Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information

A nickel-catalyzed silylation reaction of alkyl aryl sulfoxides with silylzinc reagents

Wei-Ze Li and Zhong-Xia Wang

^a CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

E-mail: zxwang@ustc.edu.cn; Tel: +86 551 63603043

^b Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P.

R. China

Table of Contents

1	General information	S2
2	General procedure for the nickel-catalyzed silylations of aryl sulfoxides	S2
3	Mechanistic studies	S2
4	Characterization data for the silylation products	S4-11
	References	S11
5	Copies of NMR spectra of the silylation products	S12-43

1. General information

All reactions were performed under nitrogen atmosphere using standard Schlenk and vacuum line techniques. Tetrahydrofuran was purified by JC Meyer Phoenix Solvent Systems. 1,4-Dioxane were distilled over sodium and degassed prior to use. Dimethyl sulfoxide (DMSO) was dried over CaH₂, fractionally distilled under reduced pressure and degassed prior to use. Dichloromethane (DCM) was distilled over CaH₂ and degassed prior to use. CPME (extra dry) was purchased from Energy Chemical and degassed prior to use. ZnCl₂ were purchased from commercial vendors and dried under vacuum at 140 °C for 12 h prior to use. Other chemicals were obtained from commercial vendors and used as received. Silylzinc reagents were prepared according to reported procedure. The concentration of the silylzinc solution was titrated using Knochel's method. Aryl sulfoxides were synthesized according to the literature procedures. NMR spectra were recorded on a Bruker AV400 spectrometer at 25 °C. The chemical shifts of the ¹H NMR spectra were referenced to TMS and the chemical shifts of the ¹³C NMR spectra were referenced to internal solvent resonances. High-resolution mass spectra (HR-MS) were acquired on a Thermo Fisher LTQ Orbitrap XL mass spectrometer.

2. General procedure for the nickel-catalyzed silylations of aryl sulfoxides

NiBr₂(PEt₃)₂ (4.5 mg, 5 mol %), sulfoxides (0.2 mmol) and THF (1.5 cm³) were charged to a Schlenk tube under nitrogen. Then, a solution of silicon zinc reagent (1.5 cm³, 0.4 M solution in THF, 0.6 mmol) was added. The resultant mixture was stirred at 80 °C for 12 h and then cooled to room temperature. A 10% aqueous solution of NH₄Cl (10 cm³) was added. The resultant mixture was diluted with EtOAc (3 \times 5 cm³). The combined organic phases were dried over anhydrous Na₂SO₄, concentrated by rotary evaporation, and purified by column chromatography (silica gel).

3. Mechanistic studies

(1) Effect of 1,1-diphenylethene additive

NiBr₂(PEt₃)₂ (4.5 mg, 5 mol %), PhS(O)Me (28 mg, 0.2 mmol) and THF (1.5 cm³) were charged to a Schlenk tube under nitrogen. Then PhMe₂SiZnCl solution (1.5 cm³, 0.4 M solution in THF, 0.6 mmol) and 1,1-diphenylethene (36 mg, 0.2 mmol) were successively

added to the Schlenk tube. The mixture was stirred at 80 °C for 12 h and then cooled to room temperature. A 10% aqueous solution of NH₄Cl (10 cm³) was added. The resultant mixture was extracted with EtOAc (5 cm³ × 3). The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated by rotary evaporation. The residue was dissolved in CDCl₃ and its 1 H NMR spectrum was determined. The yield was obtained on the basis of the 1 H NMR spectrum using C₂H₂Cl₄ as an internal standard.

(2) Methanesulfenate anion trap experiment

Ni(PEt₃)₂Br₂ (13.5 mg, 5 mol%), PhS(O)Me (84.1 mg, 0.6 mmol) and THF (1.5 cm³) were successively charged to a Schlenk tube under nitrogen. To the stirred mixture a solution of PhMe₂SiZnCl (4.5 cm³, 0.4 M solution in THF, 1.8 mmol) was added at room temperature. The mixture was stirred at 80 °C for 5 min. and then cooled to room temperature. Benzyl bromide (205 mg, 1.2 mmol) was added. The resulting mixture was stirred at 40 °C for 30 min. Saturated aqueous solution of NH₄Cl (10 cm³) was added and the mixture was extracted with EtOAc (10 cm³ × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in CDCl₃ and its 1 H NMR spectrum was determined. The yields were obtained on the basis of the 1 H NMR spectrum using C₂H₂Cl₄ as an internal standard.

(3) Intermolecular competition experiment

NiBr₂(PEt₃)₂ (22.5 mg, 5 mol %), p-MeOC₆H₄S(O)Me (170.2 mg, 1 mmol), p-CF₃C₆H₄-S(O)Me (208.2 mg, 1 mmol), and THF (1.5 cm³) were charged to a Schlenk tube under nitrogen. A solution of PhMe₂SiZnCl (2.5 cm³, 0.4 M solution in THF, 1 mmol) was added. The mixture was stirred at 80 °C for 12 h and then cooled to room temperature. A 10% aqueous solution of NH₄Cl (10 cm³) was added. The resultant mixture was extracted with EtOAc (10 cm³ × 3). The combined organic phases were dried over anhydrous Na₂SO₄,

concentrated by rotary evaporation, and purified by column chromatography (silica gel) to give a mixture of **3b** and **3l**. The ratio of **3b** and **3l** was determined by ¹H NMR spectrum of the mixture.

(4) Methanesulfenate anion trap experiment in the presence of 1,1-diphenylethene

NiBr₂(PEt₃)₂ (4.5 mg, 5 mol %), PhS(O)Me (28 mg, 0.2 mmol) and THF (1.5 cm³) were charged to a Schlenk tube under nitrogen. A solution of PhMe₂SiZnCl (1.5 cm³, 0.4 M solution in THF, 0.6 mmol) and 1,1-diphenylethene (36 mg, 0.2 mmol) were successively added. The mixture was stirred at 80 °C for 5 min. and then cooled to room temperature. Benzyl bromide (68.4 mg, 0.4 mmol) was added, and the resulting mixture was stirred at 40 °C for 30 min. The reaction mixture was added saturated aqueous solution of NH₄Cl (10 cm³) and then extracted with EtOAc (10 cm³ × 3). The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was dissolved in CDCl₃ and its ¹H NMR spectrum was determined. The yields were obtained on the basis of the ¹H NMR spectrum using C₂H₂Cl₄ as an internal standard.

4. Characterization data for the silvlation products

Pure 3a cannot be obtained in this transformation. A mixture of 3a and (PhMe₂Si)₂ was obtained.

1. (4-methoxyphenyl)dimethyl(phenyl)silane (**3b**).

