Supporting Information
 For
 \title{ Unusual C_{3}-Acetylation of Quinoxalin-2(1H)-one via Oxidative $\mathbf{C - C}$ and $\mathrm{C}-\mathrm{O}$ Bond Cleavages of PEG-400.

}Vishal Suresh Kudale, ${ }^{a}$ Mohana Reddy Mutra, ${ }^{a}$ Ching-Piao Chu ${ }^{a}$ and Jeh-Jeng Wang* ${ }^{a b}$
${ }^{a}$ Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
${ }^{b}$ Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan.

E-mail: jjwang@kmu.edu.tw

Table of Contents

1) General Information S3
2) Mechanistic studies S3-S4
3) Experimental Procedures S5
4) Spectral Characterization S5-S14
5) References S15
6) Copies of ${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ S16-S36
7) X-Ray crystallographic data S37-S44

(1) General Information

${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT NMR spectra were recorded on a 400 MHz Varian Unity Plus or Varian Mercury plus spectrometer. The chemical shift (δ) values are reported in parts per million (ppm), and the coupling constants (J) are given in Hz. The spectra were recorded using CDCl_{3} as a solvent. ${ }^{1} \mathrm{H}$ NMR chemical shifts are referenced to tetramethylsilane (TMS) (0 ppm). ${ }^{13} \mathrm{C}$ NMR was referenced to CDCl_{3} (77.0 ppm) or DMSO- d_{6} (39.51 ppm). The abbreviations used are as follows: s , singlet; d, doublet; t, triplet; q, quartet; dd, doublet of doublet; ddd, doublet of doublet; dt, doublet of triplets; td, triplet of doublet; m, multiplet. Mass spectra and high-resolution mass spectra (HRMS) were measured using the ESI (FT-MS solariX) at National Sun Yat-Sen University, Kaohsiung, Taiwan. Melting points were determined on an EZ-Melt (Automated melting point apparatus). All products reported showed ${ }^{1} \mathrm{H}$ NMR spectra in agreement with the assigned structures. Reaction progress and product mixtures were routinely monitored by TLC using Merck TLC aluminum sheets (silica gel 60 F254). Column chromatography was carried out with 230-400 mesh silica gel 60 (Merck) and a mixture of hexane/ethyl acetate or hexane as eluent. Preparative TLC was run on Merck TLC aluminum sheets (silica gel 60 F254).

(2) Mechanistic studies:

Fig S1: GC-MS with different retention times generated from PEG-400 in the presence of oxidant \& radical scavenger.

F:IXcaliburl...|GM-1080126-(2)-TEMPO
9/26/2019 10:05:35 AM TEMPO

Fig S2: GC-MS observed fragments of acetaldehyde, 2-oxopropanal, 2-oxopropanoic acid from PEG400.

(3) Experimental Procedures

(i) General Experimental Procedure and Spectral Characterization for the Synthesis of 1-quinoxalin-2(1H)-one acetylation with PEG-400 as " $\mathrm{CH}_{3} \mathrm{CO}$ " Source

To an oven-dried sealed tube was charged with 1-methylquinoxalin- $2(1 H)$-one $\mathbf{1 a - 1 w}{ }^{1}$ (0.25 mmol), PEG$400(0.25 \mathrm{M})$, and $\mathrm{AgNO}_{3}(0.25 \mathrm{mmol})$ and allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of the reaction (7 ~ $24 \mathrm{~h})$ by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 5.0 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate, and the combined ethyl acetate layer was given brine wash $(1 \mathrm{X} 10 \mathrm{~mL})$. The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford pure heteroaryl acetylation $\mathbf{2 a} \mathbf{- 2 u}$ in 48% 76% yields.

