Synthesis of new quinolizinium-based fluorescent compounds and studies on their applications in photocatalysis

Wai-Ming Yip, ^{‡ab} Qiong Yu, ^{‡a} Ajcharapan Tantipanjaporn, ^{‡b} Wing-Cheung Chan,^b Jie-Ren Deng,^{ab} Ben Chi-bun Ko^{*b} and Man-Kin Wong^{*ab}

^a The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, People's Republic of China

^b State Key Laboratory of Chemical Biology and Drug Discovery, Department of

Applied Biology and Chemical Technology, The Hong Kong Polytechnic University,

Hung Hum, Hong Kong

SUPPORTING INFORMATION

General procedure

All of the photochemical experiments were performed in a custom made "light box" with 4 reaction vessels surrounded by 16 Blue LEDs. The temperature was maintained by a fan attached to the "light box". A voltage transformer was connected with the Blue LEDs and employed to monitor the power of the light source ($P = U \times I = 14.3 V \times 2.3$ A = 32.9 W). 4 reactions were performed in the "light box" every time for measurement of the reaction yields. The emission spectra of the Blue LEDs revealed a maximum emission wavelength of the light source at $\lambda_{max} = 468$ nm. The emission spectra of the light source was shown below.

Figure S1 Emission spectrum of the Blue LEDs light source.

Literature references:

General procedure for synthesis of quinolines by three-component coupling reaction of aldehydes, amines and alkynes

A mixture of aldehyde (10 mmol, 1equiv.), aniline (12 mmol, 1.2equiv.), aryl alkyne (12 mmol, 1.2 equiv), KAuCl₄ (5 mol%), CuBr (30 mol%) and 20 mL of methanol was heated in 50 mL round bottom flask at 40°C under N₂ overnight. The solvent was removed by evaporation under reduced pressure, and the residue was purified by flash column chromatography using DCM/hexane as eluent to give the quinoline products.

Scheme S1 Synthetic routes of Quinoline substrates S1a-S11

¹H NMR (400 MHz, CDCl₃) δ 8.30 (q, J = 9.0 Hz, 4H), 8.24 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.81 (s, 1H), 7.76 (t, J = 7.2 Hz, 1H), 7.59 – 7.47 (m, 6H).
¹³C NMR (100 MHz, CDCl₃) δ 153.76, 149.67, 148.62, 148.10, 145.14, 137.74, 130.21, 129.92, 129.39, 128.61, 128.15, 127.99, 127.19, 125.99, 125.62, 123.72, 118.87.

HRMS (ESI) calcd for $C_{21}H_{15}N_2O_2^+$ (M + H)⁺ 327.1128, found 327.1165.

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 – 8.36 (m, 4H), 8.27 (d, *J* = 8.4 Hz, 1H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.86 (s, 1H), 7.80 (t, *J* = 7.6 Hz, 1H), 7.56 (dd, *J* = 15.1, 8.2 Hz, 3H), 7.13 (d, *J* = 8.6 Hz, 2H), 3.95 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 160.11, 154.13, 149.63, 148.91, 148.34, 145.61, 130.83, 130.35, 130.20, 130.00, 128.35, 127.21, 125.86, 124.04, 119.07, 114.23, 55.48.
HRMS (ESI) calcd for C₂₂H₁₇N₂O₃⁺ (M + H)⁺ 357.1234, found 327.1277.

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 – 8.12 (m, 3H), 7.78 (s, 1H), 7.60 – 7.39 (m, 4H), 7.33 – 7.21 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ 165.13, 164.30, 162.65, 161.91, 161.83, 159.45, 155.15, 147.80, 147.74, 145.89, 135.34, 133.81, 132.62, 132.53, 131.13, 131.05, 129.35, 129.26, 126.44, 126.34, 120.05, 119.79, 119.53, 116.05, 115.97, 115.83, 115.75, 108.97, 108.74.

¹⁹**F NMR** (377 MHz, CDCl₃) δ -112.03, -112.51, -112.64.

HRMS (ESI) calcd for $C_{21}H_{13}F_3N^+$ (M + H)⁺ 336.0995, found 336.1007.

General Procedure for Photooxidative of Aromatic Alkene with Quinolizinium

Photocatalysts

A mixture of tetraphenylethylene **2** (0.2mmol), photocatalysts (5 mol%) in 5 mL of DCE or 5 mL of chloroform was added to a 20 mL test tube. The test tube was irradiated with Blue LEDs for 4 h. After 4 h, the reaction mixture was concentrated under reduced pressure. To determinate the NMR yield, internal standard 1,3,5-trimethoxybenzene (0.2 mmol, 1equiv.) and 2 mL of CDCl₃ were mixed with the residue for ¹H NMR analysis. For product isolation, the resulting residue was purified by flash chromatography on silica gel using EtOAc/hexane as eluent to give the desired product.