Colorless oil (33 mg, 68%). ¹H NMR (500 MHz, CDCl₃): δ 7.52–7.47 (m, 2H), 7.43 (d, J = 8.5 Hz, 2H), 7.36–7.29 (m, 3H), 6.89 (d, J = 8.5 Hz, 2H), 3.78 (s, 3H), 0.51 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 160.6, 138.8, 135.8, 134.3, 129.1, 127.9, 113.7, 55.2, –2.1.

2. dimethyl(4-phenoxyphenyl)(phenyl)silane (3c).

Colorless oil (43 mg, 70%). ¹H NMR (400 MHz, CDCl₃): δ 7.56–7.50 (m, 2H), 7.47 (d, J = 8.5 Hz, 2H), 7.39–7.29 (m, 5H), 7.11 (t, J = 7.4 Hz, 1H), 7.06–7.00 (m, 2H), 6.98 (d, J = 8.5 Hz, 2H), 0.54 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 158.6, 156.8, 138.5, 135.9, 134.3, 132.2, 129.9, 129.3, 128.0, 123.7, 119.5, 118.1, –2.1.

3. benzo[d][1,3]dioxol-5-yldimethyl(phenyl)silane (**3d**).

Colorless oil (24 mg, 47%). ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.48 (m, 2H), 7.38–7.32 (m, 3H), 7.00 (dd, J = 7.6, 1.0 Hz, 1H), 6.95 (s, 1H), 6.84 (d, J = 7.6 Hz, 1H), 5.93 (s, 2H), 0.52 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 148.6, 147.5, 138.4, 134.2, 131.4, 129.3, 128.4, 128.0, 113.6, 108.7, 100.7, –2.1.

4. N-(4-(dimethyl(phenyl)silyl)phenyl)acetamide (3e).8

White solid (39 mg, 73%). ¹H NMR (500 MHz, CDCl₃): δ 7.55 (b, 1H), 7.52–7.43 (m, 4H), 7.46 (d, J = 8.3 Hz, 2H), 7.38–7.30 (m, 3H), 2.15 (s, 3H), 0.52 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 168.7, 138.8, 138.3, 135.1, 134.2, 133.8, 129.2, 127.9, 119.3, 24.7, –2.2.

5. N-(4-(dimethyl(phenyl)silyl)phenyl)-N-methylacetamide (3 \mathbf{f}). 8

White solid (42 mg, 74%). ¹H NMR (500 MHz, CDCl₃): δ 7.58–7.51 (m, 4H), 7.42–7.35 (m, 3H), 7.16 (d, J = 7.9 Hz, 2H), 3.26 (s, 3H), 1.88 (s, 3H), 0.57 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 170.7, 145.3, 138.4, 137.7, 135.7, 134.2, 129.5, 128.1, 126.5, 37.2, 22.6, –2.3.

6. [1,1'-biphenyl]-4-yldimethyl(phenyl)silane (**3g**).⁷

White solid (41 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 7.64–7.52 (m, 8H), 7.44 (t, J = 7.5 Hz, 2H), 7.40–7.31 (m, 4H), 0.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 142.0, 141.2, 138.3, 137.1, 134.8, 134.3, 129.3, 128.9, 128.0, 127.5, 127.3, 126.7, -2.2.

7. [1,1'-biphenyl]-3-yldimethyl(phenyl)silane (**3h**).⁸

Colorless oil (43 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.74 (s, 1H), 7.60–7.52 (m, 5H), 7.50 (dt, J = 7.3, 1.2 Hz, 1H), 7.45–7.38 (m, 3H), 7.37–7.31 (m, 4H), 0.59 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 141.6, 140.7, 138.9, 138.2, 134.3, 133.3, 133.1, 129.3, 128.9, 128.4, 128.2, 128.0, 127.4, 127.3, –2.2.

8. (4'-fluoro-[1,1'-biphenyl]-4-yl)dimethyl(phenyl)silane (**3i**).⁸

White solid (49 mg, 80%). ¹H NMR (500 MHz, CDCl₃): δ 7.64–7.47 (m, 8H), 7.42–7.32 (m, 3H), 7.12 (t, J = 8.7 Hz, 2H), 0.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 162.7 (d, J = 247.4 Hz), 141.0, 138.2, 137.3, 137.24, 137.19, 134.6 (d, J = 56.5 Hz), 129.3, 128.8 (d, J = 8.1 Hz), 128.0, 126.5, 115.8 (d, J = 21.5 Hz), -2.2. ¹⁹F NMR (471 MHz, CDCl₃): δ –115.56.

9. dimethyl(naphthalen-2-yl)(phenyl)silane (**3j**).⁷

Colorless oil (34 mg, 64%). ¹H NMR (400 MHz, CDCl₃): δ 8.02 (s, 1H), 7.85–7.78 (m, 3H), 7.61–7.52 (m, 3H), 7.51–7.44 (m, 2H), 7.40–7.32 (m, 3H), 0.63 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 138.4, 135.8, 135.0, 134.4, 133.8, 133.0, 130.5, 129.3, 128.2, 128.0, 127.8, 127.2, 126.6, 126.1, –2.2.

10. dimethyl(naphthalen-1-yl)(phenyl)silane (**3k**).⁷

Colorless oil (27 mg, 51%). ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8.5 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.85 (d, J = 8.1 Hz, 1H), 7.73 (dd, J = 6.8, 1.1 Hz, 1H), 7.56–7.52 (m, 2H),

7.49–7.45 (m, 1H), 7.45–7.41 (m, 1H), 7.38–7.30 (m, 4H), 0.70 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 139.0, 137.1, 135.9, 134.8, 134.3, 133.6, 130.4, 129.2, 129.1, 128.8, 128.0, 125.8, 125.5, 125.2, –0.8.

11. dimethyl(phenyl)(4-(trifluoromethyl)phenyl)silane (**3l**).

Colorless oil (50 mg, 89%). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.54–7.47 (m, 2H), 7.42–7.33 (m, 3H), 0.58 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 143.5, 137.2, 134.6, 134.3, 131.2 (q, J = 32.3 Hz), 129.6, 128.1, 124.5 (q, J = 3.8 Hz), 124.4 (d, J = 273.2 Hz), -2.5. ¹⁹F NMR (376 MHz, CDCl₃): δ –62.90.

12. (4-(dimethyl(phenyl)silyl)phenyl)(phenyl)methanone (**3m**).⁸

Colorless oil (52 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.84–7.79 (m, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.63 (d, J = 8.1 Hz, 2H), 7.61–7.51 (m, 3H), 7.47 (t, J = 7.6 Hz, 2H), 7.42–7.33 (m, 3H), 0.60 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 197.0, 144.2, 138.1, 137.6, 137.4, 134.3, 134.2, 132.6, 130.2, 129.5, 129.2, 128.4, 128.1, –2.4.

