, 116.4, 126.2, 128.2(6), 128.2(9), 129.1, 129.3, 130.6, 130.8, 135.4, 136.0, 138.6, 145.0, 169.2 ppm; HRMS (EI) *m*/*z* Calcd for C₁₉H₁₉NO₃S [M]⁺: 341.1086. Found: 341.1083.

#### 1-Ethenyl-7-methoxy-2-[(4-methylphenyl)sulfonyl]-1,4-dihydroisoquinolin-3(2H)-one (2c).



Reaction temperature: 100 °C; Yield: 50%; Eluent: *n*-hexane/ethyl acetate = 4/1; Light yellow solid; mp: 140–142 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.40 (s, 1H), 3.43 (d, J = 18.4 Hz, 1H), 3.63 (d, J = 18.4 Hz, 1H), 5.14 (dd, J = 16.9 Hz, J = 1.6 Hz, 1H), 5.22 (dd, J = 10.2

Hz, J = 1.6 Hz, 1H), 5.95 (ddd, J = 16.9 Hz, J = 10.3 Hz, J = 4.7 Hz, 1H), 6.06–6.15 (m, 1H), 6.78–6.90 (m, 2H), 6.99–7.07 (m, 1H), 7.23–7.33 (m, 2H), 7.85–7.95 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.8, 38.8, 55.6, 62.6, 111.9, 114.2, 116.8, 122.7, 128.8, 129.2, 129.4, 134.7, 135.0, 136.1, 145.1, 159.1, 169.3 ppm; HRMS (EI) m/z Calcd for C₁₉H₁₉NO₄S [M]⁺: 357.1035. Found: 357.1032.

### 5-Ethenyl-6-[(4-methylphenyl)sulfonyl]-5,8-dihydro[1,3]dioxolo[4,5-g]isoquinolin-7(6H)-one (2d).



Yield: 50%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow green solid; mp: 176–178 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.40 (s, 1H), 3.36 (d, *J* = 18.5 Hz, 1H), 3.61 (d, *J* = 18.4 Hz, 1H), 5.06–5.17 (m, 1H), 5.17–5.25 (m, 1H), 5.85–5.96 (m, 1H), 5.96–6.00 (m, 2H), 6.00–6.07 (m, 1H), 6.57 (s,

1H), 6.79 (s, 1H), 7.20–7.38 (m, 2H), 7.80–8.01 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 21.8, 39.4, 62.3, 101.6, 106.9, 108.0, 116.5, 124.3, 126.9, 129.1, 129.4, 135.0, 136.0, 145.1, 147.2, 148.0, 168.9 ppm; HRMS (EI) *m/z* Calcd for C₁₉H₁₇NO₅S [M]⁺: 371.0827. Found: 371.0825.

#### 1-Ethenyl-7-fluoro-2-[(4-methylphenyl)sulfonyl]-1,4-dihydroisoquinolin-3(2H)-one (2e).

F NTs

Yield: 64%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 138–140 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.41 (s, 1H), 3.47 (d, J = 18.4 Hz, 1H), 3.65 (d, J = 18.5 Hz, 1H), 5.13 (dd, J = 16.9 Hz, J = 1.7 Hz, 1H), 5.25 (dd, J = 10.3 Hz, J = 1.7 Hz, 1H), 5.87–6.01 (m, 1H), 6.06–6.20 (m, 1H),

6.91–7.13 (m, 3H), 7.25–7.33 (m, 2H), 7.83–8.01 (m, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.8, 38.9, 62.1, 113.5 (d, *J* = 22.8 Hz), 115.7 (d, *J* = 21.6 Hz), 117.2, 126.7 (d, *J* = 3.2 Hz), 129.2, 129.3, 129.4 134.5, 135.5 (d, *J* = 7.6 Hz), 135.8, 145.3, 162.0 (d, *J* = 247.4 Hz), 168.7 ppm; ¹⁹F NMR (282 MHz, CDCl₃)  $\delta$  -114.21 – -114.13 (m) ppm; HRMS (EI) *m/z* Calcd for C₁₈H₁₆FNO₃S [M]⁺: 345.0835. Found: 345.0837.