Table S1 (Chemical	shifts	of com	pounds	in	$CDCl_3$
------------	----------	--------	--------	--------	----	----------

Compound	Chemical shift of H in ¹ H NMR
OMe H MeO H OMe	6.12
	7.84-7.82

Figure S2 Determination of the NMR yield of 3 when quinolizinium compounds were

employed as photocatalyst and 1,3,5-trimethoxybenzene was used as internal standard.

	Air, Blue LEDs, R.T.		TMS BF ₄ botocatalyst 4
Entry	4 (mol%)	Solvent	$\operatorname{Yield}(\%)^b$
1	5	Hexane	n.d.
2	5	Toluene	50
3	5	1,4 Dioxane	34
4	5	THF	6
5	5	CCl_4	n.d.
6	5	Chloroform	60
7	5	DCM	37
8	5	DCE	62
9	5	Acetone	29
10	5	DMF	n.d.
11	5	DMSO	n.d.
12	5	CH ₃ CN	40
13	5	Ethanol	47
14	5	Methanol	51
15	5	H_2O	n.d.
16	5	CH ₃ CN/H ₂ O	n.d.
17	10	DCE	60
18	2.5	DCE	57
19	1	DCE	53
20	0	DCE	n.d.
$21^{c}_{}$	5	DCE	n.d.
22^d	5	DCE	n.d.
23^{e}	5	DCE	82

Table S2 Photooxidative cleavage of tetraphenylethylene 2 using photocatalyst 4^a

Г

٦.

^{*a*} Reaction conditions: treatment of tetraphenylethylene **2** (0.2 mmol), photocatalyst **4** (5 mol%) in 5 mL of solvent under air and blue LEDs light for 4 h at room temperature. ^{*b*} Yield was determined by ¹H NMR using 1,3,5-trimethoxybenzene as internal standard. ^{*c*} The reaction was conducted without light. ^{*d*} The reaction was conducted under N₂. ^{*e*} The reaction was conducted under 1 atm O₂.

General Procedure for photocatalysts for C-H bond functionalization

To a 10 mL oven-dried tube equipped with a stirring bar was added photocatalyst (0.01 mmol, 5 mol%), NaHCO₃ (50.4 mg, 0.6 mmol, 3.0 equiv), the 1,3,5-trimethoxybenzene (2 mmol, 10.0 equiv), hypervalent iodine reagent **6** (0.2 mmol, 1.0 equiv) and MeCN (2.0 mL). The tube was sealed with a septum and degassed by three freeze-pump-thaw cycles under nitrogen. Then the reaction tube was placed in a photoreactor equipped with Blue LEDs. A mini-fan was kept on top to maintain room temperature. After the reaction completed after 6 hours, the reaction mixture was passed through a short pad of silica gel and washed with dichloromethane. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel to give the corresponding diazo compound **7**.

		3 mol% Photo	catalyst	
	N _N	1.5 eq DI DMF, Blue LEDs	BN S, R. T., air O	1
	8		9	
Entry	Catalyst	Time (h)	Recovery of 8 $(\%)^b$	Yield of $9 (\%)^b$
1	1n	17	76	24
2	1n	48	39	56
3	4b	17	23	67
4	$4b^c$	24	16	76
5	4b	48	0	87^d
6	4	30	0	88^d

Table S3 Evaluation of photocatalysts for oxygenation of tertiary amine to amide^{*a*}

^a Reaction conditions: treatment of amine 8 (0.15 mmol), photocatalyst (3 mol%) in 0.5 mL of DMF and blue LEDs light at room temperature. ^b Yield was determined by ¹H NMR using CH₂Br₂ as internal standard. ^c 5 mol% photocatalyst was used. ^d Isolated yield.

Experimental procedure for light-induced oxygenation of tertiary amine to amide

To a mixture of amine 8 (31 mg, 0.15 mmol, 1.0 equiv.) and photocatalyst (0.0045 mmol, 3mol%) in DMF (0.5 mL) was added DBN (28 mg, 0.225 mmol, 1.5 equiv.) in a 10 mL test tube. The solution was stirred at room temperature under Blue LEDs irradiation in open to air (without bubbling air). The mixture was concentrated in vacuo to yield the crude product, which was purified by flash chromatography on silica gel (eluent: Petroleum/EtOAc = $10/1 \sim 5/1$) to yield the desired amide 9 as a white solid.