13. 1-(4-(dimethyl(phenyl)silyl)phenyl)ethan-1-one (**3n**).⁸

Colorless oil (37 mg, 73%). ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, J = 8.1 Hz, 2H), 7.62 (d, J = 8.1 Hz, 2H), 7.51 (dd, J = 7.6, 1.7 Hz, 2H), 7.42–7.33 (m, 3H), 2.60 (s, 3H), 0.58 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 198.6, 145.2, 137.5, 137.4, 134.5, 134.3, 129.5, 128.1, 127.4, 26.8, –2.5.

14. methyl 4-(dimethyl(phenyl)silyl)benzoate (**3o**).⁸

Colorless oil (45 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 7.99 (d, J = 8.0 Hz, 2H), 7.59 (d, J = 8.0 Hz, 2H), 7.54–7.46 (d, J = 6.0 Hz, 2H), 7.42–7.31 (m, 3H), 3.91 (s, 3H), 0.57 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 167.4, 144.7, 137.5, 134.3, 130.7, 129.5, 128.7, 128.1, 52.3, –2.4.

15. isopropyl 4-(dimethyl(phenyl)silyl)benzoate (**3p**).⁸

White solid (45 mg, 76%). ¹H NMR (500 MHz, CDCl₃): δ 7.99 (d, J = 7.8 Hz, 2H), 7.59 (d, J = 7.8 Hz, 2H), 7.50 (d, J = 6.5 Hz, 2H), 7.40–7.31 (m, 3H), 5.30–5.20 (m, 1H), 1.36 (d, J = 6.2 Hz, 6H), 0.57 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 166.4, 144.5, 137.5, 134.3, 134.2, 131.5, 129.5, 128.6, 128.1, 68.5, 22.1, –2.4.

16. methyl 2-(dimethyl(phenyl)silyl)benzoate (**3q**).

Colorless oil (43 mg, 80%). ¹H NMR (500 MHz, CDCl₃): δ 7.99 (dd, J = 7.3, 1.5 Hz, 1H), 7.62–7.57 (m, 1H), 7.52–7.42 (m, 4H), 7.35–7.29 (m, 3H), 3.62 (s, 3H), 0.59 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 168.7, 140.1, 139.9, 136.9, 136.4, 133.8, 131.5, 130.2, 129.3, 128.7, 127.8, 51.9, –0.8. HR-MS (EI): m/z 270.1071 [M]⁺, calcd for C₁₆H₁₈O₂Si 270.1065.

17. 4-(dimethyl(phenyl)silyl)-N,N-diethylbenzamide (**3r**).⁸

$$\mathsf{Et_2N} \bigvee_{\mathsf{O}} \mathsf{SiMe_2Ph}$$

Colorless oil (40 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 7.56–7.48 (m, 4H), 7.40–7.30 (m, 5H), 3.54 (b, 2H), 3.25 (b, 2H), 1.24 (b, 3H), 1.11 (b, 3H), 0.56 (s, 6H). ¹³C NMR (101 MHz, CDCl₃): δ 171.4, 139.7, 137.9, 137.8, 134.3, 134.3, 129.4, 128.0, 125.6, 43.3, 39.3, 14.4, 13.0, –2.4.

18. 2-(dimethyl(phenyl)silyl)pyridine (3s).8

Colorless oil (37 mg, 88%). ¹H NMR (500 MHz, CDCl₃): δ 8.80 (d, J = 4.6 Hz, 1H), 7.63–7.57 (m, 2H), 7.54 (dt, J = 7.6, 1.2 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.40–7.33 (m, 3H), 7.22–7.15 (m, 1H), 0.62 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 166.7, 150.4, 137.4, 134.4, 134.1, 129.9, 129.4, 128.0, 123.0, –3.0.

19. 2-(dimethyl(phenyl)silyl)-4-(trifluoromethyl)pyridine (3t).

Colorless oil (52 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 9.04 (s, 1H), 7.76 (dd, J = 7.9, 1.7 Hz, 1H), 7.62–7.57 (m, 2H), 7.55 (d, J = 7.9 Hz, 1H), 7.42–7.35 (m, 3H), 0.64 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 172.1, 146.7 (q, J = 3.8 Hz), 136.3, 134.3, 130.9 (q, J = 3.6 Hz), 129.8, 129.1, 128.2, 125.6 (q, J = 32.9 Hz), 123.8 (q, J = 273.2 Hz), -3.2. ¹⁹F NMR (376 MHz, CDCl₃): δ –62.72. HR-MS (ESI): m/z 282.0920 [M+H]⁺, calcd for C₁₄H₁₅NF₃Si 282.0917.

20. benzo[b]thiophen-2-yldimethyl(phenyl)silane (**3u**).⁷

Colorless oil (40 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.87–7.83 (m, 1H), 7.80–7.76 (m, 1H), 7.63–7.57 (m, 2H), 7.47 (s, 1H), 7.40–7.34 (m, 3H), 7.33–7.25 (m, 2H), 0.65 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 144.0, 141.1, 140.2, 137.3, 134.1, 132.4, 129.7, 128.1, 124.5, 124.2, 123.7, 122.3, –1.4.

21. benzofuran-2-yldimethyl(phenyl)silane (**3v**).⁷

Colorless oil (34 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.65–7.58 (m, 2H), 7.56 (d, J = 7.5 Hz, 1H), 7.50 (d, J = 8.7 Hz, 1H), 7.41–7.33 (m, 3H), 7.30–7.24 (m, 1H), 7.22–7.15 (m, 1H), 6.99 (d, J = 0.7 Hz, 1H), 0.63 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 161.7, 158.5, 136.3, 134.2, 133.1, 129.8, 128.1, 124.6, 122.5, 121.2, 117.8, 111.6, –2.9.

22. (4-methoxyphenyl)(methyl)diphenylsilane (**4a**).⁸

Colorless oil (35 mg, 57%). ¹H NMR (400 MHz, CDCl₃): δ 7.54–7.47 (m, 4H), 7.43 (d, J = 8.6 Hz, 2H), 7.40–7.31 (m, 6H), 6.91 (d, J = 8.5 Hz, 2H), 3.81 (s, 3H), 0.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 160.8, 136.9, 136.7, 135.4, 129.4, 128.0, 127.0, 113.8, 55.2, –3.1.

23. isopropyl 4-(methyldiphenylsilyl)benzoate (**4b**).⁸

$$i \mathrm{PrO} \underbrace{\hspace{1cm}}_{\hspace{1cm} 0} \mathrm{SiMePh}_2$$

White solid (45 mg, 62%). ¹H NMR (500 MHz, CDCl₃): δ 8.00 (d, J = 8.0 Hz, 2H), 7.58 (d, J = 8.0 Hz, 2H), 7.51–7.46 (m, 4H), 7.44–7.39 (m, 2H), 7.39–7.33 (m, 4H), 5.30–5.20 (m, 1H), 1.36 (d, J = 6.2 Hz, 6H), 0.85 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 166.3, 142.4, 135.5, 135.4, 135.3, 131.8, 129.8, 128.7, 128.1, 68.5, 22.1, –3.4.