#### 1-Ethenyl-8-fluoro-2-[-[(4-methylphenyl)sulfonyl]-1,4-dihydroisoquinolin-3(2H)-one (2f).

Yield: 30%; Eluent: *n*-hexane/ethyl acetate = 6/1; Orange solid; mp: 138–140 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.41 (s, 1H), 3.52 (d, *J* = 18.5 Hz, 1H), 3.70 (d, *J* = 18.5 Hz, 1H), 5.18 (dd, *J* = 17.0 Hz, *J* = 1.6 Hz, 1H), 5.26 (dd, *J* = 10.3 Hz, *J* = 1.7 Hz, 1H), 5.95 (ddd, *J* = 16.9 Hz, *J* = 10.3 Hz, *J* = 4.8 Hz, 1H), 6.46 – 6.59 (m, 1H), 6.87 – 6.97 (m, 1H), 6.99 – 7.11 (m, 1H), 7.23 – 7.33 (m, 3H), 7.89 – 7.99 (m, 1H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.8, 39.2, 56.0 (d, *J* = 3.3 Hz), 114.4 (d, *J* = 21.0 Hz), 117.0, 121.2 (d, *J* = 16.4 Hz), 123.2 (d, *J* = 3.5 Hz), 129.3 (d, *J* = 8.1 Hz), 130.2 (d, *J* = 8.3 Hz), 133.5(8), 133.6(1), 135.8, 145.3, 158.4 (d, *J* = 249.1 Hz), 168.5 ppm; ¹⁹F NMR (282 MHz, CDCl₃)  $\delta$  -119.74 – -119.69 (m) ppm; HRMS (FAB) Calcd *m/z* for C₁₈H₁₇FN₃O₃S [M]⁺: 346.0913. Found: 346.0910.

#### 6-Chloro-1-ethenyl-2-[(4-methylphenyl)sulfonyl]-1,4-dihydroisoquinolin-3(2H)-one (2g).

Cl (NTs) Reaction temperature: 100 °C; Yield: 41%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 132–134 °C; ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.41 (s, 1H), 3.45 (d, *J* = 18.5 Hz, 1H), 3.69 (d, *J* = 18.5 Hz, 1H), 5.11 (dd, *J* = 17.0 Hz, *J* = 1.7 Hz, 1H), 5.24 (dd, *J* = 10.3 Hz, *J* = 1.7 Hz, 1H), 5.87– 6.02 (m, 1H), 6.08–6.20 (m, 1H), 7.13 (brs, 1H), 7.25–7.33 (m, 4H), 7.82–7.99 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.8, 39.2, 61.9, 117.0, 127.7, 127.7(8), 127.8(3), 129.2, 129.4, 132.1, 132.9, 134.5, 134.7, 135.8, 145.3, 168.2 ppm; HRMS (FAB) *m*/*z* Calcd for C₁₈H₁₇³⁵ClNO₃S [M]⁺: 362.0618. Found: 362.0621; C₁₈H₁₇³⁷ClNO₃S [M+2]⁺: 364.0593. Found: 364.0612.

#### 7-bromo-1-ethenyl-2-[(4-methylphenyl)sulfonyl]-1,4-dihydroisoquinolin-3(2H)-one (2h).



Reaction temperature: 100 °C; Yield: 76%; Eluent: *n*-hexane/ethyl acetate = 4/1; White solid; mp: 177–179 °C; ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.41 (s, 1H), 3.45 (d, *J* = 18.5 Hz, 1H), 3.63 (d, *J* = 18.3 Hz, 1H), 5.14 (dd, *J* = 16.9 Hz, *J* = 1.7 Hz, 1H), 5.25 (dd, *J* = 10.3 Hz, *J* = 1.7 Hz, 1H), 5.94

(ddd, J = 16.9 Hz, J = 10.3 Hz, J = 4.7 Hz, 1H), 6.07–6.16 (m, 1H), 6.97–7.04 (m, 1H), 7.26–7.34 (m, 2H), 7.40–7.46 (m, 1H), 7.46–7.53 (m, 1H), 7.84–7.99 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.8, 39.1, 61.9, 117.3, 121.3, 129.2, 129.3, 129.3(7), 129.4(4), 130.0, 131.7, 134.5, 135.6, 135.8, 145.3, 168.3 ppm; HRMS (FAB) m/z Calcd for C₁₈H₁₇⁷⁹BrNO₃S [M]⁺: 406.0113. Found: 406.0114; C₁₈H₁₇⁸¹BrNO₃S [M]⁺: 408.0093. Found: 408.0134.

