Supplementary Information

Metal-Free Oxidative Cyclization Reaction of Enynals to Access Pyrane-2-one Derivatives

Farzaneh Ansari,^{†, ‡} Hormoz Khosravi,[†] Alireza Abbasi Kejani,[†] Mahsa Armaghan,[§] Walter Frank,[§] Saeed Balalaie,^{*,†, |} Farnaz Jafarpour^{*,‡}

† Peptide Chemistry Research Center, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran, <u>balalaie@kntu.ac.ir</u>

‡ School of Chemistry, College of Science, University of Tehran, Tehran 1417466191, Iran, Jafarpur@khayam.ut.ac.ir

§ Institut f
ür Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universit
ät D
üsseldorf, Universit
ätsstra
ße 1, 40225 D
üsseldorf, Germany

I Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran

Table of Contents

A. General Consideration
B. Experimental procedures
B1. Typical Procedure for the Synthesis of ortho-alkynylbenzaldehyde derivatives (Sonogashira coupling reaction)
B2. Typical Procedure for the Synthesis of quinoline-based starting materials3
B3. General Procedure for the Synthesis of 2 using 1a as the Examples4
B4. General Procedure for the Synthesis of 4-bromo-8-methoxy-3-phenyl-1 <i>H</i> -pyrano[4,3- <i>b</i>]quinolin-1-one 2r (Control Experiment)5
C. Solvent Screening with 2-(phenylethynyl)quinoline-3-carbaldehyde, 1a5
D. Compounds Characterization Data
D1. Characterization Data for final compounds6
D2. Characterization Data of compound 2r10
E. X-ray crystallographic data of compound (2a)10
F. Copies of ¹ H and ¹³ C NMR Spectra16
F1. ¹ H NMR and ¹³ C NMR spectra of final compounds16
F2. ¹ H NMR and ¹³ C NMR spectra of compound 2r48
Z- matrices
G. References

A. General Consideration

Synthesis of o-Alkynyl Aldehyde derivatives were performed according to literature procedures;¹⁻ ⁸ other reagents were purchased from Merck and used without further purification. Flash column chromatography was carried out using 63-200 mesh silica gel. All reactions were monitored by TLC, which was performed on precoated aluminum sheets of silica gel 60 (F254) and visualized by exposure to UV light (254 nm). Uncorrected melting points were reported using an Electrothermal *9100* apparatus. ¹H and ¹³C NMR spectra were recorded with Varian - INOVA 500MHz (at 500 and 125 MHz) instrument at room temperature, using CDCl₃ as a solvent. Chemical shifts are referenced to tetramethylsilane as an internal standard (TMS: δ 0.00 ppm). ¹³C NMR spectra are referenced from the solvent central peak (77.26 ppm). Chemical shifts are given in ppm. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer with KBr pellets. Mass spectra were recorded on an Agilent Technologies (HP) 5973 Mass spectrometer operating at an ionization potential of 20 eV. Elemental analysis (CHN) were recorded on a Thermo Finnigan Flash EA 1112 elemental analyzer.

B. Experimental procedures

B1. Typical Procedure for the Synthesis of ortho-alkynylbenzaldehyde derivatives (Sonogashira coupling reaction)

Sonogashira coupling reactions were performed following a reported method.¹

To a solution of the corresponding 2-bromobenzaldehyde (1 eq), $PdCl_2(PPh_3)_2$ (2 mol%), and CuI (1 mol%) in NEt₃ (0.25 M) was added the appropriate acetylene (1.2 eq). The resulting mixture was heated under Ar atmosphere at 50°C for 6-18 hours. After the reaction was completed, the reaction mixture was quenched by addition of distilled water and extracted with CH_2Cl_2 (three times). The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to afford the desired products **1m**, **1n**, **1o**, and **1p**.

B2. Typical Procedure for the Synthesis of quinoline-based starting materials

2-chloroquinoline-3-carbaldehydes: They were prepared by the reported procedure.9, 10

2-(alkylethynyl)quinoline-3-carbaldehydes and 2-(alkylethynyl)nicotinaldehyde:

They were prepared by the Sonogashira coupling reaction of 2-chloroquinoline-3-carbaldehydes and 2-Chloro-3-pyridine carboxaldehyde with terminal alkynes.² All commercially available compounds were used as received.

B3. General Procedure for the Synthesis of 2 using 1a as the Examples

To a 10 mL dried Schlenk tube were added TBAB (128.9 mg, 0.4 mmol), $K_2S_2O_8$ (216.2 mg, 0.8 mmol) and followed by addition of compound **1a** (102.9 mg, 0.4 mmol) and DCE (2.0 mL, 0.2M). The formed mixture was sealed and was stirred at 120 °C under Ar atmosphere for 36 h. The solution was then cooled to rt, and DCE was removed under vaccum directly. The crude product was purified by column chromatography on silica gel (eluent: *n*-Hexane/ethyl acetate 5: 1) to afford the desired product **2a**.

B4. General Procedure for the Synthesis of 4-bromo-8-methoxy-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one 2q (Control Experiment)

To a 10 mL dried Schlenk tube were added TBAB (128.9 mg, 0.4 mmol), $K_2S_2O_8$ (216.2 mg, 0.8 mmol), NBS (71 mg, 0.4 mmol) and followed by addition of compound **1r** (102.9 mg, 0.4 mmol) and DCE (2.0 mL, 0.2M). The formed mixture was sealed and was stirred at 120 °C under Ar atmosphere for 36 h. The solution was then cooled to rt, and DCE was removed under vaccum directly. The crude product was purified by column chromatography on silica gel (eluent: *n*-Hexane/ethyl acetate 5: 1) to afford the desired product **2q**.

C. Solvent Screening with 2-(phenylethynyl)quinoline-3-carbaldehyde, 1a

Table S2. Solvent screening^a with 2-(phenylethynyl)quinoline-3-carbaldehyde, 1a

H N 1a	K ₂ S ₂ O ₈ , TBAB solvent , 120°C	$ \begin{array}{c} $
entry	solvent	yield (%) ^b
1	PhCl	50
2	DCE	82
3	DCE/H ₂ O	55
4	DMSO	ND^{c}
5	Benzene	25
6	Toluene	Trace
7	ACN	23
8	Neat	Trace

^{*a*}Reaction conditions: 1a (51.0 mg, 0.2 mmol), $K_2S_2O_8$ (2.0 equiv.), TBAB (1.0 equvi.), DCE (1.0 ml), under Ar atmosphere, 120 °C and 36 h. ^{*b*} Isolated yields, °ND = Not detected.

D. Compounds Characterization Data

D1. Characterization Data for final compounds

3-phenyl-1H-pyrano [4,3-b]quinolin-1-one (2a)

Yellow solid; Yield 82% (89mg); m.p. 132-134°C; $R_f = 0.18$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.27 (s, 1H), 7.44-7.50 (m, 3H), 7.57 (t, J = 7.5 Hz, 1H), 7.85 (t, J = 7.7 Hz, 1H), 7.90-7.97 (m, 3H), 8.08 (d, J = 8.5 Hz, 1H), 9.10 (s, 1H) ¹³C NMR (125 MHz, CDCl₃) δ 162.1, 157.0, 152.7, 151.8, 140.6, 133.6, 131.5, 130.9, 129.6, 129.1, 127.1, 125.7, 115.7, 103.8. IR (cm⁻¹) ν 3053, 2924, 1733, 1603, 1489, 1364, 1269, 1206, 1160, 1045. MS (EI, 70 eV) m/z

[M]+ found for C₁₈H₁₁NO₂: 273. **Anal. Calcd** for C₁₈H₁₁NO₂: C, 79.11; H, 4.06; N, 5.13; Found: C, 78.84; H, 3.97; N, 5.00.