24. [1,1'-biphenyl]-3-yl(methyl)diphenylsilane (4c).

White solid (44 mg, 63%). ¹H NMR (400 MHz, CDCl₃): δ 7.48–7.18 (m, 15H), 7.13 (t, J = 7.6 Hz, 2H), 7.07–7.00 (m, 2H), 0.10 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 150.2, 144.0, 138.0, 137.7, 135.3, 134.7, 129.9, 129.5, 129.4, 129.1, 127.9, 127.7, 127.1, 126.2, –3.2. HR-MS (ESI): m/z 351.1564 [M+H]⁺, calcd for C₂₅H₂₃Si 351.1557.

25. methyl(naphthalen-2-yl)diphenylsilane (**4d**).⁷

Colorless oil (33 mg, 51%). ¹H NMR (400 MHz, CDCl₃): δ 8.01 (s, 1H), 7.86–7.75 (m, 3H), 7.62–7.52 (m, 5H), 7.52–7.44 (m, 2H), 7.44–7.32 (m, 6H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 136.4, 136.2, 135.5, 134.0, 133.7, 133.0, 131.3, 129.6, 128.4, 128.1, 127.9, 127.2, 126.8, 126.1, –3.2.

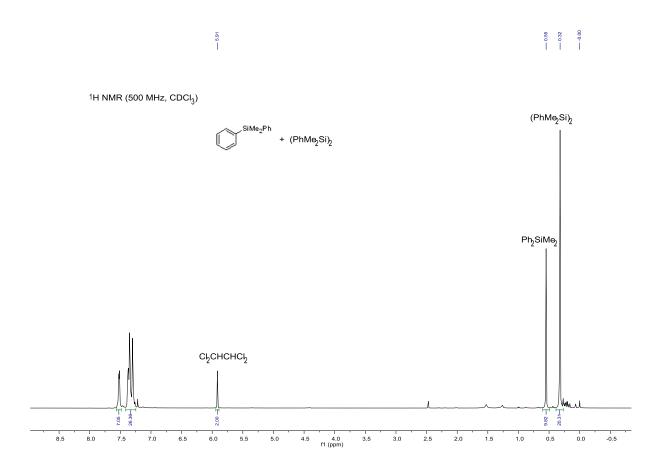
26. 2-(methyldiphenylsilyl)pyridine (4e).

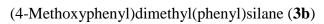
Colorless oil (44 mg, 80%). ¹H NMR (500 MHz, CDCl₃): δ 8.84 (d, J = 4.8 Hz, 1H), 7.58 (dd, J = 7.7, 1.4 Hz, 4H), 7.52 (dt, J = 7.6, 1.6 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.41–7.32 (m, 6H), 7.22–7.17 (m, 1H), 0.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 164.9, 150.6, 135.4, 134.2, 131.1, 129.6, 128.0, 123.1, –3.9. HR-MS (ESI): m/z 276.1203 [M+H]⁺, calcd for $C_{18}H_{18}NSi$ 276.1201.

27. isopropyl 4-(triphenylsilyl)benzoate (5a).⁸

White solid (42.2 mg, 50%). ¹H NMR (500 MHz, CDCl₃): δ 8.02 (d, J = 8.3 Hz, 2H), 7.65 (d, J = 8.3 Hz, 2H), 7.58–7.52 (m, 6H), 7.48–7.41 (m, 3H), 7.41–7.35 (m, 6H), 5.32–5.20 (m, 1H), 1.36 (d, J = 6.3 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 166.3, 140.5, 136.5, 136.4, 133.6, 132.0, 130.0, 128.7, 128.1, 68.6, 22.1.

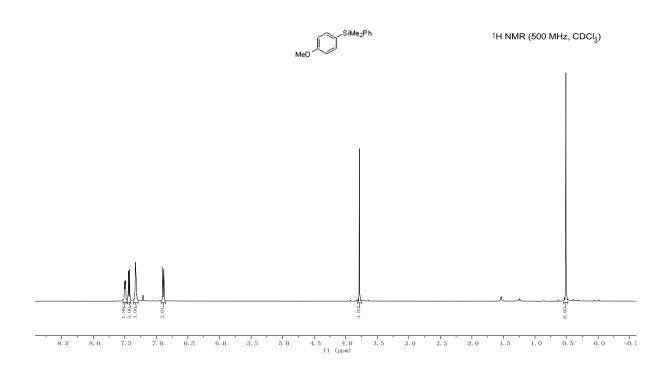
28. 2-(triphenylsilyl)pyridine (5b).

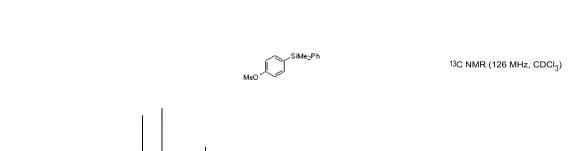

Drak brown solid (38 mg, 57%). ¹H NMR (500 MHz, CDCl₃): δ 8.90 (d, J = 4.8 Hz, 1H), 7.63 (dd, J = 7.9, 1.3 Hz, 6H), 7.53 (dt, J = 7.6, 1.7 Hz, 1H), 7.46 (d, J = 7.5 Hz, 1H), 7.44–7.38 (m, 3H), 7.38–7.32 (m, 6H), 7.24–7.19 (m, 1H). ¹³C NMR (126 MHz, CDCl₃): δ 163.6, 150.6, 136.6, 134.2, 133.7, 132.2, 129.8, 128.0, 123.2. HR-MS (ESI): m/z 338.1360 [M+H]⁺, calcd for C₂₃H₂₀NSi 338.1359.

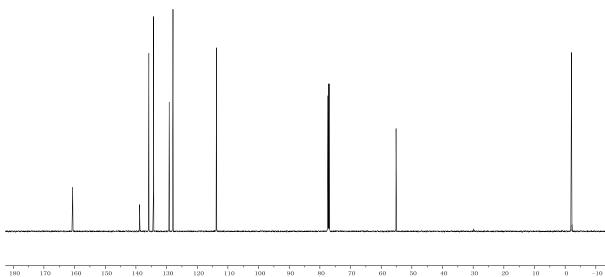

References

- 1 C. K. Chu, Y.-F. Liang and G. C. Fu, J. Am. Chem. Soc., 2016, 138, 6404.
- 2 A. Krasovskiy and P. Knochel, Synthesis, 2006, 890.
- 3 J. Drabowicz, P. Łyżwa, M. Popielarczyk and M. Mikołajczyk, Synthesis, 1990, 937.
- 4 K. Yamamoto, S. Otsuka, K. Nogi and H. Yorimitsu, ACS Catal., 2017, 7, 7623.
- 5 Y.-H. Li, G. Bao and X.- F. Wu, Chem. Sci., 2020, 11, 2187.
- 6 T. Itoh and T. Mase, J. Org. Chem., 2006, 71, 2203.
- 7 W. Srimontree, W. Lakornwong and M. Rueping, Org. Lett., 2019, 21, 9330.
- 8 Y.-Y. Kong and Z.-X. Wang, *Adv. Synth. Catal.*, 2019, **361**, 5440.
- 9 H. Guo, X. Chen, C. Zhao and W. He, Chem. Commun., 2015, **51**, 17410.