Photophysical measurements of quinolizinium compounds

The absorption and emission spectra were measured by Cary 8454 UV-Vis Diode Array System and Cary Eclipse Fluorescence Spectrophotometer, respectively, and a final concentration of each quinolizinium compound in CH₂Cl₂ was diluted to 1×10^{-5} M. The excitation slit and emission slit for emission measurement were set at 5 nm with scan rate at 120 nm/min and medium PMT voltage. Fluorescent quantum yield of each compound was determined by a comparative method employing fluorescein ($\Phi = 0.95$ in 0.1 N NaOH solution) as standard and calculated with the following equation.

$$\Phi_{sample} = \Phi_{standard} \times \frac{F_{sample}}{F_{standard}} \times \left(\frac{n_{sample}}{n_{standard}}\right)^2 \times \frac{Abs_{sample}}{Abs_{standard}}$$

Quinolizinium	Solvent	$\lambda_{ex} (nm)$ (ϵ ; M ⁻¹ cm ⁻¹)	λ _{em} (nm)	$\Phi_{\rm F}$	τ _F (ns)	Application (Reference)
BF4 N H	MeCN	350 (-)	457	0.17	10.5	DNA Detection
	MeCN	400 (-)	420	0.15	8.7	(A. Barbafina, M. Amelia, L. Latterini, G. G. Aloisi and F. Elisei, <i>J. Phys. Chem.</i> , 2009, 113 , 14514-14520.)
Br ^O N	MeCN	390 (-)	425	0.34	5.6	
$F \xrightarrow{Br}_{F} \xrightarrow{Br}_{N}$	Water	407 (7400)	420	0.30	-	Bromide or iodide sensor (R. B. Jagt, M. S. Kheibari and M. Nitz, <i>Dyes Pigm.</i> , 2009, 81 , 161-165.)
	DCM	430 (16596)	559	0.079	-	Magnesium detection (M. Tian, H. Ihmels and S. Ye, Org. Biomol. Chem., 2012, 10 , 3010-3018.)
	DCM	411 (10965)	538	0.17	-	Fluorosolvatochromism (M. Pithan, D. Decker, M. S. Sardo, G. Viola and H. Ihmels, <i>Beilstein J. Org. Chem.</i> , 2016, 12 , 854-862.)
⊕ Br [⊕] N N	Water	397 (4168)	532	0.056	-	Fluorosolvatochromism (P. M. Pithan, K. Schwan and
BF ₄ N	Water	368 (12022)	544	0.012	-	H. Ihmels, <i>Arkivoc</i> , 2020, 1- 11.)
$ \begin{array}{c} $	DCM	423 (14500)	491	0.44		Photocatalyst, Cell imaging (JR. Deng, WC. Chan, N. CH. Lai, B. Yang, CS. Tsang, B. CB. Ko, S. LF. Chan and MK. Wong, <i>Chem. Sci.</i> , 2017, 8 , 7537- 7544.)

 Table S4 Photophysical properties of published quinolizinium dyes

Figure S3 Absorption spectrum of compound 1a

Figure S4 Absorption spectrum of compound 1b

Figure S5 Absorption spectrum of compound 1c

Figure S6 Absorption spectrum of compound 1d

Figure S7 Absorption spectrum of compound 1e

Figure S8 Absorption spectrum of compound 1f

Figure S9 Absorption spectrum of compound 1g

Figure S10 Absorption spectrum of compound 1h

Figure S11 Absorption spectrum of compound 1i

Figure S12 Absorption spectrum of compound 1j

Figure S13 Absorption spectrum of compound 1k

Figure S14 Absorption spectrum of compound 11

Figure S15 Absorption spectrum of compound 1m

Figure S16 Absorption spectrum of compound 1n

Figure S17 Absorption spectrum of compound 10

Figure S18 Absorption spectrum of compound 1p

Figure S19 Absorption spectrum of compound 1q

Figure S20 Absorption spectrum of compound 1r

Figure S21 Absorption spectrum of compound 1s

Emission Spectrum of Quinolizinium Compounds

Figure S22 Emission spectrum of compound 1a.

Figure S23 Emission spectrum of compound 1b.

Figure S24 Emission spectrum of compound 1c

Figure S25 Emission spectrum of compound 1d

Figure S26 Emission spectrum of compound 1e

Figure S27 Emission spectrum of compound 1f

Figure S28 Emission spectrum of compound 1g

Figure S29 Emission spectrum of compound 1h

Figure S30 Emission spectrum of compound 1i

Figure S31 Emission spectrum of compound 1j

Figure S32 Emission spectrum of compound 1k

Figure S33 Emission spectrum of compound 11

Figure S34 Emission spectrum of compound 1m

Figure S35 Emission spectrum of compound 1n

Figure S36 Emission spectrum of compound 10

Figure S37 Emission spectrum of compound 1p

Figure S38 Emission spectrum of compound 1q

Figure S39 Emission spectrum of compound 1r

Figure S40 Emission spectrum of compound 1s

DFT Calculations

All calculations were performed using Gaussian 16/A.03.¹ The counter ion was omitted for all calculations. DFT geometry optimizations were performed using B3LYP/Def2SVPP functional/basis set.²⁻³ Frequency calculations were performed for the optimized structures. No imaginary vibrational frequency was encountered confirming the optimized stationary point to be local minimum. TD-DFT calculations were conducted for the first 32 excited states and the CH₂Cl₂ PCM solvent model was used.⁴ Natural transition orbitals (NTOs) were calculated for the excited state S₁ for compounds **1b** and **1c**.⁵

Figure S41 (left) HOMO of compound **1b**; (right) LUMO of compound **1b** (isovalue = 0.04).