6-methyl-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2b)

Yellow solid; Yield 88% (101mg); m.p. 137-139°C; $R_f = 0.53$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 2.79 (s, 3H),7.27 (s, 1H) 7.37 – 7.51 (m, 4H), 7.64 (d, J = 6.6 Hz, 1H), 7.74 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 7.1 Hz, 2H), 8.98 (s, 1H) ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 156.3, 151.6, 150.9, 140.4, 137.2, 133.3, 131.6, 130.7, 130.6, 129.0, 127.5, 127.0, 126.8, 125.6, 115.2, 104.3, 18.2. IR (cm⁻¹) v 3056, 2916, 2852, 1736, 1621, 1583, 1489, 1445, 1369, 1267,

1215, 1161, 1082, 1038. **MS (EI, 70 eV)** m/z [M]⁺ found for C₁₉H₁₃NO₂: 287. **Anal. Calcd** for C₁₉H₁₃NO₂: C, 79.43; H, 4.56; N, 4.88; Found: C, 79.74; H, 4.67; N, 5.01.

8-methyl-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2c)

Yellow solid; Yield 81% (93mg); m.p. 156-160°C; R_f = 0.18 on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 9.08 (s, 1H), 8.05 (d, J = 8.6 Hz, 1H), 7.98 – 7.94 (m, 2H), 7.76 – 7.72 (m, 2H), 7.53 – 7.48 (m, 3H), 7.35 (s, 1H), 2.58 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 156.6, 152.0, 150.5, 139.8, 137.4, 136.2, 131.7, 130.8, 129.1, 128.7, 128.2, 127.2, 125.7, 115.7, 103.9, 32.1

IR (cm⁻¹) ν 2917, 1728, 1625, 1589, 1486, 1374, 1269, 1184, 1049. **MS** (EI, 70 eV) m/z [M]⁺ found for C₁₉H₁₃NO₂: 287. **Anal. Calcd** for C₁₉H₁₃NO₂: C, 79.43; H, 4.56; N, 4.88; Found: C, 79.11; H, 4.40; N, 4.69.

7,8-dimethyl-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2d)

Yellow solid; Yield 78% (94mg); m.p. 157-159°C; $R_f = 0.14$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.97 (s, 1H), 7.93 (d, J = 6.5 Hz, 2H), 7.86 (s, 1H), 7.68 (s, 1H), 7.44- 7.52 (m, J = 6.1, 5.4 Hz, 3H), 7.28 (s, 1H), 2.50 (s, 3H), 2.46 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 156.3, 152.0, 151.0, 145.1, 139.2, 137.6 131.8, 130.7, 129.1, 128.5, 128.3, 125.9, 125.6, 124.5, 115.0, 104.0,

21.1, 20.2 IR (cm⁻¹) v 3033, 2919, 2852, 1734, 1624, 1585, 1546, 1487, 1448, 1373, 1111, 1072.

MS (ESI)⁺ m/z [M]⁺ found for C₂₀H₁₅NO₂: 301.3. **Anal. Calcd** for C₂₀H₁₅NO₂: C, 79.72; H, 5.02; N, 4.65; Found: C, 79.37; H, 4.94; N, 4.46.

7,9-dimethyl-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2e)

Yellow solid; Yield 77% (93mg); m.p 159-163°C; $R_f = 0.23$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 9.01 (s, 1H), 7.85 (d, J = 6.0 Hz, 2H), 7.58 (s, 1H), 7.42 – 7.45 (m, 3H), 7.10 (d, J = 10.9 Hz, 2H), 2.63 (s, 3H), 2.42 (s, 3H).) ¹³C NMR (125 MHz, CDCl₃) δ 162.2, 156.4, 152.3, 152.1, 144.4, 136.3, 131.5, 130.6, 129.9, 128.9, 126.0, 125.5, 124.8, 114.0, 103.6, 22.3, 18.7. IR (cm⁻¹)

v 3057, 2922, 2858, 1726, 1584, 1499, 1449, 1376, 1242, 1189, 1061. **MS (EI, 70 eV)** m/z [M]⁺ found for $C_{20}H_{15}NO_2$: 301. **Anal. Calcd** for $C_{20}H_{15}NO_2$: C, 79.72; H, 5.02; N, 4.65; Found: C, 79.98; H, 5.21; N, 4.83.

8-ethyl-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2f)

Yellow solid; Yield 84% (101mg); m.p. 161-163°C; $R_f = 0.25$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 8.96 (s, 1H), 7.95 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 6.7 Hz, 2H), 7.64 – 7.68 (m, 2H), 7.44 (d, J = 6.9 Hz, 3H), 7.19 (s, 1H), 2.81 (q, 2H), 1.32 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 162.1, 156.3, 151.8, 150.6, 143.3, 139.7, 135.0, 132.4, 131.5, 130.6, 129.0,

128.8, 127.1, 126.7, 125.7, 115.5, 103.8, 28.8, 15. **IR** (cm⁻¹) ν 2926, 1727, 1624, 1588, 1475, 1373, 1264, 1197, 1054. **MS** (EI, 70 eV) m/z [M]⁺ found for C₂₀H₁₅NO₂: 301. Anal. Calcd for C₂₀H₁₅NO₂: C, 79.72; H, 5.02; N, 4.65; Found: C, 79.88; H, 5.19; N, 4.80.

8-isopropyl-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2g)

Yellow solid; Yield 84% (106mg); m.p. 149-151°C; $R_f = 0.25$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (d, J = 6.9 Hz, 6H), 3.12 (hept, J = 6.9 Hz, 1H), 7.28 (s, 1H), 7.44-7.50 (m, 3H), 7.74 (s, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.92 (d, J = 6.9 Hz, 2H), 8.03 (d, J = 8.8 Hz, 1H), 9.07 (s, 1H) ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 156.5, 152.0, 150.8, 148.0, 140.0, 133.9, 131.7,

130.7, 129.1, 128.9, 127.2, 125.7, 125.4, 115.6, 103.9, 34.2, 23.7 **IR** (cm⁻¹) ν 3057, 2928, 2863, 1880, 1728, 1621, 1588, 1486, 1370, 1270, 1204, 1166, 1056. **MS** (EI, 70 eV) m/z [M]⁺ found for C₂₁H₁₇NO₂: 315. **Anal. Calcd** for C₂₁H₁₇NO₂: C, 79.98; H, 5.43; N, 4.44; Found: C, 79.65; H, 5.29; N, 4.30.

7-methoxy-3-phenyl-1H-pyrano [4,3-b]quinolin-1-one (2h)

Yellow solid; Yield 84% (101mg); m.p. 182-184°C; $R_f = 0.2$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 4.00 (s, 3H), 7.20 – 7.29 (m, 2H), 7.39 (d, J = 2.4 Hz, 1H), 7.44 – 7.55 (m, 3H), 7.85 (d, J = 9.0 Hz, 1H), 7.95 (d, J = 8.0 Hz, 2H), 9.02 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 164.3, 162.4, 157.1, 154.1, 153.3, 139.8, 131.8, 130.8, 130.8, 129.1, 125.8, 122.8, 121.3, 113.7,

106.5, 103.9, 56.0. IR (cm⁻¹) v 3020, 2921, 2852, 1729, 1609, 1497, 1456, 1382, 1247, 1156, 1060,

1014. **MS (EI, 70 eV)** m/z [M]⁺ found for C₁₉H₁₃NO₃: 303. **Anal. Calcd** for C₁₉H₁₃NO₃: C, 75.24; H, 4.32; N, 4.62; Found: C, 75.58; H, 4.43; N, 4.82.