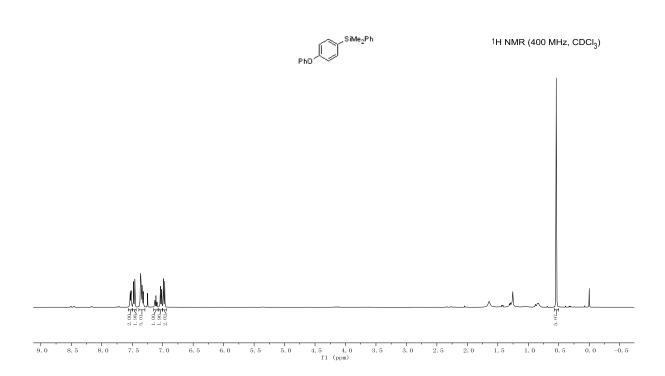
5. Copies of NMR spectra of the silylation products

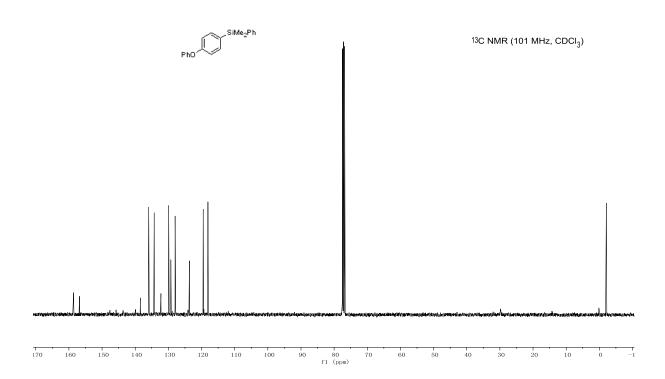

¹H NMR spectrum of mixture of dimethyldiphenylsilane (**3a**) and (PhMe₂Si)₂



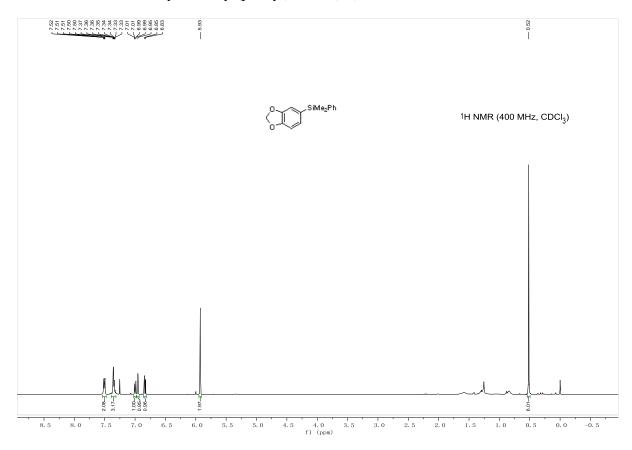


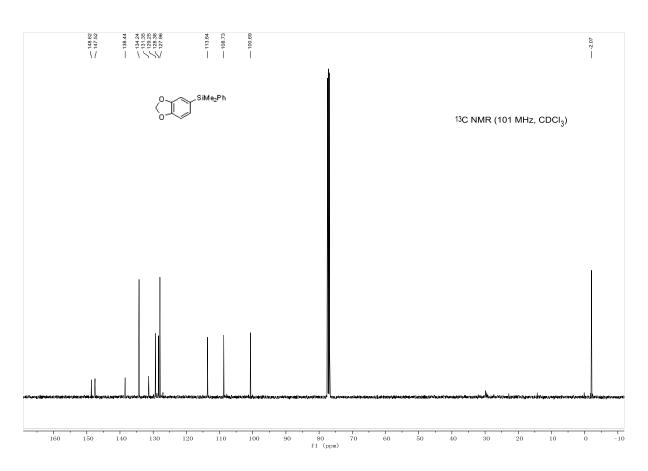
138.82 135.78 127.11 129.13 113.73

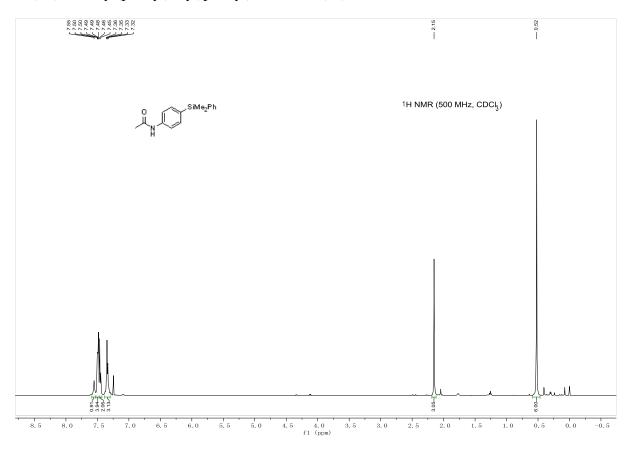


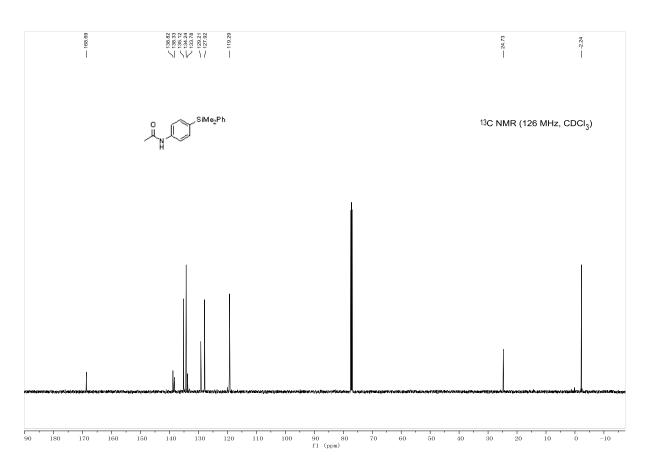


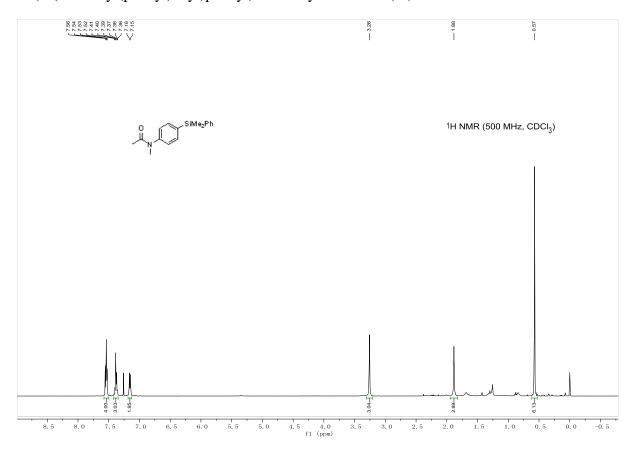
$Dimethyl (4\hbox{-phenoxyphenyl}) (phenyl) silane \ (3c)$