(4) Spectral Characterization

3-acetyl-1-methylquinoxalin- $\mathbf{2 (1 H)}$-one (2a) ${ }^{2}$: Following the general procedure, a 15 mL reaction tube was
 charged with 1-methylquinoxalin-2(1H)-one (1b) ($35 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.20 $\mathrm{M}), \mathrm{AgNO}_{3}(25 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with $(3 \mathrm{X} 10 \mathrm{~mL})$ of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-acetyl-1-methylquinoxalin-2 1 H)-one (2 a) as a yellow solid (30 mg , yield $=76$ \%); Mp. 116.2-116.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.97-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.4,7.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.41$ (ddd, $J=8.4,7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.16,152.83,151.77,134.42,132.77,131.88,131.52,124.15,113.84,29.02,28.51$.

3-acetyl-1-ethylquinoxalin-2(1H)-one (2b): Following the general procedure, a 15 mL reaction tube was
 charged with 1-ethylquinoxalin-2(1 H)-one (1b) ($37 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-acetyl-1-ethylquinoxalin-2 $(1 H)$-one (2 b) as a yellow solid (31 mg , yield $=73$ \%); Mp. 122-122.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.41-$ $7.37(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 198.22,152.34,151.69,133.42,132.71,132.17,131.75,123.93,113.67,37.39,28.52,12.34$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 239.0796$; found: 239.0799.

3-acetyl-1-allylquinoxalin-2(1H)-one (2c): Following the general procedure, a 15 mL reaction tube was
 charged with 1-allylquinoxalin-2(1H)-one (1c) (40 mg, 0.2 mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with $(3 \mathrm{X} 10 \mathrm{~mL})$ of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from ($\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-1-allylquinoxalin-2(1 H)-one (2 c) as a yellow solid (29 mg , yield $=65 \%$); Mp. 136.1-137 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96(\mathrm{ddd}, J=8.0,1.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}), \delta 7.65(\mathrm{ddd}, J=8.4$, $7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{dd}, J=8.4,1.2,1 \mathrm{H}), 5.97-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.23-$ $5.18(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dt}, J=3.6,2.0,2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.01,152.36,151.61$, $133.69,132.68,132.00,131.56,130.13,124.11,118.57,114.39,44.44,28.51$. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12}$ $\mathrm{N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 251.0796$; found: 251.0799.

3-acetyl-1-(but-3-en-1-yl)quinoxalin-2(1H)-one (2d): Following the general procedure, a 15 mL reaction
 tube was charged with 1-(but-3-en-1-yl)quinoxalin-2(1H)-one (1d) (43 mg, 0.2 mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10
mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-(but-3-en-1-yl)quinoxalin-2(1H)-one (2d) as a yellow solid (30 mg , yield $=63 \%$); Mp. 140.5-141.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), \delta 7.68(\mathrm{ddd}, J=8.4,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 5.93-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.39-$ $4.33(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) 2.56-2.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.11,152.53,151.68,133.56$, $132.70,132.14,131.81,124.01,117.92,113.78,41.60,31.42$, 28.51.HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 265.0796$; found: 265.0799 .

3-acetyl-1-(2-methylallyl)quinoxalin-2(1H)-one (2e): Following the general procedure, a 15 mL reaction
 tube was charged with 1-(2-methylallyl)quinoxalin-2(1H)-one (1e) (43 mg, 0.2 mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-(2-methylallyl)quinoxalin-2(1H)-one $(2 \mathrm{e})$ as a yellow solid (28 mg , yield $=58 \%$); Mp. 132.5-132.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96$ (ddd, $J=8.0,1.2,0.4$ $\mathrm{Hz}, 1 \mathrm{H}), \delta 7.62(\mathrm{ddd}, J=6.8,3.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{dt}, J$ $\left.=1.6,0.8 \mathrm{~Hz} 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.03,152.56,151.82,137.82$, 133.93, 132.61, 132.01, 131.50, 124.15, 114.68, 112.20, 77.31, 76.99, 76.68, 47.55, 28.58, 20.17.HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 266.1693 ; found: 266.1696 .