#### 2-Tosyl-1-vinyl-1,4-dihydrobenzo[4,5]thieno[2,3-c]pyridin-3(2H)-one (2j).

S NTS

Yield: 24%; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 198–200 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.42 (s, 1H), 3.63 (dd, J = 20.4 Hz, J = 1.4 Hz, 1H), 3.84 (d, J = 20.4 Hz, 1H), 5.28–5.36 (m, 1H), 5.36–5.48 (m 1H), 5.91–6.11 (m, 1H), 6.23–6.37 (m, 1H), 7.29–7.34 (m, 2H), 7.34–7.43 (m, 2H), 7.50–7.59 (m, 1H), 7.79–7.90 (m, 1H), 7.91–8.01 (m, 2H) ppm; ¹³C NMR (75.5

MHz, CDCl₃) δ 21.8, 33.7, 59.4, 117.9, 121.1,123.0, 124.9, 125.4, 125.7, 129.3, 129.4, 132.6, , 135.8, 135.9, 137.0, 140.2, 145.2, 167.8 ppm; HRMS (FAB) Calcd *m*/*z* for C₂₀H₁₈NO₃S₂ [M+H]⁺: 384.0728. Found: 384.0729.

#### 1-Ethenyl-2-(methylsulfonyl)-1,4-dihydroisoquinolin-3(2H)-one (2k).



Yield: 64%; Eluent: *n*-hexane/ethyl acetate = 4/1; Light yellow liquid; ¹H NMR (300 MHz, CDCl₃)  $\delta$  3.39 (s, 3H), 3.67 (d, J = 18.6 Hz, 1H), 3.83 (d, J = 18.6 Hz, 1H), 5.07–5.31 (m, 2H), 5.82–6.03 (m, 2H), 7.14–7.25 (m, 1H), 7.25–7.40 (m, 3H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  39.4, 42.6, 61.9,

116.8, 126.5, 127.7, 127.8, 128.8, 130.8, 133.2, 134.8, 170.5 ppm; HRMS (EI) *m*/*z* Calcd for C₁₂H₁₃NO₃S [M]⁺: 251.0616. Found: 251.0614.

#### N-[1-Ethenyl-3-oxo-2,3-dihydro-1H-inden-2-yl]-4-methylbenzene-1-sulfonamide (3a).



Yield: 72%; d.r > 99:1; Eluent: *n*-hexane/ethyl acetate = 4/1; White solid; mp: 135–138 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.43 (s, 3H), 3.78–3.90 (m, 2H), 5.22–5.39 (m, 3H), 5.84–6.01 (m, 1H), 7.31 (d, *J* = 8.1Hz, 2H), 7.38–7.48 (m, 2H), 7.62–7.76 (m, 2H), 7.83 (d, *J* = 8.3, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.7, 51.4, 65.2, 119.2, 124.3, 126.6, 127.8, 128.7, 129.8, 133.2,

136.2(0), 136.2(4), 136.6, 144.0, 152.9, 200.5 ppm. HRMS (EI) Calcd *m*/*z* for C₁₈H₁₇NO₃S [M]⁺: 327.0929. Found: 327.0930.



¹H NMR (300 MHz, CDCl₃)  $\delta$  2.42 (s, 3H), 4.22–4.26 (m, 1H), 4.32–4.37 (m, 1H), 4.80 (dt, J = 17.1 Hz, J = 1.2 Hz, 1H), 5.08–5.21 (m, 2H), 5.70–5.83 (m, 1H), 7.28–7.36 (m, 2H), 7.39–7.49 (m, 2H), 7.62–7.76 (m, 2H), 7.80–7.88 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.7, 48.0, 62.9, 118.6, 124.4, 127.5(5), 127.5(7), 128.8, 129.9, 133.2, 136.1, 136.5, 136.6, 144.0, 152.8, 200.4 ppm.

HRMS (EI) Calcd *m/z* for C₁₈H₁₇NO₃S [M]⁺: 327.0929. Found: 327.0930.