10-phenyl-8H-benzo[h]pyrano[4,3-b]quinolin-8-one (2i)

Yellow solid; Yield 87% (112mg); m.p. 218-221°C; $R_f = 0.55$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 9.35 – 9.30 (m, 1H), 9.00 (d, J = 9.4 Hz, 1H), 8.02 – 7.97 (m, 2H), 7.90 – 7.87 (m, 1H), 7.79 – 7.75 (m, 3H), 7.72 (d, J = 8.9 Hz, 1H), 7.54 – 7.49 (m, 3H), 7.41 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 156.8, 152.3, 151.4, 138.6, 135.2, 131.7, 130.8, 130.3, 129.6, 129.1, 128.6, 128.4, 128.2, 127.7, 125.8, 125.6, 125.6, 115.6, 104.3 IR

(cm⁻¹) *v* 3048, 2958, 2907, 1734, 1627, 1584, 1498, 1397, 1348, 1225, 1161, 1066. **MS (EI, 70 eV)** m/z [M]⁺ found for C₂₂H₁₃NO₂: 323. **Anal. Calcd** for C₂₂H₁₃NO₂: C, 81.72; H, 4.05; N, 4.33; Found: C, 81.89; H, 4.14; N, 4.51.

3-(4-(tert-butyl)phenyl)-8-isopropyl-1H-pyrano[4,3-b]quinolin-1-one (2j)

Yellow solid; Yield 79% (117mg); m.p. 154-157°C; $R_f=0.225$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 15H), 3.12 (hept, J = 7.0 Hz, 1H), 7.29 (s, 1H), 7.51 (d, J = 8.5 Hz, 2H), 7.75 (s, 1H), 7.79 (d, J = 8.9 Hz, 1H), 7.88 (d, J = 8.5 Hz, 2H), 8.05 (d, J = 8.8 Hz, 1H), 9.07 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 162.3, 156.9, 154.4, 152.1, 150.6, 147.9, 140.2, 134.0, 128.8, 128.7, 127.2, 126.1, 125.6, 125.4, 115.6, 103.0, 35.1,

34.1,31.3, 23.7 **IR (cm⁻¹)** *v* 3083, 2957, 2871, 1731, 1629, 1590, 1466, 1374, 1269, 1198, 1115, 1057, 1018. **MS (EI, 70 eV)** m/z [M]⁺ found for C₂₅H₂₅NO₂: 371. **Anal. Calcd** for C₂₅H₂₅NO₂: C, 80.83; H, 6.78; N, 3.77; Found: C, 80.92; H, 6.87; N, 3.98.

3-butyl-8-methoxy-1H-pyrano[4,3-b]quinolin-1-one (2k)

Yellow solid; Yield 62% (70mg); m.p. 157-160°C; R_f =0.27 on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 0.97(t, J = 7.4 Hz, 3H), 1.39 – 1.50 (m, 2H), 1.74(p, J = 7.5 Hz, 2H), 2.61(t, J = 7.6 Hz, 2H), 3.97(s, 3H), 6.61(s, 1H), 7.18(d, J = 2.8 Hz, 1H), 7.54(dd, J = 9.3, 2.8 Hz, 1H), 8.01(d, J = 9.3 Hz, 1H),

8.99(s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 158.2, 156.8 150.6, 130.1, 128.1, 127.4, 127.4, 120.1, 115.6, 105.9, 104.9, 55.9, 33.6, 28.8, 22.2, 13.9. IR (cm⁻¹) ν 2950, 2871, 1733, 1653, 1589, 1489, 1427, 1380, 1222, 1180,1108, 1021. MS (EI, 70 eV) m/z [M]⁺ found for C₁₇H₁₇NO₃: 283. Anal. Calcd for C₁₇H₁₇NO₃: C, 72.07; H, 6.05; N, 4.94; Found: 71.80; H, 5.93; N, 4.80.

7-phenyl-5H-pyrano [4,3-b]pyridin-5-one (2l)

Pale yellow solid; yield 87% (78mg); m.p. 137-139°C; $R_f = 0.13$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.22 (s, 1H), 7.41 (dd, J = 8.0, 4.7 Hz, 1H), 7.48(dd, J = 5.4, 2.2 Hz, 3H), 7.89 – 7.93 (m, 2H), 8.53(d, J = 8.0, 1H), 8.92 (d, J = 4.4 Hz, 1H) ¹³C NMR (125 MHz, CDCl₃) δ 162.1, 157.4, 156.5, 155.1, 137.7, 131.4, 130.9, 129.1, 125.8, 123.0, 117.1, 103.8 IR (cm⁻¹) v 3067, 2919, 1787, 1721, 1617, 1557, 1430, 1280, 1223,

1070, 1037. **MS (EI, 70 eV)** m/z [M]⁺ found for C₁₄H₉NO₂: 223. **Anal. Calcd** for C₁₄H₉NO₂: C, 75.33; H, 4.06; N, 6.27; Found: C, 75.12; H, 3.97; N, 6.02.

7-nitro-3-phenyl-1H-isochromen-1-one (2m)

Yellow solid; Yield 73% (78mg); m.p. 196-200°C; $R_f = 0.44$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 7.05 (s, 1H), 7.48 – 7.54 (m, 3H), 7.66 (d, J = 8.6 Hz, 1H), 7.90 – 7.95 (m, 2H), 8.52 (dd, J = 8.6, 2.4 Hz, 1H), 9.15 (d, J = 2.1 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 157.3, 142.7, 131.4, 131.1, 130.3, 129.3, 129.2, 128.6, 127.4, 126.0, 125.9, 120.9, 100.8. IR (cm⁻¹) v 2918, 2854, 1716, 1619, 1519,

1458, 1337, 1254, 1088, 1027. **MS (EI, 70 eV)** m/z $[M]^+$ found for C₁₅H₉NO₄: 267. Anal. Calcd for C₁₅H₉NO₄: C, 67.42; H, 3.39; N, 5.24; Found: C, 67.80; H, 3.54; N, 5.40.

3-phenyl-1H-isochromen-1-one (2n)

The compounds exist as a 22:3 mixture of 2n and 3n. Yellow solid; Yield 78% (69mg); R_f = 0.52 on silica gel (Hexane/EtOAc 5:1). ¹H NMR (500 MHz, CDCl₃) δ 8.32 (d, J = 8.1 Hz, 1H), 7.89 (d, J =7.0 Hz, 2H), 7.73 (dd, J = 7.6, 1.3 Hz, 1H), 7.42– 7.52 (m, 6H), 6.96 (s, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 162.4, 153.8, 137.7, 135.0, 132.1, 130.3, 130.1, 129.8,

129.0, 128.9, 128.3, 126.1, 125.4, 120.7, 102.0. **IR (cm⁻¹)** *v* 3057, 2957, 1771, 1719, 1635, 1480, 1268, 1072. **MS (EI, 70 eV)** m/z [M]⁺ found for C₁₅H₁₀O₂: 222. **Anal. Calcd** for C₁₅H₁₀O₂: C, 81.07; H, 4.54; Found: C, 81.49; H, 4.71.