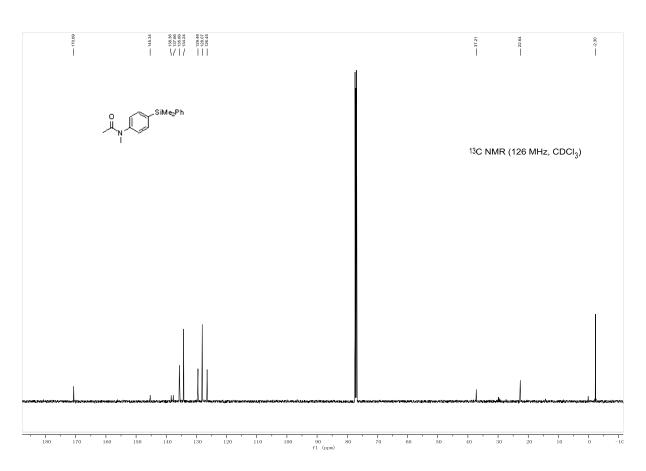


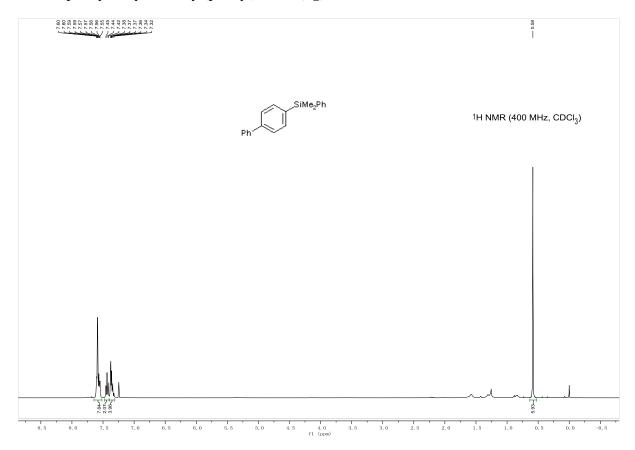


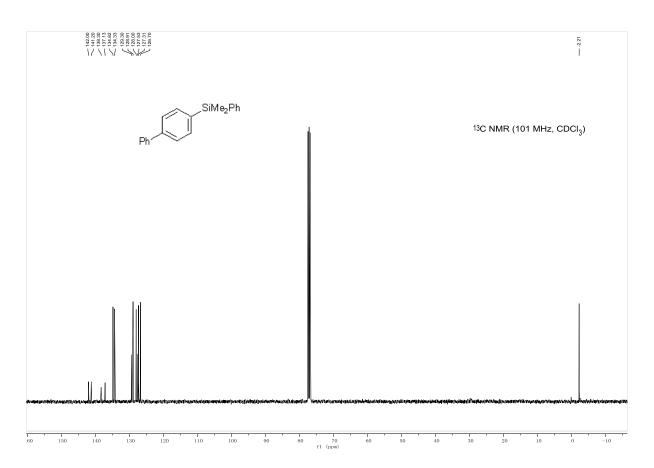


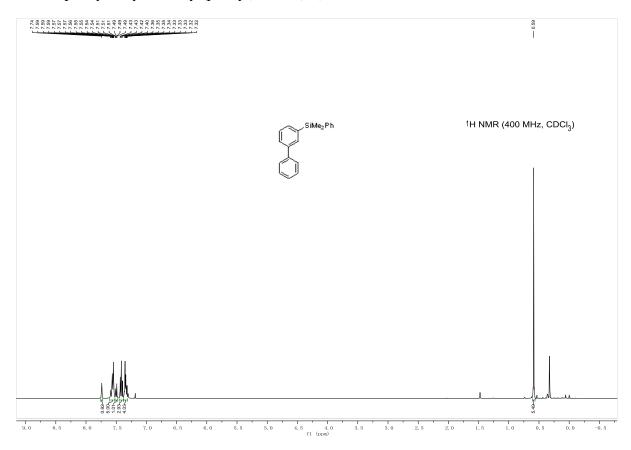

${\tt Benzo}[d] [1,3] {\tt dioxol-5-yldimethyl(phenyl)silane} \ ({\bf 3d})$



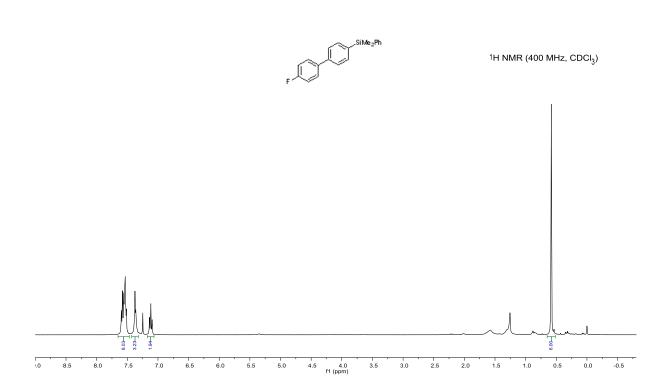

$N\hbox{-}(4\hbox{-}(Dimethyl(phenyl)silyl)phenyl)acetamide \eqref{3e})$

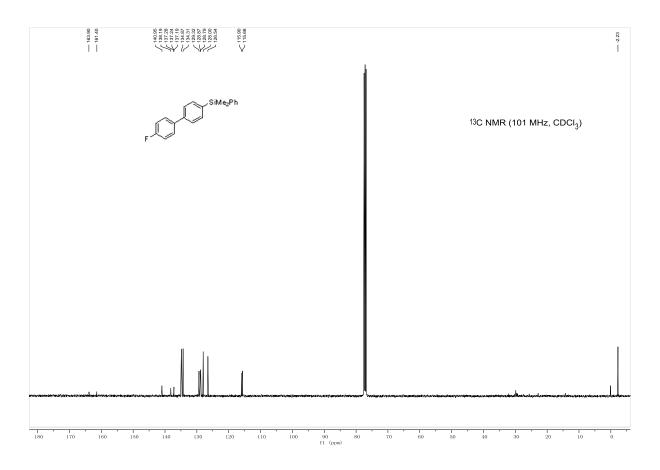