### N-[1-Ethenyl-5-methyl-3-oxo-2,3-dihydro-1H-inden-2-yl]-4-methylbenzene-1-sulfonamide (3b).

Yield: 71%; d.r > 99:1; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 127–129 °C. ¹H NMR (300 MHz, CDCl₃) δ 2.38 (s, 3H), 2.42 (s, 3H), 3.72–3.86 (m, 2H), 5.29–5.33 (m, 2H), NHTs 5.39 (d, *J* = 4.5 Hz, 1H), 5.80–5.97 (m, 1H), 7.25–7.36 (m, 3H), 7.43–7.53 (m, 2H), 7.77–7.88 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 21.2, 21.7, 51.0, 65.4, 118.8, 124.1, 126.2, 127.7, 129.7, 133.3, 136.4, 136.7, 137.4, 138.8, 143.8, 150.3, 200.5 ppm. HRMS (EI) Calcd *m/z* for C₁₉H₁₉NO₃S [M]⁺: 341.1086. Found:

#### *N*-(3-Ethenyl-5-methoxy-1-oxo-2,3-dihydro-1H-inden-2-yl)-4-methylbenzene-1-sulfonamide (3c).

MeO

341.1083.

6.0 mol% of Rh₂(TMA)₄ was used at 60 °C; Yield: 65%; d.r > 99:1; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 90–92 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.42 (s, 3H), 3.71– 3.84 (m, 2H), 3.88 (s, 3H), 5.24–5.39 (m, 2H), 5.81–5.99 (m, 1H), 6.77–6.87 (m, 1H), 6.89– 6.97 (m, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.64 (d, J = 8.5 Hz, 1H), 7.78–7.87 (m, 2H) ppm; ¹³C NMR (75.5 MHz,

CDCl₃) § 21.6, 51.5, 55.8, 64.9, 109.6, 116.9, 119.2, 126.1(8), 126.1(9), 127.8, 129.8, 136.3, 136.4, 143.9, 156.4, 166.6, 198.3 ppm; HRMS (EI) Calcd *m/z* for C₁₉H₁₉NO₄S [M]⁺: 357.1035. Found: 357.1033.

#### *N*-(5-Ethenyl-7-oxo-6,7-dihydro-2H,5H-indeno[5,6-d][1,3]dioxol-6-yl)-4-methylbenzene-1-sulfonamide (3d).



CI

6.0 mol% of Rh₂(TMA)₄ was used at 60 °C; Yield: 51%, d.r = 91:9; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 170–172 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.43 (s, 3H), 3.65– 3.82 (m, 2H), 5.18–5.40 (m, 3H), 5.79–5.94 (m, 1H), 6.08 (s, 2H), 6.77 (s, 1H), 7.03 (s, 1H),

7.28–7.36 (m, 2H), 7.78–7.86 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 21.7, 51.3, 65.1, 102.6, 102.7, 105.9, 119.1, 127.7, 127.8, 129.8, 136.3(6), 136.4(2), 144.0, 149.2, 151.3, 155.6, 198.1 ppm; HRMS (EI) Calcd m/z for C₁₉H₁₇NO₅S [M]⁺: 371.0827. Found: 371.0827.

#### N-(3-Ethenyl-5-fluoro-1-oxo-2,3-dihydro-1H-inden-2-yl)-4-methylbenzene-1-sulfonamide (3e).

Yield: 78%; d.r > 99:1; Eluent: *n*-hexane/ethyl acetate = 4/1; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 2.43 (s, 3H), 3.77–3.90 (m, 2H), 5.22–5.42 (m, 3H), 5.82–5.99 (m, 1H), 7.05–7.17 (m, 2H), 7.32(d, J = 8.0 Hz, 2H), 7.68–7.79 (m, 1H), 7.79–7.87 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.7, 51.3 (d, *J* = 7.5 Hz), 65.2, 113.5 (d, *J* = 22.6 Hz), 117.2 (d, *J* = 24.0 Hz), 119.8, 126.8, 126.9 (d, *J* = 10.4 Hz), 127.8, 129.6 (d, J = 2.0 Hz), 129.8, 135.6, 136.5, 144.1, 156.2 (d, J = 9.9 Hz), 168.1 (d, J = 259 Hz), 198.6ppm; ¹⁹F NMR (282 MHz, CDCl₃) δ -99.19 – -99.11 (m) ppm; HRMS (EI) Calcd m/z for C₁₈H₁₆FNO₃S [M]⁺: 345.0835. Found: 345.0833.