3-(4-(tert-butyl) phenyl)-1H-isochromen-1-one (20)

The compounds exist as a 23:2 mixture of 20 and 30. Yellow oil; Yield 70% (78mg); R_f =0.5 on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 1.36 (s, 9H), 6.91 (s, 1H), 7.43 – 7.52 (m, 4H), 7.70 (t, J = 8.2 Hz, 1H), 7.82 (d, J = 8.5 Hz, 2H), 8.30 (d, J = 8.1 Hz, 1H).¹³C NMR (125 MHz, CDCl₃) δ 162.5, 153.9, 153.5, 137.8,

134.9, 129.8, 129.7, 129.3, 128.0, 125.9, 125.2, 120.6, 101.3, 35.0, 29.8 **IR (cm⁻¹)** *v* 2918, 2856, 1734, 1634, 1463, 1371, 1231, 1064, 1017. **MS (EI, 70 eV)** m/z [M]⁺ found for C₁₉H₁₈O₂: 278. **Anal. Calcd** for C₁₉H₁₈O₂: C, 81.99; H, 6.52; Found: C, 82.34; H, 6.66.

3-(4-methoxyphenyl)-1H-isochromen-1-one (2p)

The compounds exist as a 19:1 mixture of 2p and 3p. Red solid; Yield 76% (76mg); $R_f = 0.3$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 3.85(s, 3H), 6.8(s, 1H), 6.95(d, J = 8.2 Hz, 2H), 7.40 - 7.48 (m, 2H), 7.67(t, J = 7.6 Hz, 1H), 7.80 (d, J = 8.1 Hz, 2H), 8.27(d, J = 8.1 Hz, 1H) ¹³C NMR (125 MHz,

CDCl₃) δ 162.6, 161.2, 153.8, 138.0, 134.9, 131.8, 129.7, 127.7, 126.9, 125.8, 124.6, 120.2, 114.3, 100.3, 55.5 **IR** (cm⁻¹) *v* 3063, 1780, 1719, 1487, 1247, 1070, 1005. **MS (EI, 70 eV)** m/z [M]⁺ found for C₁₆H₁₂O₃: 252. **Anal. Calcd** for C₁₆H₁₂O₃: C, 76.18; H, 4.79; Found: C, 76.44; H, 4.90.

D2. Characterization Data of compound 2q

4-bromo-8-methoxy-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2q)

Yellow solid; Yield 77% (93mg); m.p. 239-241°C; $R_f = 0.3$ on silica gel (Hexane/EtOAc 5:1); ¹H NMR (500 MHz, CDCl₃) δ 4.04 (s, 3H), 7.30 (dt, J = 9.0, 2.5 Hz, 1H), 7.50 – 7.55 (m, J = 4.3, 3.5 Hz, 2H), 7.55 – 7.59 (dd, J = 6.9, 2.4 Hz, 1H), 7.90 (d, J = 8.9 Hz, 3H), 7.94 – 7.99 (m, 1H), 9.05 (d, J = 7.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 56.2, 107.3, 122.2, 123.0, 128.3, 128.4, 129.6, 129.9, 130.5, 130.6,

130.7, 130.8, 132.9, 140.2, 140.3, 154.0, 161.4, 164.5 **IR** (cm⁻¹) v 2931, 1744, 1593, 1486, 1373, 1242, 1159, 1022. **MS** (**EI**, **70 eV**) m/z [M]⁺ found for C₁₉H₁₂BrNO₃: 381. **Anal. Calcd** for C₁₉H₁₂BrNO₃: C, 59.71; H, 3.16; Found: C, 59.86; H, 3.24.

E. X-ray crystallographic data of compound (2a)

Crystallographic data for the structure in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of the

data can be obtained free of charge on quoting the depository numbers CCDC-2051315 (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, <u>www.ccdc.cam.ac.uk</u>)

Figure 1. a view of the asymmetric unit of 3-phenyl-1H-pyrano[4,3-b]quinolin-1-one with the labelling scheme, showing displacement ellipsoids at the 50% probability level.

Figure 2. Packing diagram looking along the crystallographic *a* axis of 3-phenyl-1H-pyrano[4,3-b]quinolin-1-one, Color legend: O (red), N (blue), C (gray).

Table 1. Crystal data and structure refinement for 3-phenyl-1H-pyrano[4,3-b]quinolin-1-one.

Identification code	865
Empirical formula	C18H11NO2
Formula weight	273.28

Temperature	223(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/n$	
Unit cell dimensions	a = 8.1600(16) Å	α= 90°.
	b = 5.6000(11) Å	β=94.00(3)°.
	c = 27.700(6) Å	$\gamma = 90^{\circ}$.
Volume	1262.7(4) Å ³	
Z	4	
Density (calculated)	1.438 Mg/m ³	
Absorption coefficient	0.095 mm ⁻¹	
F(000)	568	
Crystal size	$0.200 \ge 0.150 \ge 0.100 \text{ mm}^3$	
Theta range for data collection	2.559 to 27.048°.	
Index ranges	-10<=h<=10, -7<=k<=7, -34<=l<=33	
Reflections collected	11016	
Independent reflections	2697 [R(int) = 0.0836]	
Completeness to theta = 25.242°	99.8 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	2
Data / restraints / parameters	2697 / 0 / 190	
Goodness-of-fit on F ²	1.331	
Final R indices [I>2sigma(I)]	R1 = 0.0928, wR2 = 0.1455	
R indices (all data)	R1 = 0.1256, wR2 = 0.1550	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.225 and -0.249 e.Å ⁻³	

Bond lengths	
O(1)-C(7)	1.385(4)
O(1)-C(11)	1.387(4)
O(2)-C(11)	1.191(4)
N(1)-C(9)	1.313(4)
N(1)-C(14)	1.369(4)
C(1)-C(6)	1.381(4)
C(1)-C(2)	1.390(4)
C(1)-C(7)	1.488(4)
C(2)-C(3)	1.383(5)
C(2)-H(2)	0.9400
C(3)-C(4)	1.365(5)
C(3)-H(3)	0.9400
C(4)-C(5)	1.367(5)
C(4)-H(4)	0.9400
C(5)-C(6)	1.393(5)
C(5)-H(5)	0.9400
C(6)-H(6)	0.9400
C(7)-C(8)	1.322(4)
C(8)-C(9)	1.454(4)
C(8)-H(8)	0.9400
C(9)-C(10)	1.414(4)
C(10)-C(12)	1.379(4)
C(10)-C(11)	1.456(4)
C(12)-C(13)	1.399(4)
С(12)-Н(12)	0.9400
C(13)-C(14)	1.415(4)
C(13)-C(18)	1.429(4)
C(14)-C(15)	1.411(4)
C(15)-C(16)	1.360(4)
C(15)-H(15)	0.9400
C(16)-C(17)	1.406(5)
C(16)-H(16)	0.9400
C(17)-C(18)	1.347(4)

Table 2. Bond lengths [Å] and angles [°] for 3-phenyl-1H-pyrano[4,3-b]quinolin-1-one.