3-acetyl-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one (2f): Following the general procedure, a 15 mL reaction
 tube was charged with 1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one (1f) (40 mg, 0.2 mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-(prop-2-yn-1-yl)quinoxalin-2(1 H)-one (2 f) as a yellow solid (32 mg , yield $=71 \%$); Mp. 106.2-106.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.97(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.8,1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=2.8,2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13 \mathrm{C}$ NMR (101 MHz , cdcl3) δ 197.64, 151.75, 151.42, 132.95, 132.91, 132.05, 131.66, 124.52, 114.39, 76.27, 73.58, 31.33, 28.46. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 249.0640; found: 249.0642 .
ethyl 2-(3-acetyl-2-oxoquinoxalin-1(2H)-yl)acetate (2g) ${ }^{2}$: Following the general procedure, a 15 mL
 reaction tube was charged with ethyl 2-(2-oxoquinoxalin-1(2H)-yl)acetate (1g) (49 mg, $0.2 \mathrm{mmol})$, PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding ethyl 2-(3-acetyl-2-oxoquinoxalin- $1(2 H)$-yl) acetate $(2 \mathrm{~g})$ as a yellow solid (37 mg , yield $=67 \%$); Mp. 107.1-107.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.98(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.4,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{ddd}, J=$ $8.47 .6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 197.57,166.65,152.30,151.14,133.68,133.00,131.90$, $131.85,124.42,113.34,62.24,43.30,28.41,14.06$.

3-acetyl-1-(2-oxo-2-phenylethyl)quinoxalin-2(1H)-one (2h): Following the general procedure, a 15 mL
 reaction tube was charged with 1-(2-oxo-2-phenylethyl)quinoxalin-2(1H)-one (1h) (55 $\mathrm{mg}, 0.2 \mathrm{mmol})$, PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from ($\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-1-(2-oxo-2-phenylethyl)quinoxalin-2(1 H)-one (2 h) as a yellow solid (29 mg , yield $=48 \%$); Mp. 138.2-139.1 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.07-8.05(\mathrm{~m}, 1 \mathrm{H}), 8.02-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 5.86$ (s, 2H), $\left.2.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.39$, 192.77, 153.89, 141.67, 140.96, 137.93, 134.46, $133.74,131.99,129.65,128.81,127.80,127.56,126.79,68.02,28.43$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N} 2 \mathrm{O}_{3}$ $\mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 329.0902$; found: 329.0905 .

3-acetyl-1-benzylquinoxalin-2(1H)-one (2i): Following the general procedure, a 15 mL reaction tube was
 charged with 1-benzylquinoxalin-2(1H)-one (1i) ($50 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash $(1 \mathrm{X} 10 \mathrm{~mL})$. The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-benzylquinoxalin-2(1H)-one (2i) as a yellow solid (38 mg , yield $=69 \%$); Mp. 129.7-130.1 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96$ (ddd, $J=8.0$, $1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=8.8,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}$, $4 \mathrm{H}), 5.51(\mathrm{~s}, 2 \mathrm{H}) 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.01,152.90,151.70,134.74,133.82$, 132.75, 132.12, 131.61, 128.96, 127.85, 126.96, 124.18, 114.63, 45.83, 28.52. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{14}$ $\mathrm{N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 301.0953$; found: 301.0956.

3-acetyl-1-(4-methylbenzyl)quinoxalin-2(1H)-one (2j): Following the general procedure, a 15 mL reaction
 tube was charged with 1-(4-methylbenzyl)quinoxalin-2(1H)-one (1j) ($53 \mathrm{mg}, 0.2$ mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-(4-methylbenzyl)quinoxalin-2(1 H)-one (2 j) as a yellow solid (38 mg , yield $=66 \%$); Mp. 132.4-133.6 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=8.8,7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.11(\mathrm{~m}, 4 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) 13 \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, cdcl3) $\delta 198.07,152.93,151.76,137.65,133.86,132.71,132.14,131.75,131.59,129.61,127.01,124.12$, 114.66, 45.64, 28.55, 21.05. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 315.1109$; found: 315.1109.