#### N-(5-Chloro-1-ethenyl-3-oxo-2,3-dihydro-1H-inden-2-yl)-4-methylbenzene-1-sulfonamide (3g).

Yield: 61%; d.r = 91:9; Eluent: *n*-hexane/ethyl acetate = 4/1; Yellow solid; mp: 145–148 °C. •NHTs ¹H NMR (300 MHz, CDCl₃) δ 2.43 (s, 3H), 3.74–3.92 (m, 2H), 5.22–5.39 (m, 3H), 5.88 (ddd, J = 17.0 Hz, J = 8.4 Hz, J = 10.2 Hz, 1H), 7.28–7.41 (m, 3H), 7.56–7.69 (m, 2H), 7.78–7.86

(m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) & 21.7, 50.9, 65.5, 119.6, 123.9, 127.7, 127.9, 129.8, 134.6, 135.2, 135.7,

136.2, 136.6, 144.1, 150.9, 199.3 ppm; HRMS (EI) Calcd *m*/*z* for C₁₈H₁₆³⁵ClNO₃S [M]⁺: 361.0539. Found: 361.0541; C₁₈H₁₆³⁷ClNO₃S [M+2]⁺: 363.0515. Found: 363.0523.

## *N*-(5-Bromo-1-oxo-3-vinyl-2,3-dihydro-1*H*-inden-2-yl)-4-methylbenzenesulfonamide (3h).

Br

20 mol% of TFA was added in Pd catalysis step; Yield: 62%; d.r = 91:9; Eluent: *n*-hexane/ethyl acetate = 4/1; White solid; mp: 138–140 °C. ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.43 (s, 3H), 3.72–3.93 (m, 2H), 5.22-5.45 (m, 3H), 5.78–5.99 (m, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.53–7.63 (m,

3H), 7.77–7.87 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃) δ 21.7, 51.2, 65.2, 119.9, 125.5, 127.8, 129.9, 130.0, 131.9, 132.0, 132.5, 135.5, 136.5, 144.1, 154.5, 199.3 ppm; HRMS (EI) Calcd *m*/*z* for C₁₈H₁₆⁷⁹BrNO₃S [M]⁺: 405.0034. Found: 405.0037; C₁₈H₁₆⁸¹BrNO₃S [M]⁺: 407.0015. Found: 407.0006.

## 4-Methyl-N-(1-oxo-5-(trifluoromethyl)-3-vinyl-2,3-dihydro-1H-inden-2-yl)benzenesulfonamide (3i).



(75.5 MHz, CDCl₃)  $\delta$  21.7, 51.3, 65.6, 118.0–128.9 (m), 120.3, 123.7–123.8 (m), 124.9, 125.8–125.9 (m), 127.7, 129.8, 135.2, 135.8, 136.7, 136.7–138.1 (m), 144.1, 153.0, 199.7 ppm; ¹⁹F NMR (282 MHz, CDCl₃)  $\delta$  -63.04 ppm; HRMS (EI) Calcd m/z for C₁₉H₁₆F₃NO₃S [M]⁺: 395.0803. Found: 395.0802.

## N-(1-Ethenyl-3-oxo-2,3-dihydro-1H-inden-2-yl)methanesulfonamide (3h).

Yield: 50%; d.r = 91:9; Eluent: *n*-hexane/ethyl acetate = 4/1; Colorless oil; Major product ¹H NMMs NMR (300 MHz, CDCl₃)  $\delta$  3.21 (s, 3H), 3.73–3.84 (m, 1H), 4.20 (dd, *J* = 7.2 Hz, *J* = 6.1 Hz, 1H), 5.20–5.33 (m, 1H), 5.38–5.58 (m, 2H), 5.90–6.10 (m, 1H), 7.41–7.52 (m, 2H), 7.64–7.83 (m, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  43.2, 51.6, 65.8, 120.1, 124.3, 126.3, 128.9, 133.2, 135.9, 136.3, 152.1, 201.0 ppm; HRMS (EI) Calcd *m*/*z* for C₁₂H₁₃NO₃S [M]⁺: 251.0616. Found: 251.0615.