С(17)-Н(17)	0.9400
C(18)-H(18)	0.9400

Angles

C(7)-O(1)-C(11)	123.0(2)
C(9)-N(1)-C(14)	117.6(3)
C(6)-C(1)-C(2)	117.5(3)
C(6)-C(1)-C(7)	121.4(3)
C(2)-C(1)-C(7)	121.0(3)
C(3)-C(2)-C(1)	121.5(3)
C(3)-C(2)-H(2)	119.3
C(1)-C(2)-H(2)	119.3
C(4)-C(3)-C(2)	120.5(4)
C(4)-C(3)-H(3)	119.8
C(2)-C(3)-H(3)	119.8
C(3)-C(4)-C(5)	118.8(3)
C(3)-C(4)-H(4)	120.6
C(5)-C(4)-H(4)	120.6
C(4)-C(5)-C(6)	121.4(4)
C(4)-C(5)-H(5)	119.3
C(6)-C(5)-H(5)	119.3
C(1)-C(6)-C(5)	120.3(3)
C(1)-C(6)-H(6)	119.9
C(5)-C(6)-H(6)	119.9
C(8)-C(7)-O(1)	120.8(3)
C(8)-C(7)-C(1)	128.0(3)
O(1)-C(7)-C(1)	111.2(3)
C(7)-C(8)-C(9)	121.5(3)
C(7)-C(8)-H(8)	119.3
C(9)-C(8)-H(8)	119.3
N(1)-C(9)-C(10)	123.3(3)
N(1)-C(9)-C(8)	119.0(3)
C(10)-C(9)-C(8)	117.6(3)
C(12)-C(10)-C(9)	119.0(3)
C(12)-C(10)-C(11)	121.0(3)
C(9)-C(10)-C(11)	120.0(3)

O(2)-C(11)-O(1)	117.6(3)
O(2)-C(11)-C(10)	125.6(3)
O(1)-C(11)-C(10)	116.8(3)
C(10)-C(12)-C(13)	119.5(3)
С(10)-С(12)-Н(12)	120.2
С(13)-С(12)-Н(12)	120.2
C(12)-C(13)-C(14)	117.1(3)
C(12)-C(13)-C(18)	122.9(3)
C(14)-C(13)-C(18)	120.0(3)
N(1)-C(14)-C(15)	118.7(3)
N(1)-C(14)-C(13)	123.4(3)
C(15)-C(14)-C(13)	117.9(3)
C(16)-C(15)-C(14)	120.4(3)
С(16)-С(15)-Н(15)	119.8
С(14)-С(15)-Н(15)	119.8
C(15)-C(16)-C(17)	121.8(3)
C(15)-C(16)-H(16)	119.1
C(17)-C(16)-H(16)	119.1
C(18)-C(17)-C(16)	119.8(3)
С(18)-С(17)-Н(17)	120.1
С(16)-С(17)-Н(17)	120.1
C(17)-C(18)-C(13)	120.2(3)
C(17)-C(18)-H(18)	119.9
C(13)-C(18)-H(18)	119.9

F. Copies of ¹H and ¹³C NMR Spectra

F1. ¹H NMR and ¹³C NMR spectra of final compounds

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹³C-NMR of compound (2a) (125 MHz, CDCl₃)

Mass spectrum of compound 2a with the molecular ion peak at 273

¹³C-NMR of compound (2b) (125 MHz, CDCl₃)

Mass spectrum of compound 2b with the molecular ion peak at 287

Mass spectrum of compound 2c with the molecular ion peak at 287

¹³C-NMR of compound (2d) (125 MHz, CDCl₃)

Mass spectrum of compound 2d with the molecular ion peak at 301

¹³C-NMR of compound (2e) (125 MHz, CDCl₃)

Mass spectrum of compound 2e with the molecular ion peak at 301

S28

IR spectrum of compound 2h

Mass spectrum of compound 2h with the molecular ion peak at 303

S32

Mass spectrum of compound 2i with the molecular ion peak at 323

¹³C-NMR of compound (2j) (125 MHz, CDCl₃)

IR spectrum of compound 2k

Mass spectrum of compound 2k with the molecular ion peak at 283

¹³C-NMR of compound (2l) (125 MHz, CDCl₃)

S40

S42

¹³C-NMR of compound (20) (125 MHz, CDCl₃)

IR spectrum of compound 20

Mass spectrum of compound 20 with the molecular ion peak at 278

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ¹³C-NMR of compound (2p) (125 MHz, CDCl₃)

Mass spectrum of compound 2p with the molecular ion peak at 252

F2. 1H NMR and 13C NMR spectra of compound 2q

Mass spectrum of compound 2q with the molecular ion peak at 381

Z- matrices

INT1

С	-0.21184600	3.50645100	-0.00017000
С	0.03427300	2.11526300	-0.00008300
С	1.38930900	1.68033500	-0.00003500
С	2.42374700	2.62996100	-0.00007800
С	2.15424400	3.99226400	-0.00016100
С	0.82610500	4.42887700	-0.00020700
Н	-1.24361400	3.84204600	-0.00020700
Н	3.44604100	2.26898000	-0.00004300
Н	2.97058700	4.70800300	-0.00018900
Н	0.59894200	5.49137000	-0.00027100
С	-1.10047000	1.26017000	-0.00005400
С	-2.14136900	0.63093400	-0.00004600
С	-3.31891700	-0.16884200	-0.00009600
С	-4.59579800	0.42737600	-0.00035900
С	-3.22017400	-1.57524000	0.00012500
С	-5.74026500	-0.36481500	-0.00040100
Н	-4.67466400	1.51020300	-0.00052800
С	-4.37011800	-2.35885900	0.00008400
Н	-2.23627100	-2.03337200	0.00032900
С	-5.63193700	-1.75787400	-0.00017900
Н	-6.71991000	0.10512100	-0.00060500
Н	-4.28291200	-3.44186600	0.00025600
Н	-6.52749000	-2.37310300	-0.00021200

С	1.81346100	0.25742800	0.00005600
0	3.01581000	-0.04874700	0.00000500
0	0.84879300	-0.64945900	0.00019900
Н	1.29156300	-1.53523300	0.00025000
Br	3.33141200	-2.60505900	0.00026300
Electronic	Energy (EE) = -	-3299.706887 I	Hartree
EE + Thermal Free Energy Correction = -3299.550476 Hartree			
Imaginary Freq = 0			

TS1-endo

С	2.21115100	1.72216000	-1.26604100
С	1.71793400	0.83918900	-0.27320500
С	2.63925600	0.19062500	0.59947700
С	4.00125400	0.46614300	0.46336500
С	4.47091400	1.32730000	-0.52794800
С	3.57187000	1.95630500	-1.39591600
Н	1.49933300	2.21301200	-1.92163200
Н	4.68798300	-0.00822900	1.15592700
Н	5.53726500	1.51165200	-0.61999500
Н	3.93357900	2.62988500	-2.16709300
С	0.32531900	0.66951300	-0.17089700
С	-0.88417700	0.37235100	-0.17491900
С	-2.27474900	0.61557700	0.10888800
С	-3.14927100	-0.41086800	0.50444800
С	-2.74838600	1.93996500	0.02753600

С	-4.46875700	-0.11029100	0.82778500
Н	-2.78325400	-1.43055400	0.53265000
С	-4.07071800	2.22827100	0.35256000
Н	-2.07260700	2.72974400	-0.28531200
С	-4.93308100	1.20570000	0.75461700
Н	-5.13901500	-0.90840200	1.13353700
Н	-4.42830300	3.25196500	0.28813400
Н	-5.96585800	1.43256200	1.00401800
С	2.26608700	-0.74233300	1.72976000
0	2.89845500	-0.72940600	2.76303400
0	1.24547100	-1.59764300	1.56889200
Н	0.86941200	-1.62104600	0.66264000
Br	-0.60965200	-1.85148100	-1.25129500
Electronic Energy (EE) = -3299.704418 Hartree			

EE + Thermal Free Energy Correction = -3299.544605 Hartree Imaginary Freq = -120.06