3-acetyl-1-(3-methoxybenzyl)quinoxalin-2(1H)-one (2k): Following the general procedure, a 15 mL
 reaction tube was charged with 1-(3-methoxybenzyl)quinoxalin-2(1H)-one (1k) (56 mg, 0.2 mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2.0$ equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water
layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-(3-methoxybenzyl)quinoxalin-2(1H)-one (2k) as a yellow solid (34 mg , yield $=55 \%$); Mp. 142.1-143 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96(\mathrm{dd}, J=$ $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H})$,), 7.24-7.22(m, 1H),), 6.84-6.78 $(\mathrm{m}, 3 \mathrm{H}), 5.48(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.00,160.05,151.73$, $136.36,133.88,132.78,132.15,131.64,130.08,124.21,119.14,114.68,113.04,112.79,77.31,76.99,76.67$, 55.26, 45.81, 28.56. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 331.1059; found: 331.1060.

3-acetyl-1-(3-chlorobenzyl)quinoxalin-2(1H)-one (2l): Following the general procedure, a 15 mL reaction
 tube was charged with 1-(3-chlorobenzyl)quinoxalin-2(1H)-one (11) ($57 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with $(3 \mathrm{X} 10 \mathrm{~mL})$ of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-(3-chlorobenzyl)quinoxalin-2(1 H)-one (21) as a yellow solid (38 mg , yield $=61 \%$); Mp. 136.4-137 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.20$ (m, 2H), $5.47(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ 13C NMR ($101 \mathrm{MHz}, \mathrm{cdcl} 3$) ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{cdcl}_{3}\right) \delta 197.84,152.80,151.58,133.83,133.66,133.29,132.86,132.13,131.79,129.18,128.49$, 124.35, 114.37, 45.26. 28.45. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 335.0563; found: 335.0567.

3-acetyl-1-(4-fluorobenzyl)quinoxalin-2(1H)-one (2m): Following the general procedure, a 15 mL reaction
 tube was charged with 1-(4-fluorobenzyl)quinoxalin-2(1H)-one (1m) (54 mg, 0.2 mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2)$ to afford the corresponding 3-acetyl-1-(4-
fluorobenzyl)quinoxalin-2(1 H)-one (2 m) as a yellow solid (32 mg , yield $=54 \%$); Mp. 129.1-130 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.97(\mathrm{dd}, J=8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (ddd, $\left.J=8.8,7.2,0.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38$ (ddd, $J=$ $8.0,7.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 197.89,163.51$, (d, $\left.J_{F}=245 \mathrm{~Hz}\right), 161.06,152.84\left(\mathrm{~d}, J_{F}=119 \mathrm{~Hz}\right), 151.65,133.72,132.82,132.15$, 131.77, 130.56, 130.53, 128.97, (d, $J_{F}=8 \mathrm{~Hz}$), 128.89, 124.30, 116.06, ($\mathrm{d}_{\mathrm{F}} J_{F}=21.7 \mathrm{~Hz}$) $115.85,114.40$, 45.22, 28.47. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 319.0859; found: 319.0863

3-acetyl-1-(4-(trifluoromethyl)benzyl)quinoxalin-2(1H)-one (2n): Following the general procedure, a 15
 mL reaction tube was charged with 1-(4-(trifluoromethyl)benzyl)quinoxalin-2(1H)one (1 n) ($64 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-acetyl-1-(4-(trifluoromethyl)benzyl)quinoxalin-2(1H)-one (2n) as a yellow solid (36 mg, yield = 52%); Mp. 130.1-131.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.99(\mathrm{dd}, J=8.0,0.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58 (ddd, $J=8.4,7.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}$), 7.40 (ddd, $J=8.0,7.2,1.2 \mathrm{~Hz}, 3 \mathrm{H}$), $7.23(\mathrm{dd}, J=8.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (s, 2H), $2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 197.74,152.76,151.51,138.78,133.61,132.98,132.12$, $131.86,130.44,130.11(\mathrm{q}, ~ J=28.6 \mathrm{~Hz}), 127.32,126.05,126.01,125.98,125.94(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.47$, $122.449(\mathrm{q}, ~ J=270.4 \mathrm{~Hz}), 114.25,45.45,29.67$, 28.41. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]$ +: 369.0827; found: 369.0831.