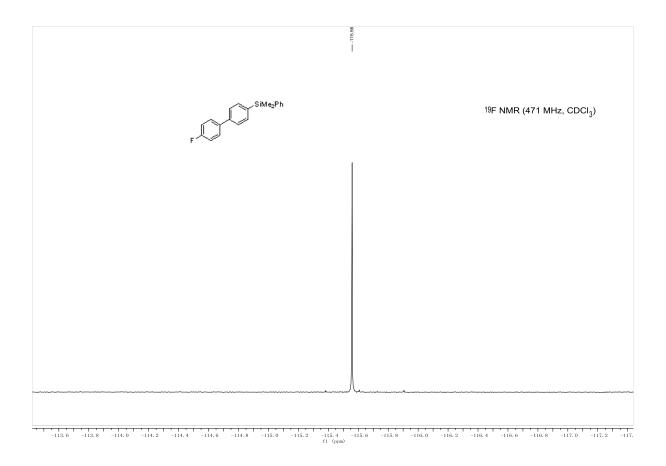

$N\hbox{-}(4\hbox{-}(Dimethyl(phenyl)silyl)phenyl)\hbox{-}{\it N}\hbox{-}methylacetamide \eqref{3f})$

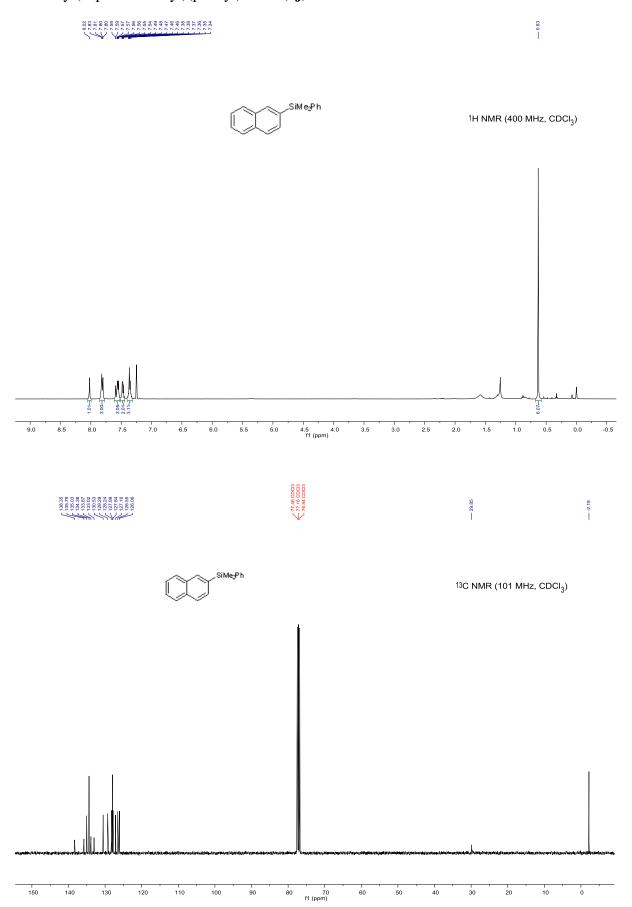


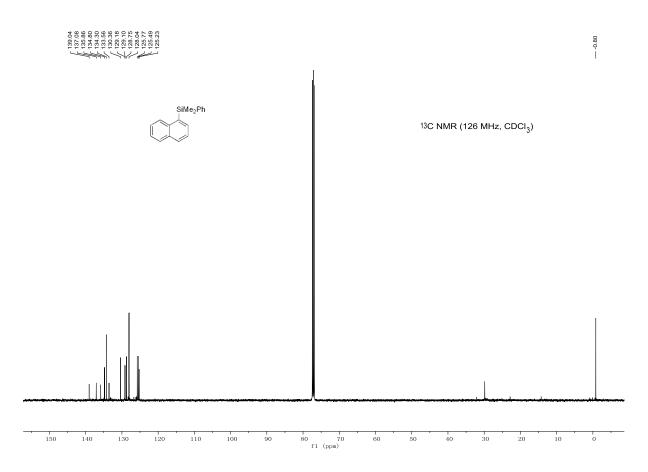
$[1,1'\text{-}Biphenyl]\text{-}4\text{-}yldimethyl(phenyl)silane} \ (\textbf{3g})$



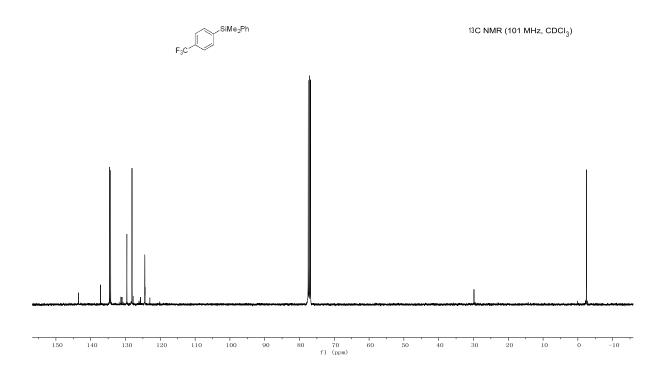

$[1,1'\text{-}Biphenyl]\text{-}3\text{-}yldimethyl(phenyl)silane} \ (\textbf{3h})$