TS1-exo

С	-3.30913500	-0.37719900	1.48303200
С	-2.41572600	0.25592900	0.58557900
С	-2.91497400	1.19508100	-0.35196100
С	-4.27198600	1.48492800	-0.38332700
С	-5.14712200	0.85399900	0.50895600
С	-4.66322100	-0.07489400	1.43833300
Н	-2.92239100	-1.09785600	2.19626300

Н	-4.65324500	2.20217800	-1.10404900
Н	-6.20815600	1.08518100	0.47945700
Н	-5.34803300	-0.56275700	2.12567300
С	-1.04100700	-0.01727400	0.61154300
С	0.17002400	-0.27498900	0.48761800
С	1.56396600	-0.06741600	0.78999400
С	2.34629600	0.86922800	0.07257100
С	2.13829400	-0.78385600	1.85461200
С	3.67035800	1.08529400	0.46875100
С	3.46544500	-0.57369600	2.21252000
Н	1.52733300	-1.50162300	2.39218900
С	4.23408200	0.36440500	1.51868400
Н	4.24552300	1.83462100	-0.06448200
Н	3.89744200	-1.13719700	3.03443900
Н	5.26918700	0.53727600	1.79857100
Br	0.17445000	-1.99272800	-1.26655200
Н	-2.22125500	1.66987500	-1.03861200
С	1.84200700	1.72602500	-1.06484200
0	2.23886800	2.86066700	-1.21325200
0	0.94797600	1.20020200	-1.92302300
Н	0.80930600	0.23546100	-1.79231800

Electronic Energy (EE) = -3299.705907 Hartree

EE + Thermal Free Energy Correction = -3299.546454 Hartree

Imaginary Freq = -102.01

INT2-endo

С	-2.16164600	-0.89065000	-1.84643600
С	-1.69927100	-0.48061300	-0.55776300
С	-2.66500300	-0.33475400	0.49689000
С	-4.00351600	-0.62409300	0.23201400
С	-4.43093700	-1.01696200	-1.03684700
С	-3.50156400	-1.14328400	-2.07896500
Н	-1.43037800	-1.00259400	-2.64037300
Н	-4.70907900	-0.52846100	1.05014400
Н	-5.48226500	-1.22346500	-1.21319000
Н	-3.82839100	-1.44570600	-3.06978000
С	-0.33250800	-0.31116000	-0.38220100
С	0.87121700	0.16348600	-0.33165800
С	2.15931900	-0.50908200	-0.08292400
С	3.33662400	0.18457400	0.22876000
С	2.19410500	-1.91533300	-0.14451700
С	4.51879600	-0.51205400	0.47789600
Н	3.32294900	1.26706200	0.27925900
С	3.37568800	-2.60437300	0.10556800
Н	1.28727800	-2.45945200	-0.39166200
С	4.54494900	-1.90500500	0.41793200
Н	5.42178500	0.04097900	0.72067300
Н	3.38506000	-3.68949500	0.05262400
Н	5.46849800	-2.44374700	0.61055400
С	-2.36186100	0.09950400	1.90885500

0	-3.09725900	-0.18752100	2.82715100
Ο	-1.26254300	0.84673500	2.14054900
Н	-0.78557600	1.07309000	1.32272100
Br	0.94749100	2.16962500	-0.59720500

Electronic Energy (EE) = -3299.709192 Hartree

EE + Thermal Free Energy Correction = -3299.551472 Hartree

Imaginary Freq = 0

INT2-exo

С	3.22410500	0.27415100	1.49412400
С	2.34945000	-0.20096500	0.47674600
С	2.86955200	-1.06201900	-0.53314700
С	4.20869300	-1.41895200	-0.51777000
С	5.05911500	-0.94089000	0.48872200
С	4.56000900	-0.09567400	1.48943500
Η	2.83047400	0.92858200	2.26521200
Н	4.59849100	-2.07301000	-1.29243400
Н	6.10710100	-1.22625900	0.49381400
Η	5.22266600	0.27356200	2.26699200
С	1.00309300	0.13624800	0.45980000
С	-0.18834700	0.54776000	0.26009400
С	-1.51699300	0.05712900	0.66849300
С	-2.16199100	-0.99742800	-0.01472900
С	-2.13226300	0.63359100	1.78907600
С	-3.38796400	-1.47133100	0.47155300

С	-3.36249900	0.16679900	2.24267400
Н	-1.62906500	1.44770000	2.30155800
С	-3.99181600	-0.89173800	1.58321000
Н	-3.85169600	-2.30529100	-0.04435900
Н	-3.82534700	0.62411400	3.11261000
Н	-4.94848000	-1.26574200	1.93628600
Br	-0.38789600	2.23097000	-0.97910800
Н	2.19938500	-1.42426100	-1.30644400
С	-1.61655500	-1.71242500	-1.22705300
0	-1.85138400	-2.88167000	-1.43198800
0	-0.87177400	-1.01197200	-2.11238900
Н	-0.83543900	-0.05976700	-1.89681600
F1		2200 2025(2)	TT /

Electronic Energy (EE) = -3299.707567 Hartree

EE + Thermal Free Energy Correction = -3299.548712 Hartree Imaginary Freq = 0

TS2-endo

С	-2.26658000	-1.47942800	0.48271600
С	-1.77162400	-0.21086400	0.11024200
С	-2.69873000	0.84318400	-0.10221900
С	-4.06937100	0.61176300	0.00669800
С	-4.54288400	-0.65403300	0.34404100
С	-3.63662500	-1.69186600	0.58781900
Н	-1.57435400	-2.29086800	0.66590800
Н	-4.74371200	1.44545000	-0.15971400

Н	-5.61104300	-0.83039700	0.43102400
Н	-4.00119300	-2.67767100	0.86328300
С	-0.37364400	0.11895500	-0.03990800
С	0.84876800	-0.42640800	-0.02029900
С	2.12204500	0.30392000	0.09403300
С	2.12290800	1.59279300	0.66696900
С	3.34070700	-0.22827000	-0.36202900
С	3.30226600	2.32401200	0.76327300
Н	1.19847100	2.01911800	1.04135000
С	4.51773100	0.50918500	-0.26199400
Н	3.36195200	-1.21904000	-0.80120000
С	4.50539700	1.78663200	0.29987600
Н	3.28075600	3.31407900	1.20948300
Н	5.44755700	0.08189800	-0.62666200
Н	5.42603000	2.35773300	0.38044200
С	-2.25421200	2.25088900	-0.39582200
0	-3.03808300	3.17407000	-0.54193800
0	-0.94369100	2.46817800	-0.48269900
Н	-0.38928200	1.35591900	-0.34345400
Br	0.98806000	-2.35991400	-0.21439200
Electronic Energy (EE) = -3299.691577 Hartree			

EE + Thermal Free Energy Correction = -3299.536048 Hartree

Imaginary Freq = -1471.30

TS2-exo

С	-2.90052400	-0.38998000	0.90813400
С	-2.13959600	0.52607800	0.14745300
С	-2.80278500	1.58509700	-0.51085800
С	-4.18652500	1.70018000	-0.44323300
С	-4.93040600	0.77446200	0.29467600
С	-4.28327600	-0.26726800	0.96907100
Н	-2.39493300	-1.19807200	1.42486400
Н	-4.68662600	2.51431400	-0.95970400
Н	-6.01147400	0.86732200	0.35049800
Н	-4.86162300	-0.98239900	1.54729800
С	-0.70061200	0.45055600	0.08119800
С	0.24252100	-0.48174000	-0.02871500
С	1.70603400	-0.29545000	0.11548400
С	2.37290200	0.97055500	0.06133700
С	2.50105300	-1.43781500	0.33128400
С	3.77010600	1.00257800	0.19537400
С	3.88119100	-1.37238300	0.48342200
Н	2.01687000	-2.40429000	0.38046100
С	4.52793000	-0.14267700	0.40802800
Н	4.24884800	1.97245900	0.12876400
Н	4.44276100	-2.28623400	0.65579400
Н	5.60628400	-0.07068300	0.51450000
Br	-0.38344100	-2.27477300	-0.49017500
Н	-2.21599100	2.30926700	-1.06829400