3-acetyl-1-(2,4-dichlorobenzyl)quinoxalin-2(1H)-one (2o): Following the general procedure, a 15 mL
 reaction tube was charged with 1-(2,4-dichlorobenzyl)quinoxalin-2(1H)-one (10) ($63 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.25 M), AgNO_{3} ($20 \mathrm{~mol} \%$) and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1X10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from (Hex/EA = 8/2) to afford the corresponding 3-acetyl-1-(2,4-dichlorobenzyl)quinoxalin-2(1H)-one (20) as a yellow solid (42 mg , yield $=61 \%$); Mp. $125.2-126{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.00-7.98(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{ddd}, J=8.4$,
$7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.4,7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=8.4,7.2,2.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.75(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 197.67,152.81$, $151.48,134.28,133.40,133.29,133.12,132.10,131.78$, $130.54,129.67,128.04,127.75,124.58,114.31$, 77.31, 76.99, 76.67, 43.00, 28.44. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 369.0174; found 369.0173 .

3-acetyl-1-(naphthalen-2-ylmethyl)quinoxalin-2(1H)-one (2p): Following the general procedure, a 15 mL
 reaction tube was charged with 1-(naphthalen-2-ylmethyl)quinoxalin-2(1H)-one (10) ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from ($\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-1-(naphthalen-2-ylmethyl)quinoxalin-2 $(1 H$)-one (2 p) as a yellow solid (43 mg , yield $=65 \%$); Mp 167.9-168.3 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.98-7.95(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{dd}, J=8.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ ($\mathrm{s}, 1 \mathrm{H}$) 7.54-7.49 (m, 1H), 7.47-7.45 (m, 2H), $7.41(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67(\mathrm{~s}, 2 \mathrm{H}) 2.78(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.03,153.02,151.75,133.89,133.26,132.80$, $132.25,132.20,131.67,129.01,127.71,126.51,126.24,125.82,124.71,124.23 .46 .10,28.55$. HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 351.1109; found: 351.1108.

3-acetyl-7-chloro-1-methylquinoxalin-2(1H)-one (2q): Following the general procedure, a 15 mL reaction
 tube was charged with 7-chloro-1-methylquinoxalin-2(1H)-one (1p) (41 mg, 0.2 mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with $(3 \mathrm{X} 10 \mathrm{~mL})$ of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-7-chloro-1-methylquinoxalin-2 $(1 H)$-one (2 q) as a yellow solid (28 mg , yield $=59 \%$); Mp. 191.4-192 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.94(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 197.72,152.88,152.38,133.07,132.68,132.28,130.51$,
129.54, 115.03, 29.22, 28.38. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{09} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 259.0250; found: 259.0252 .

3-acetyl-7-Bromo-1-methylquinoxalin-2(1H)-one (2r): Following the general procedure, a 15 mL reaction
 tube was charged with 7-Bromo-1-methylquinoxalin-2(1H)-one (1q) ($51 \mathrm{mg}, 0.2$ mmol), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate, and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from $(\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-7-Bromo-1-methylquinoxalin- $2(1 \mathrm{H})$-one $(2 \mathrm{r})$ as a yellow solid (35 mg , yield $=63 \%$); $\mathrm{Mp} 188-189.2{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 8.10(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$, $2.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 197.65,152.80,152.38,135.39,133.62,133.53,132.59,116.71$, 115.29, 29.19, 28.35. HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{09} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 302.9745; found: 302.9746.