## (Z)-4-Methyl-N-(1-vinylisochroman-3-ylidene)benzenesulfonamide (4a).

V^{Ts} Yield: 66%; Eluent: *n*-hexane/ethyl acetate = 3/1; White solid; ¹H NMR (300 MHz, CDCl₃) δ 2.04 (s, 3H), 3.58–3.84 (m, 1.67H), 4.16–4.73 (brs, 0.26H), 5.26 (d, J = 16.7 Hz, 1H) 5.42 (d, J = 10.0Hz, 1H), 5.76–6.09 (m, 2H), 7.12–7.44 (m, 6H), 7.81–7.94 (m, 2H) ppm; ¹³C NMR (75.5 MHz,

CDCl₃) δ 21.6, 35.4, 83.5, 120.5, 125.1, 127.5, 127.8, 129.0, 129.3, 129.4, 129.7, 132.2, 132.5, 138.5, 143.4, 168.1 ppm; HRMS (FAB) Calcd *m*/*z* for C₁₈H₁₈NO₃S [M+H]: 328.1007. Found: 328.1010.

## (Z) - 4 - Methyl - N - ((3 - vinylisobenzofuran - 1(3H) - ylidene) methyl) benzenesulfonamide (5a).

NHTs Yield: 80%; Eluent: *n*-hexane/ethyl acetate = 6/1; Yellow oil; ¹H NMR (300 MHz, CDCl₃)  $\delta$  2.37 (s, 3H), 5.12–5.27 (m, 1H), 5.27–5.42 (m, 1H), 5.60–5.81 (m, 2H), 6.03 (d, *J* = 10.3 Hz, 1H) 6.37 (d, *J* = 10.3 Hz, 1H), 7.03–7.18 (m, 1H), 7.21–7.34 (m, 5H), 7.78 (d, *J* = 8.31, 2H) ppm; ¹³C NMR (75.5 MHz, CDCl₃)  $\delta$  21.5, 86.6, 95.0, 117.9, 118.8, 122.0, 127.0, 128.5, 128.6, 129.7, 131.8, 135.4, 137.0, 140.7, 143.5, 145.1 ppm; HRMS (EI) Calcd *m/z* for C₁₈H₁₇NO₃S [M]⁺: 327.0929. Found: 327.0928.

## 12. X-ray Crystal Structure and Data of 2a



Empirical formula	$C_{18}H_{17}NO_3S$					
Formula weight	327.39					
Temperature	223(2) K					
Wavelength	0.71073 Å					
Crystal system	Triclinic					
Space group	P-1					
Unit cell dimensions	a = 8.3301(5) Å	$\alpha = 106.868(2)^{\circ}.$				
	b = 10.1313(5) Å	$\beta = 106.256(2)^{\circ}.$				
	c = 10.5314(6) Å	$\gamma = 99.042(2)^{\circ}.$				
Volume	788.58(8) Å ³					
Z	2					
Density (calculated)	1.379 Mg/m ³					
Absorption coefficient	0.220 mm ⁻¹					
F(000)	344					
Crystal size	0.19 x 0.15 x 0.10 mm ³					
Theta range for data collection	2.15 to 28.34°.					
Index ranges	-11<=h<=11, -13<=k<=13, -14<=l<=14					
Reflections collected	33101					
Independent reflections	3937 [R(int) = 0.0268]					
Completeness to theta = $28.34^{\circ}$	100.0 %					
Absorption correction	Semi-empirical from equivalents					
Max. and min. transmission	0.9784 and 0.9594					
Refinement method	Full-matrix least-squares on F ²					
Data / restraints / parameters	s / parameters 3937 / 0 / 209					
Goodness-of-fit on $F^2$ 1.048						
Final R indices [I>2sigma(I)]	R1 = 0.0389, wR2 = 0.1055					
R indices (all data)	R1 = 0.0458, wR2 = 0.1112					
Largest diff. peak and hole	0.394 and -0.227 e.Å ⁻³					