С	1.79952900	2.35773100	-0.13974400	
0	2.52563000	3.31460500	-0.38263500	
0	0.51104700	2.61591200	-0.01561700	
Н	-0.16235700	1.57169500	0.13049400	
Electronic Energy (EE) = -3299.687080 Hartree				

EE + Thermal Free Energy Correction = -3299.532167 Hartree

Imaginary Freq = -1212.75

INT3-endo

С	-1.52208500	1.91417700	0.88166800
С	-1.50177900	0.91897400	-0.08991500
С	-2.66592300	0.25693300	-0.45625900
С	-3.89679000	0.55364400	0.12483500
С	-3.92755800	1.55172000	1.09839200
С	-2.75203300	2.22204100	1.47096300
Н	-0.61600300	2.43210600	1.18387200
Н	-4.79147900	0.01877200	-0.17911800
Н	-4.86701300	1.81422900	1.57627200
Н	-2.79883100	2.99429900	2.23396100
С	-0.35899600	0.36497600	-0.92172000
С	0.77810400	-0.22318700	-0.14226300
С	2.14174600	0.18729800	-0.18876000
С	2.57485000	1.22179400	-1.07210600
С	3.13685900	-0.40411200	0.64218100
С	3.90120300	1.62463900	-1.11330900

Η	1.86979900	1.70549200	-1.73872000
С	4.45865500	0.00990400	0.59076400
Н	2.84561600	-1.19286100	1.32550900
С	4.85735300	1.02710200	-0.28429700
Н	4.19478400	2.41195300	-1.80234400
Н	5.18902200	-0.46557700	1.23982200
Н	5.89439800	1.34725300	-0.32150000
С	-2.33814100	-0.74198700	-1.49833200
0	-3.05218200	-1.51860600	-2.07841900
0	-0.98517400	-0.64937100	-1.75070700
Н	0.02208400	1.13091000	-1.60298900
Br	0.22981900	-1.65017900	0.98477700
F1		2200 7402(1)	ГТ <i>4</i>

Electronic Energy (EE) = -3299.748361 Hartree

EE + Thermal Free Energy Correction = -3299.584792 Hartree Imaginary Freq = 0

INT3-exo

С	-2.81124600	-0.07343100	-0.64302000
С	-2.10913400	0.48589900	0.44188100
С	-2.83981800	1.16075800	1.43984800
С	-4.22798100	1.23499900	1.38432200
С	-4.91236200	0.66029400	0.31116600
С	-4.19861900	0.01692600	-0.70346800
Н	-2.26822400	-0.55460800	-1.44656700
Н	-4.77417000	1.74928900	2.16992200

Н	-5.99573400	0.72430800	0.25850600
Н	-4.72577000	-0.40898200	-1.55251100
С	-0.65588800	0.45879200	0.57748600
С	0.27937700	-0.45878200	0.18284000
С	1.72288700	-0.23686300	0.35324800
С	2.30486400	0.97688900	-0.07360800
С	2.53493900	-1.20594100	0.96754100
С	3.66101500	1.21774200	0.16798900
С	3.88032400	-0.94917800	1.20870200
Н	2.09565200	-2.15246600	1.26662600
С	4.44551700	0.26917400	0.81713800
Н	4.08179100	2.15016700	-0.19483600
Н	4.49017800	-1.70015200	1.70303600
Н	5.49820900	0.46605300	0.99891300
Br	-0.20034500	-2.14448500	-0.57580000
Н	-2.30682800	1.62071900	2.26833500
С	1.55986700	2.00235700	-0.88923300
0	2.14873800	2.93243000	-1.44306100
0	0.27219200	1.88703500	-1.02956400
Н	-0.25292700	1.24911300	1.20557000

Electronic Energy (EE) = -3299.710768 Hartree

EE + Thermal Free Energy Correction = -3299.550230 Hartree

Imaginary Freq = 0

TS3-endo

С	-2.57089400	-0.63799000	-1.97798000
С	-1.70245800	-0.58650100	-0.87527400
С	-2.24060400	-0.49365900	0.42800100
С	-3.62035100	-0.38659100	0.60116800
С	-4.47158700	-0.38352100	-0.50375400
С	-3.94617300	-0.52212700	-1.79268300
Н	-2.15920100	-0.73644900	-2.97904700
Н	-4.00571400	-0.34017500	1.61468900
Н	-5.54527400	-0.30035300	-0.36072900
Н	-4.60981500	-0.54081700	-2.65267500
С	-0.25947400	-0.67511800	-1.03094700
С	0.64582500	0.08764200	-0.30107900
С	2.07987100	-0.24087500	-0.24372200
С	3.08889700	0.72538000	-0.38751500
С	2.44584400	-1.58977600	-0.07512600
С	4.42901100	0.34634500	-0.39434800
Н	2.81820600	1.76902400	-0.50138100
С	3.78685400	-1.96167900	-0.07704000
Н	1.67325500	-2.33029500	0.10180500
С	4.78241900	-0.99572300	-0.24210300
Н	5.19878900	1.10301100	-0.51603300
Н	4.05545000	-3.00431800	0.06693200
Н	5.82932100	-1.28646200	-0.23922600
С	-1.37505200	-0.65058600	1.65607900

0	-1.87435300	-0.74532100	2.77284900	
Ο	-0.07260200	-0.72945300	1.50419600	
Br	0.16384300	1.90578000	0.12066400	
Н	0.15332800	-1.44860600	-1.67599200	
Electronic Energy (EE) = -3299.702160 Hartree				

EE + Thermal Free Energy Correction = -3299.540149 Hartree

Imaginary Freq = -337.01

INT4-exo

С	2.71460500	-0.56667200	-0.61832700
С	2.22348000	-0.21319900	0.66853500
С	3.15590100	-0.14441400	1.74031900
С	4.49817000	-0.42926400	1.54352900
С	4.96025400	-0.78173200	0.26923700
С	4.06200800	-0.84253600	-0.80343200
Н	2.03221300	-0.60852200	-1.45718600
Н	5.19081400	-0.37454600	2.37880400
Н	6.01240400	-1.00236800	0.11275200
Н	4.42054900	-1.10541000	-1.79475700
С	0.86034900	0.08856300	0.94636100
С	-0.27187700	0.03627200	0.04838000
С	-1.65452200	-0.05786100	0.61091200
С	-2.34502100	-1.01074100	-0.13188800
С	-2.27325800	0.61077100	1.66321000
С	-3.67077400	-1.34082500	0.13911800

С	-3.59995300	0.28068300	1.94885700
Н	-1.75660500	1.37922300	2.23005900
С	-4.29407000	-0.68247000	1.19841500
Н	-4.18705700	-2.08632200	-0.45762000
Н	-4.10906100	0.78598400	2.76479100
Н	-5.32654100	-0.91063200	1.44585600
Br	-0.25116100	1.97131300	-0.97514100
Н	2.79916600	0.13284700	2.72930200
С	-1.43996800	-1.54028000	-1.16720800
0	-1.60568500	-2.35907400	-2.02817100
0	-0.20298900	-0.90790300	-0.98274200
Н	0.63219100	0.49182200	1.92914500