3-acetyl-1-methyl-7-(trifluoromethyl)quinoxalin-2(1H)-one (2s): Following the general procedure, a 15
 mL reaction tube was charged with 1-methyl-7-(trifluoromethyl)quinoxalin$2(1 H)$-one (1r) ($48 \mathrm{mg}, 0.2 \mathrm{mmol}$), PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from ($\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-1-methyl-7-(trifluoromethyl)quinoxalin-2(1H)-one (2s) as a yellow solid (32 mg , yield $=59 \%$); Mp. 170$170.6{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.23(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 197.36,153.07,152.44,136.61$, 131.09, 128.85, 128.81, 128.77, 128.73 (q, $J=3.4 \mathrm{~Hz}$, $127.44(\mathrm{q}, ~ J=41.6 \mathrm{~Hz}), 126.66,126.33$, $124.72,125.99(\mathrm{q}, J=33.7 \mathrm{~Hz}), 122.02(\mathrm{q}, J=270.1 \mathrm{~Hz}), 114.66,29.30,28.25$. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10}$ $\mathrm{N}_{2} \mathrm{O}_{2} \mathrm{~F}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 271.0694; found: 271.0697 .

3-acetyl-1-methyl-7-phenylquinoxalin-2(1H)-one (2t): Following the general procedure, a 15 mL reaction
 tube was charged with 1-methyl-7-phenylquinoxalin-2(1H)-one (1s) ($50 \mathrm{mg}, 0.2$ $\mathrm{mmol})$, PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ (2.0 equiv) allowed to
stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3 X 10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from ($\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-1-methyl-7-phenylquinoxalin-2 $(1 \mathrm{H})$-one (2 t) as a yellow solid (32 mg , yield $=58 \%$); Mp 178-178.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67-7.64 (m, 2H), 7.52-7.47 (m, 2H), 7.44-7.38 (m, 2H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 198.07$, $152.78,152.12,138.72,137.34,133.55,132.17,131.63,129.29,129.11,127.95,126.89$, 114.28, 29.15, 28.54. HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}{ }^{+}\right.$: 301.1106; found: 301.1107.

3-acetyl-1-methyl-7-(p-tolyl)quinoxalin-2(1H)-one (2u): Following the general procedure, a 15 mL reaction
 tube was charged with 1-methyl-7-(p-tolyl)quinoxalin-2(1H)-one (1t) (53 $\mathrm{mg}, 0.2 \mathrm{mmol})$, PEG-400 (0.25 M), $\mathrm{AgNO}_{3}(20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(2.0$ equiv) and allowed to stir at $100^{\circ} \mathrm{C}$ until the completion of reaction by TLC. After completion, the reaction mixture was cooled to room temperature and diluted with 10 mL of water. The water layer was extracted with (3X10 mL) of ethyl acetate and the combined ethyl acetate layer was given brine wash (1 X 10 mL). The final ethyl acetate layer was dried over sodium sulfate and concentrated under reduced pressure to get the crude compound. The obtained crude was purified using column chromatography by eluting from ($\mathrm{Hex} / \mathrm{EA}=8 / 2$) to afford the corresponding 3-acetyl-1-methyl-7-(p-tolyl)quinoxalin-2 $(1 \mathrm{H})$-one (2 u) as a yellow solid (35 mg , yield $=60$ $\%) ; \operatorname{Mp} 183-184.6{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.16(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 198.09,152.76,152.04,137.89,137.28,135.79,133.32,132.17,131.48,129.81$, 128.95, 126.68, 114.20, 29.11, 28.54, 21.10. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 315.1109; found: 315.1111.

(5) References:

1. M. I. Shahin, D. A. Abou El Ella, N. S. M. Ismail, K. A. M. Abouzid. Bioorg. Chem. 2014, 56, 16-26.
2. X. Zeng, C. Liu, X. Wang, J. Zhang, X. Wang, Y. Hu. Organic \& Biomolecular Chemistry. 2017, 15, 8929-8935.