## 13. X-ray Crystal Structure and Data of 3a



Chemical formula	C ₁₈ H ₁₇ NO ₃ S
Formula weight	327.38
Temperature	296(2) K
Wavelength	0.71073 Å
Crystal size	0.100 x 0.200 x 0.280 mm
Crystal habit	colorless plate
Crystal system	triclinic
Space group	P -1
Unit cell dimensions	$a = 9.4401(2) \text{ Å}$ $\alpha = 64.5184(10)^{\circ}$
	$b = 9.7860(2) \text{ Å} \qquad \beta = 74.1018(11)^{\circ}$
	$c = 10.7338(2) \text{ Å}  \gamma = 69.7646(10)^{\circ}$
Volume	830.67(3) Å ³
Z	2
Density (calculated)	1.309 g/cm ³
Absorption coefficient	0.209 mm ⁻¹
F(000)	344
Theta range for data collection	2.13 to 28.54°
Index ranges	-12<=h<=12, -13<=k<=13, -14<=l<=14
Reflections collected	29279
Independent reflections	4207 [R(int) = 0.0338]
Coverage of independent reflections	99.3%
Absorption correction	multi-scan
Max. and min. transmission	0.9790 and 0.9440
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$
Data / restraints / parameters	4207 / 0 / 209
Goodness-of-fit on F2	1.028
Final R indices	3102 data; I>2 $\sigma$ (I) R1 = 0.0451, wR2 = 0.1092
	all data $R1 = 0.0685$ , $wR2 = 0.1243$
Weighting scheme	$w=1/[\sigma^2(F_o^2)+(0.0569P)^2+0.2196P]$
	where $P = (F_o^2 + 2F_c^2)/3$
Largest diff. peak and hole	0.330 and -0.285 eÅ ⁻³
R.M.S. deviation from mean	0.043 eÅ ⁻³

## 14. Copies of ¹H and ¹³C NMR Spectra

¹H spectra of compound **1a** 







0 ppm

¹H spectra of compound **1d** 



¹H spectra of compound **1e** 



## ¹⁹F spectra of compound **1e**



#### ¹H spectra of compound **1f**



#### ¹³C spectra of compound **1f**



## ¹⁹F spectra of compound **1f**

	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm
	ala kati kati kati kati kati kati kati kat		inneticement providution and a subject of the second states	ala na si di si sa anga Ngananganangangangangangangangangangangan	iriyadi wata a Yanayi wata a	hilada an da		an a literi ka se	İsala dalamının Basılı Yaran Materia	Sloveja je kolek je vla Anorija najkog kolekjem	na bén téknép né li ni ni ni ni ni ni	and the second
F2 - Proc SI SF MDW SSB LB GB PC	###ing paramet. 6533 282.4514022 89 0 0.30 0 1.00	HES HES HS										
PULPROG TD SOLVENT NS SOLVENT NS SWH FIDRES AQ RG DW DE TE DU DI TDO SFOI NUC1 P1 PLW1	ng30 13107 CDC13 14 66964.283 1.021794 0.9786710 211.33 7.46 6.5 295.4 1.00000000 1282.4231571 199 15.00 8.60000038	Hi Hi Sec Usec K Sec MHi Usec MHi S										
NAME EXPNO PROCNO F2 - Acqui Date_ Time INSTRUM PROBHD	LKR B 985 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	h h	F CH									
Current Do	ta Parameters			i			-114.5					

¹H spectra of compound **1g** 



¹H spectra of compound **1g** 



#### ¹H spectra of compound **1i**



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

## ¹⁹F spectra of compound **1i**



#### ¹H spectra of compound **1**j



## ¹³C spectra of compound **1**j



¹H spectra of compound **1k** 



### ¹H spectra of compound **2a**



### ¹H spectra of compound **2b**



## ¹³C spectra of compound **2b**



## ¹H spectra of compound **2c**



## ¹³C spectra of compound **2c**



S34

### ¹H spectra of compound **2d**



## ¹³C spectra of compound **2d**



## ¹H spectra of compound **2e**



## ¹³C spectra of compound **2e**



## ¹⁹F spectra of compound **2e**

	0	-20	-40	-60	-80	-100	-120	-140	-160	-180	-200	ppm
					i i i i i i i i i i i i i i i i i i i	<u>in chirtheach</u>						(ijinte
P2 - Proc SI SF MDW SSB LB GB PC	lessing parameter 65936 282.4514022 M EM 0 0.30 H 0 1.00	9 88 1										
PROBAD PULPROG TD SOLVENT NS DS SWH PIDRES AQ DW DE TE D1 TD0 SF01 SF01 P1M1	2104275_0369 ( ug30 151072 CDC13 CDC13 160 4 66964.289 H 1.021794 H 0.9786710 H 211.36 7.467 u 6.50 u 295.4 K 1.0000000 s 1 282.4231571 M 197 1.500 u 8.6000038 W	5 5 90 200 200 10 81 81 200										
Current D NAME EXPNO PROCNO F2 - Acqu Date_ Time INSTRUM	ata Parameters IER B 956 1 isition Parameter 20210420 19.41 h spect	F F	₹ { NTs									
						-114.1290 -114.1361	-114.1675 -114.1793 -114.1865 -114.1967 -114.1967 -114.2082					