Figure S42 (left) HOMO of compound **1c**; (right) LUMO of compound **1c** (isovalue = 0.04).

Compound 1b				Compound 1c				
excited state	nm	eV	f	excited state	nm	eV	f	
1	428.67	2.8923	0.1351	1	443.03	2.7986	0.3421	
2	382.05	3.2452	0.0595	2	390.47	3.1753	0.1216	
3	372	3.3329	0.0102	3	374.55	3.3102	0.009	
4	357.48	3.4683	0.0487	4	364.73	3.3993	0.0638	
5	354.19	3.5005	0.0755	5	357.44	3.4686	0.0131	
6	343.57	3.6087	0.0009	6	352.1	3.5213	0.0101	
7	318.89	3.888	0.2744	7	345.37	3.5899	0.0067	
8	308.56	4.0182	0.0116	8	340.35	3.6428	0.0585	
9	296.8	4.1774	0.1841	9	321.15	3.8606	0.3571	
10	292.23	4.2427	0.1816	10	309.58	4.0049	0.0303	
11	284.61	4.3563	0.1787	11	300.27	4.1291	0.2699	
12	284.12	4.3638	0.1385	12	293.67	4.2219	0.0685	
13	277.86	4.462	0.0533	13	290.38	4.2697	0.0077	
14	275.59	4.4989	0.2415	14	286.96	4.3206	0.0493	
15	261.88	4.7345	0.1826	15	279.06	4.4429	0.2024	
16	255.19	4.8585	0.1118	16	276.28	4.4876	0.0691	
17	251.09	4.9378	0.0254	17	270.88	4.577	0.0102	
18	249.71	4.9651	0.0485	18	266.26	4.6566	0.1342	
19	246.95	5.0207	0.0853	19	263.03	4.7137	0.1896	
20	245	5.0606	0.0704	20	256.3	4.8375	0.085	
21	242.89	5.1046	0.023	21	253.38	4.8932	0.0792	
22	240.46	5.1562	0.0048	22	251.52	4.9294	0.0263	
23	238.31	5.2025	0.02	23	250.82	4.9431	0.1487	
24	236.34	5.246	0.0348	24	247.32	5.0131	0.0204	
25	233.86	5.3015	0.0049	25	246.06	5.0387	0.0335	
26	229.92	5.3925	0.0194	26	244.38	5.0734	0.0373	
27	226.4	5.4764	0.0222	27	241.42	5.1357	0.0102	
28	224.34	5.5266	0.0404	28	239.04	5.1868	0.0858	
29	222.72	5.5668	0.0074	29	238.78	5.1925	0.0124	
30	221.01	5.6099	0.0052	30	236.23	5.2485	0.0067	
31	220.06	5.6341	0.0081	31	234.62	5.2844	0.0055	
32	219.74	5.6424	0.0632	32	233.98	5.2989	0.0297	

Table S5 TD-DFT excitation energies and oscillator strengths (*f*) of **1b** and **1c**.

Figure S43 Left: Simulated absorption spectrum of **1b** assuming a Gaussian line-shape for each transition, with width 25 nm. Calculated for the first 64 excited states. Right: Experimental absorption spectrum of **1b**.

Figure S44 Left: Simulated absorption spectrum of **1c** assuming a Gaussian line-shape for each transition, with width 25 nm. Calculated for the first 64 excited states. Right: Experimental absorption spectrum of **1c**.

Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,

A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,

- C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J.
- B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 2. J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615.
- 3. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.
- 4. Furche, F.; Ahlrichs, R. Adiabatic Time-Dependent Density Functional Methods for Excited State Properties. J. Chem. Phys. 2002, 117, 7433.
- 5. Martin, R. L. Natural Transition Orbitals. J. Chem. Phys. 2003, 118, 4775.

¹H NMR S1k

¹⁹F NMR

a8f-400f

¹³C NMR

¹H NMR 1c

¹H NMR 1d

¹H NMR 1e

¹³C NMR

¹H NMR 1f

¹⁹F NMR

¹H NMR 1g

¹H NMR 1h

¹H NMR 1j

¹³C NMR

¹H NMR 1k

¹H NMR 11

¹H NMR 1m

¹H NMR 1n

¹H NMR 10

¹H NMR 1p

¹³C NMR

¹H NMR 1q

¹H NMR 1r

¹⁹F NMR

-2500 -2000 -1500 -1500 -1000 -500 -

¹H NMR 1t