GANANANNべNJNANANA
$\begin{array}{lr}\text { Solvent } \mathrm{CDCl}_{3} \\ \text { Spectrometer Frequency } & 400.40\end{array}$

Solvent $\quad \mathrm{CDCl}_{3}$
Spectrometer Frequency 100.69


```
Spectrometer Frequency 400.40
```


Solvent $\quad \mathrm{CDCl}_{3}$
Spectrometer Frequency 100.69

Solvent CDCl_{3}
Spectrometer Frequency 100.69

Solvent CDCl_{3}
Spectrometer Frequency 400.40

Solvent $\quad \mathrm{CDCl}_{3}$
Spectrometer Frequency 100.69

Solvent $\quad \mathrm{CDCl}_{3}$
Spectrometer Frequency 400.40

. 511.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{aligned} & 5.0 \\ & \mathrm{f1}(\mathrm{ppm}) \end{aligned}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5	-1.0	-1
	$\begin{aligned} & \text { 岕 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{1}{\mid} \end{aligned}$																			$\stackrel{\substack{9 \\ \underset{\sim}{\sim} \\ \sim}}{\sim}$					

$\begin{array}{lr}\text { Solvent } & \mathrm{CDCl}_{3} \\ \text { Spectrometer Frequency } \\ 100.69\end{array}$
Spectrometer Frequency 100.69

210	200	190	180	170	160	150	140	130	120	110	$\stackrel{100}{\mathrm{f} 1(\mathrm{ppm})}$	90	80	70	60	50	40	30	20	10	0	-10


```
\*)
```

Solvent $\quad \mathrm{CDCl}$
Spectrometer Frequency 400.4

Solvent CDCl_{3}
Spectrometer Frequency 100.69

230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
												f1 (ppm)												

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) I
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision:	$C-C=0.0021$	Wavelength=0.71073
Cell:	$\mathrm{a}=4.6921$ (1)	$\mathrm{b}=21.3139(7) \quad \mathrm{c}=14.5759$ (4)
	alpha=90	beta=97.032(3) gamma=90
Temperature:	113 K	
	Calculated	Reported
Volume	1446.73(7)	1446.73(7)
Space group	P 21/c	P 1 21/c 1
Hall group	-P 2ybc	-P 2ybc
Moiety formula	C18 H16 N2 O2	C18 H16 N2 O2
Sum formula	C18 H16 N2 O2	C18 H16 N2 O2
Mr	292.33	292.33
Dx,g cm-3	1.342	1.342
z	4	4
Mu (mm-1)	0.089	0.089
F000	616.0	616.0
F000'	616.26	
h, k, lmax	5,25,17	5,25,17
Nref	2555	2512
Tmin, Tmax	0.978,0.982	$0.832,1.000$
Tmin'	0.978	

Correction method= \# Reported T Limits: Tmin=0.832 Tmax=1.000
AbsCorr $=$ MULTI-SCAN

Data completeness= 0.983 Theta(max)=24.997
$R($ reflections $)=0.0404(2068) \quad$ wR2(reflections) $=0.1052(2512)$

S = 1.094 Npar= 201

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C
PLAT911 ALERT 3 C Missing FCF Refl Between Thmin \& STh/L= 0.59543 Report PLAT918 ALERT 3 C Reflection(s) with I(obs) much Smaller I(calc).

1 Check

Alert level G

PLAT909 ALERT 3 G Percentage of I>2sig(I) Data at Theta(Max) Still
PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File ...
PLAT941 ALERT 3 G Average HKL Measurement Multiplicity
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.

```
65% Note
    3 Note
3.8 Low
    5 Info
```

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
O ALERT type 5 Informative message, check
```


checkCIF publication errors