Electronic Energy (EE) = -3299.752911 Hartree

EE + Thermal Free Energy Correction = -3299.590367 Hartree Imaginary Freq = 0

INT4-endo

С	-2.62801300	0.79047700	-1.43201700
С	-1.68910800	0.01785300	-0.72699200
С	-2.14206900	-1.08504500	0.02589000
С	-3.50663300	-1.40332700	0.07781900
С	-4.42136900	-0.62959400	-0.62370000
С	-3.97696200	0.46729900	-1.37928200
Н	-2.28843200	1.65304300	-1.99766200
Н	-3.82004200	-2.25648800	0.67006400

Н	-5.47944500	-0.87062400	-0.58638100	
Н	-4.69546200	1.07260600	-1.92474200	
С	-0.27108900	0.30443400	-0.76220000	
С	0.62297900	-0.57429200	-0.15783700	
С	2.07556600	-0.53088900	-0.28248100	
С	2.73128400	0.64799900	-0.69183800	
С	2.83984200	-1.68219900	-0.00635600	
С	4.11281100	0.65980300	-0.84558300	
Н	2.16425800	1.56383400	-0.82001200	
С	4.22139000	-1.66039000	-0.16675400	
Н	2.34040500	-2.58657100	0.32222400	
С	4.86165100	-0.49338800	-0.59151500	
Н	4.61011700	1.57667800	-1.14838200	
Н	4.80031200	-2.55577100	0.04048000	
Н	5.94128200	-0.47814700	-0.71238700	
С	-1.18872500	-1.92317600	0.75886300	
Ο	-1.44159800	-2.86696500	1.46252100	
Ο	0.17013900	-1.59674100	0.60182200	
Br	-0.09589800	2.29064000	0.91364600	
Н	0.10579000	0.98529500	-1.51167300	
Electronic Energy (EE) = -3299.767921 Hartree				

EE + Thermal Free Energy Correction = -3299.603380 Hartree

Imaginary Freq = 0

TS1-SRA

С	-2.15659000	-1.62189700	0.06004500
С	-1.95398600	-0.22414500	0.05948500
С	-3.08384400	0.64106200	0.02799300
С	-4.36857200	0.08568300	-0.02727200
С	-4.55650300	-1.29195200	-0.03556600
С	-3.44596900	-2.14035700	0.01205800
Н	-1.28829900	-2.27816200	0.09305900
Н	-5.20962800	0.76992100	-0.05900400
Н	-5.56253500	-1.70252200	-0.07402300
Н	-3.57953700	-3.21933500	0.00961900
С	-0.61511500	0.27503100	0.06913600
С	0.62667100	0.38343100	-0.06018300
С	1.77877700	1.26143800	-0.03944300
С	1.59421200	2.61229600	-0.39717100
С	3.05711400	0.81892900	0.34301600
С	2.66511000	3.50224300	-0.36788900
Н	0.61024300	2.95425000	-0.70412400
С	4.11903300	1.72061900	0.36913700
Н	3.18741000	-0.22038900	0.62993800
С	3.93291700	3.05933800	0.01503600
Н	2.50743000	4.54042100	-0.65011600
Н	5.10348500	1.37022000	0.66969800
Н	4.77046200	3.75311900	0.03547800
С	-3.02895500	2.14384900	0.07068600

0	-4.00927500	2.83889700	-0.11216100	
0	-1.84373700	2.72834000	0.35129500	
Н	-1.14975600	2.03709300	0.47756100	
S	1.67638300	-2.56149300	0.00819200	
0	2.52967900	-3.21559000	-1.02969400	
0	0.43331900	-3.30260800	0.32629600	
0	1.28094900	-1.25422300	-0.88672400	
0	2.40941500	-2.09158400	1.20679200	
Electronic Energy (EE) = -1427.063433 Hartree				

EE + Thermal Free Energy Correction = -1426.893245 Hartree Imaginary Freq = -519.62

HBr

 Br
 0.0000000
 0.0000000
 0.03994000

 H
 0.0000000
 0.0000000
 -1.39789000

 Electronic Energy (EE) = -2572.301284 Hartree

 EE + Thermal Free Energy Correction = -2572.314619 Hartree

 Imaginary Freq = 0

CR

С	3.64700200	-2.11293200	-0.00001800
С	4.45442500	-0.96991900	-0.00007100
С	3.86296900	0.29024700	-0.00009800
С	2.47191400	0.41493400	-0.00007200
С	1.64690600	-0.73405400	-0.00001700

Η	4.46336700	1.19525400	-0.00014000	
С	0.23141700	-0.60674400	0.00000600	
С	-0.98574600	-0.52494400	0.00002600	
С	-2.39620600	-0.34146000	0.00004900	
С	-3.27079000	-1.44591200	0.00011200	
С	-2.93003100	0.96387800	0.00000800	
С	-4.64815300	-1.24529900	0.00013200	
Н	-2.85949400	-2.45065500	0.00014400	
С	-4.30887400	1.15093600	0.00002900	
Н	-2.25042400	1.80995300	-0.00004000	
С	-5.17066300	0.05057700	0.00009100	
Н	-5.31619900	-2.10214100	0.00018100	
Н	-4.71316700	2.15934300	-0.00000300	
Н	-6.24651300	0.20239400	0.00010700	
С	1.88076100	1.77131300	-0.00010500	
0	2.54025400	2.82961300	-0.00007600	
0	0.60722800	1.95609300	-0.00000800	
Н	5.53612300	-1.06464800	-0.00009200	
Н	4.10374900	-3.09874800	0.00000100	
С	2.25974600	-2.00185000	0.00000800	
Н	1.63465000	-2.88902300	0.00004700	
Electronic Energy (EE) = -727.364050 Hartree				

EE + Thermal Free Energy Correction = -727.215752 Hartree Imaginary Freq = 0

G. References

- 1. J. H. Park, S. V. Bhilare and S. W. Youn, Org. Lett., 2011, 13, 2228-2231.
- 2. T. Godet, C. Vaxelaire, C. Michel, A. Milet and P. Belmont, *Chem. Eur. J.*, 2007, **13**, 5632-5641.
- 3. A. K. Verma, V. Rustagi, T. Aggarwal and A. P. Singh, J. Org. Chem., 2010, 75, 7691-7703.
- 4. A. Chandra, B. Singh, S. Upadhyay and R. M. Singh, *Tetrahedron*, 2008, **64**, 11680-11685.
- 5. H. Janatian Ghazvini, T. J. J. Müller, F. Rominger and S. Balalaie, *J. Org. Chem.*, 2019, **84**, 10740-10748.
- 6. A. Bontemps, G. Mariaule, S. Desbène-Finck, P. Helissey, S. Giorgi-Renault, V. Michelet and P. Belmont, *Synthesis*, 2016, **48**, 2178-2190.
- 7. A. G. Krishna Reddy and G. Satyanarayana, *Synthesis*, 2017, **49**, 5149-5158.
- 8. M. Saifuddin, S. Samala, D. G. V. Krishna and B. Kundu, Synthesis, 2013, 45, 1553-1563.
- 9. O. Meth-Cohn, B. Narine and B. Tarnowski, J. Chem. Soc. Perkin Trans. I, 1981, 1520-1530.
- 10. M. W. Read and P. S. Ray, J. Heterocycl. Chem., 1995, 32, 1595-1597.