#### ¹H spectra of compound **2f**



#### ¹³C spectra of compound **2f**



## ¹⁹F spectra of compound **2f**

					119.6851 119.7042 119.7170 119.7363				
					502				
Current Data Parameter NAME 188 EXFNO 39 PhotNO P2 - Acquisition Parame Date_ 2021050 Time 23.0 INSTRUM apac PULPROG 733 TD 13107 SOLVENT CDC1 NS 11 DS 5 PILPROS 0.978671 PG 211.3 PG 21.3 PG 21.3	B atters 5 6 h t ( 0 2 3 3 6 4 9 Es 4 9 Es 4 9 Es 6 6 7 Usec 6 xec 1 MEn 7 0 usec 9 W	C NTs			¥				
P2 - Processing parameters SI 6553 SP 282.451402 E858 8 Da 0.3 GB 0.3 PC 1.0	селя 6 2 МН М 0 Жж 0 0								
	1977 Paleana 1977 Paleana -20	ndebotentilisisi.uk mippi wan eniperan -40	410 4141411181 ••••••••••••	-80 -80	 -120	-140	-160	 -200	ppm

## ¹H spectra of compound **2g**



## ¹H spectra of compound **2h**



## ¹³C spectra of compound **2h**



#### ¹H spectra of compound **2**j



#### ¹³C spectra of compound **2j**



S42

## ¹H spectra of compound **2k**



## ¹H spectra of compound **3a** (crude)



¹H spectra of compound **3a** (*cis/trans* mixture after column chromatography)



#### ¹H spectra of compound **3a** (*trans*)







### ¹H spectra of compound **3b** (crude)



#### ¹H spectra of compound **3b** (*cis/trans* mixture after column chromatography)



¹H spectra of compound **3b** (*trans*)



#### ¹H spectra of compound **3c** (crude)



¹H spectra of compound **3c** (*cis/trans* mixture after column chromatography)



¹H spectra of compound **3c** (*trans*)



### ¹H spectra of compound **3d** (crude)



¹H spectra of compound **3d** (*cis/trans* mixture after column chromatography)



¹H spectra of compound **3d** (*trans*)



### ¹H spectra of compound **3e** (crude)



#### ¹H spectra of compound **3e** (*cis/trans* mixture after column chromatography)



¹H spectra of compound **3e** (*trans*)



### ¹⁹F spectra of compound **3e**



## ¹H spectra of compound **3g** (crude)



¹H spectra of compound **3g** (*cis/trans* mixture after column chromatography)



¹H spectra of compound **3g** (*trans*)



#### ¹H spectra of compound **3h** (*cis/trans* mixture after short silica filter)



#### Note.

The ¹H NMR spectra of crude mixture of **3h** was too complicated to be identified, in addition, *cis/trans* mixture of **3h** was inseparable. Thus, ¹H NMR spectra of *cis/trans* mixture after short silica filter has been attached above.

¹³C spectra of compound **3h** (*trans*)



### ¹H spectra of compound **3i** (crude)



¹H spectra of compound **3i** (*cis/trans* mixture after column chromatography)



#### ¹H spectra of compound **3i** (*trans*)



#### ¹³C spectra of compound **3i** (*trans*)



## ¹⁹F spectra of compound **3i**



## ¹H spectra of compound **3k** (crude)



## Note.

The *cis/trans* mixture of **3k** was inseparable. Thus, ¹H NMR spectra of *cis/trans* mixture after silica column chromatography has been attached below.

#### ¹H spectra of compound **3k** (*cis/trans* mixture after column chromatography)



#### ¹H spectra of compound **4a**







## ¹H spectra of compound **5a**



## ¹³C spectra of compound **5a**