```
Alert level A
PUBL004 ALERT 1 A The contact author's name and address are missing,
    publ contact_author_name and publ_contact_author_address.
PUBL005 ALERT 1 A _publ_contact_author_email, _publ_contact_author_fax and
    _publ_contact_author_phone are all missing.
    At least one of these should be present.
PUBL006 ALERT 1 A _publ_requested_journal is missing
    e.g. 'Acta Crystallographica Section C'
PUBL008 ALERT 1 A _publ_section_title is missing. Title of paper.
PUBL009 ALERT 1 A publ_author_name is missing. List of author(s) name(s).
PUBL010 ALERT 1 A _publ_author_address is missing. Author(s) address(es).
PUBL012 ALERT 1 A _publ_section_abstract is missing.
    Abstract of paper in English.
```

[^0]
Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBLO04_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBLO05_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBLO08_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
    _vrf_PUBLO09_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
; vrf_PUBLO12_GLOBAL
```

```
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of $\mathbf{1 0 / 0 8} / \mathbf{2 0 2 0}$; check.def file version of $\mathbf{0 6 / 0 8 / 2 0 2 0}$

Datablock I - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) I
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C
PLAT911 ALERT 3 C Missing FCF Refl Between Thmin \& STh/L= $0.600 \quad 5$ Report

Alert level G

PLATO42 ALERT 1 G Calc. and Reported MoietyFormula Strings Differ Please Check

PLAT045 ALERT 1 G Calculated and Reported Z Differ by a Factor ... PLAT143 ALERT 4 G
PLAT380 ALERT 4 G
PLAT432 ALERT 2 G .u. on c - Axis Small or Missing Incorrectly? Oriented X(sp2)-Methyl Moiety Short Inter X...Y Contact 01
. . C32
$x, y, z=$
PLAT910 ALERT 3 G Missing \# of FCF Reflection(s) Below Theta (Min). PLAT912 ALERT 4 G Missing \# of FCF Reflections Above STh/L= 0.600 PLAT933 ALERT 2 G Number of OMIT Records in Embedded .res File ... PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.

C17 Check
2.98 Ang.

Please Check
2.00 Check
0.00020 Ang.

1555 Check
2 Note
227 Note
3 Note
15 Info

[^1]
checkCIF publication errors

Alert level A

PUBL004 ALERT 1 A The contact author's name and address are missing,
publ_contact_author_name and _publ_contact_author_address.
PUBL005 ALERT 1 A _publ_contact_author_email, _publ_contact_author_fax and
_publ_contact_author_phone are all missing.
At least one of these should be present.
PUBL006 ALERT 1 A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008 ALERT 1 A _publ_section_title is missing. Title of paper.
PUBL009 ALERT 1 A _publ_author_name is missing. List of author(s) name(s). PUBL010 ALERT 1 A _publ_author_address is missing. Author(s) address(es) PUBL012 ALERT 1 A _publ_section_abstract is missing.

Abstract of \bar{p} paper in English.

7 ALERT level A = Data missing that is essential or data in wrong format
0 ALERT level $G=$ General alerts. Data that may be required is missing

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBLO04_GLOBAL
;
PROBLEM: The contact author's name and address are missing,
RESPONSE: ...
;
_vrf_PUBLO05_GLOBAL
;
PROBLEM: _publ_contact_author_email, _publ_contact_author_fax and
RESPONSE: ...
;
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBLO08_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
    _vrf_PUBLO09_GLOBAL
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
; vrf_PUBLO12_GLOBAL
```

;
\# end Validation Reply Form
If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 22/04/2020; check.def file version of 09/03/2020

Datablock I - ellipsoid plot

[^0]: 7 ALERT level A = Data missing that is essential or data in wrong format
 0 ALERT level $G=$ General alerts. Data that may be required is missing

[^1]: 0 ALERT level $A=$ Most likely a serious problem - resolve or explain
 0 ALERT level B = A potentially serious problem, consider carefully
 1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
 9 ALERT level G = General information/check it is not something unexpected
 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
 3 ALERT type 2 Indicator that the structure model may be wrong or deficient
 ALERT type 3 Indicator that the structure quality may be low
 3 ALERT type 4 Improvement, methodology, query or suggestion
 0 ALERT type 5 Informative message, check

