Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Copper on charcoal: Cu^0 nanoparticles catalysed aerobic oxidation of α -diazo esters

Rong Zhao^a, Jiangge Teng^a, Zhiwei Wang^a, Wenwen Dong^a, Jia Lin^a, Changhu Chu^{a*}

^{*a*} Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China

Table

1. General Information	S1
2. Preparation of Cu/C Catalyst	S1
3. Characterization of Cu/C Catalyst	S2
3.1 High Resolution Transmission Electron Microscopy (HRTEM)	S2
3.2 X-ray Photoelectron Spectroscopy (XPS)	S2
3.3 X-ray Powder Diffraction (XRD)	S3
4. Experimental Section	S3
4.1 Reaction of $1a$ with H ₂ O under nitrogen atmosphere (GC spectrum)	S3
4.2 Reaction of 1a with D ₂ O (GC-MS spectrum)	S4
4.3 Reaction of $1a$ with H_2O^{18} (GCMS spectrum)	S8
5. NMR spectrums	S11

1. General Information

Materials. Commercial reagents were acquired from Macklin, Adamas-beta, Aladdin, Bidepharm or, and used as received. All solvents were distilled from CaH_2 unless otherwise stated. Flash column chromatography was performed over silica gel 300-400 mesh.

Instruments. ¹H NMR and ¹³C NMR were recorded on a Bruker AV400 spectrometer at room temperature. Proton chemical shifts are reported in ppm downfield from tetramethylsilane or from the residual solvent as internal standard in CDCl₃ (δ 7.26 ppm). Carbon chemical shifts were internally referenced to the deuterated solvent signals in CDCl₃ (δ 77.16 ppm). High Resolution Mass Spectrometer (HRMS) was obtained by a GCT Premier instrument. High Resolution Transmission Electron Microscopy (HRTEM) investigations were carried out on a JEM-2100 instrument. Inductively Coupled Plasma (ICP) was obtained on an Agilent 725 instrument. X-ray photoelectron spectroscopy (XPS) was carried out on a ESCALAB 250Xi instrument. X-ray Powder Diffractometer (XRD) was obtained by D/max2550VB/PC instrument. Gas chromatography - mass spectrometry (GC-MS) was carried out on an Agilent 7890A-5975C instrument. Gas chromatography (GC) was obtained on a Shimadzu GC-2010 Plus instrument.

General GC conditions. FID detector; carrier gas: nitrogen.

Compounds were detected under a condition as: column temperature: 50 °C for 5 minutes, raising to 250 °C in a rate of 20 °C/min, holding at 250 °C for 5 min.

2. Preparation of Cu/C Catalyst

To a solution of $CuCl_2 \cdot 2H_2O(1 \text{ g})$ in ethanol (80 mL), naphthalene (2 g) and activated carbon (4 g) were added subsequently. This suspension was heated to reflux with stirring. At this point, hydrazine hydrate (80%, 20 mL) was added drop wisely in half an hour. After addition, the resulting mixture was refluxed for 8h. Finally, reaction mixture was cooled to room temperature, and the solid was collected by filtration through a Buchner funnel, and washed twice with anhydrous ethanol (2×10 mL). Thus obtained solid was dried and then heated at 300 °C under nitrogen atmosphere for an hour, which was stored in a bottle and used as catalyst.

3. Characterization of Cu/C Catalyst

3.1 High Resolution Transmission Electron Microscopy (HRTEM)

Fig. 1 a, HRTEM of Charcoal; b, Cu/C catalyst

3.2 X-ray Photoelectron Spectroscopy (XPS)

Fig. 2 XPS of Cu/C catalyst

Fig. 3 XPS of the Cu/C catalyst before and after the reaction

3.3 X-ray Powder Diffraction (XRD)

Fig. 4 XRD of Cu/C catalyst

4. Experimental Section

4.1 Reaction of 1a with H₂O under nitrogen atmosphere (GC spectrum)

Figure 5 GC diagram Cu/C (8 mol%) catalyzed reaction of **1a** with H₂O under nitrogen atmosphere for 4 h, all of peaks were confirmed by authority sample.

4.2 Reaction of 1a with D₂O (GC-MS spectrum)

Figure 6 GC-MS diagram of 1a reacts with D₂O

Abundance

Figure 7 GC-MS diagram of 1a reacts with $\rm H_2O^{18}$

5. NMR spectrums

00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

¹³C NMR spectrum of compound 2c

¹³C NMR spectrum of compound 2i

 $^{13}\mathrm{C}$ NMR spectrum of compound 2k

¹³C NMR spectrum of compound 21

S23

¹³C NMR spectrum of compound 2q

¹H NMR spectrum of compound 2t

¹³C NMR spectrum of compound 2t

¹H NMR spectrum of compound 2u

¹³C NMR spectrum of compound 2u

$^1\mathrm{H}$ NMR spectrum of compound 2v

 $^{13}\mathrm{C}$ NMR spectrum of compound 2v

¹³C NMR spectrum of compound 2w

¹H NMR spectrum of compound 2x

¹³C NMR spectrum of compound *E*-4