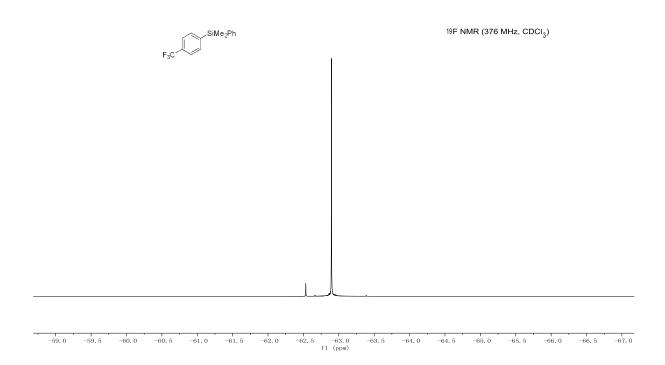


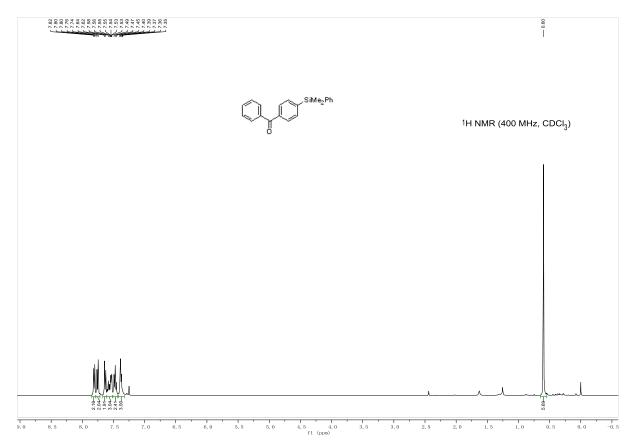

$Dimethyl (naphthalen-2-yl) (phenyl) silane \ ({\bf 3j})$

$Dimethyl (naphthalen-1-yl) (phenyl) silane \ ({\bf 3k})$

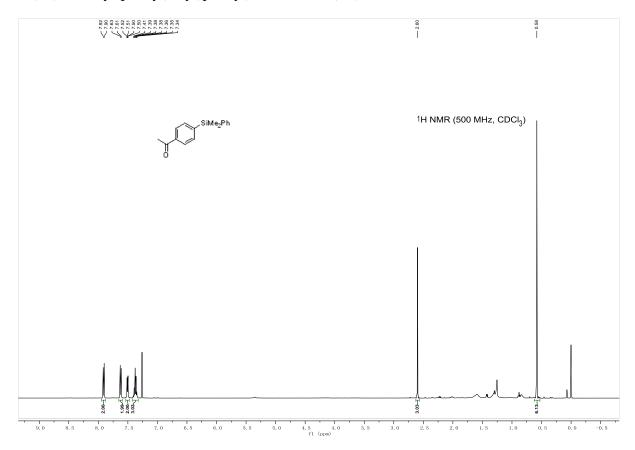


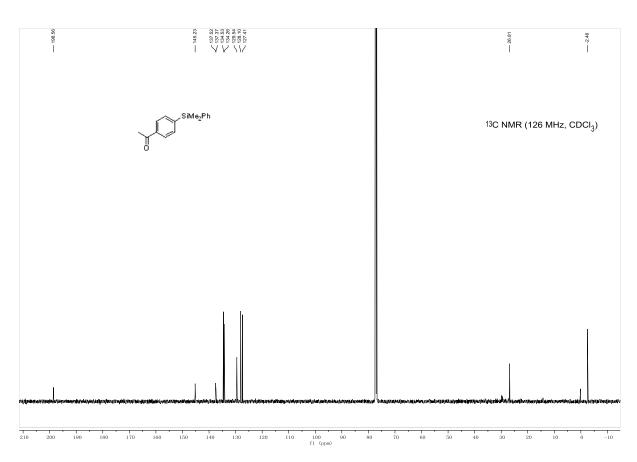
$Dimethyl (phenyl) (4-(trifluoromethyl)phenyl) silane \ ({\bf 3l})$

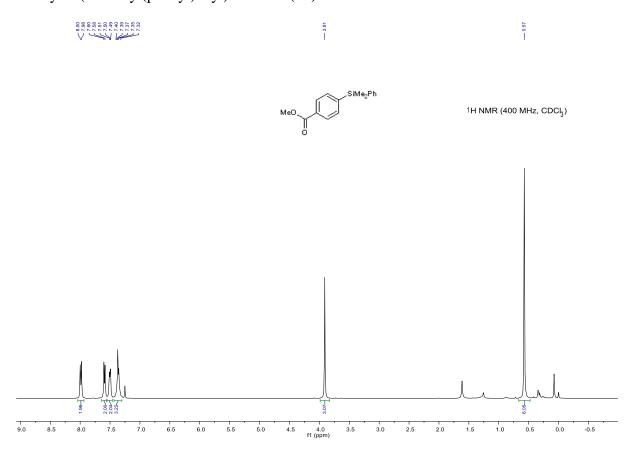


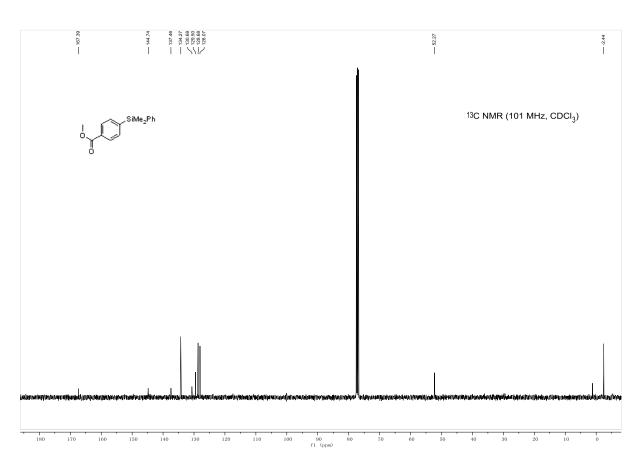


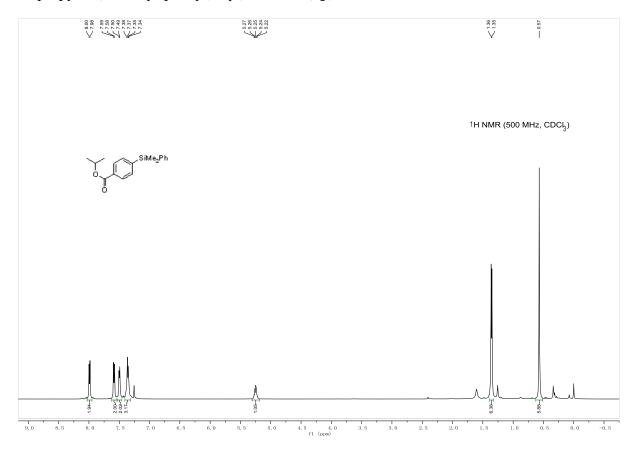


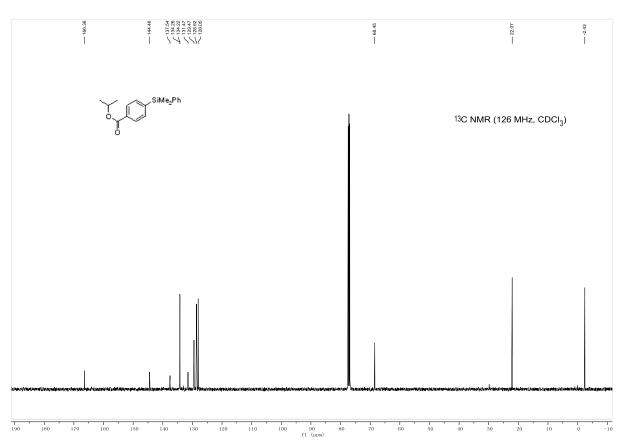


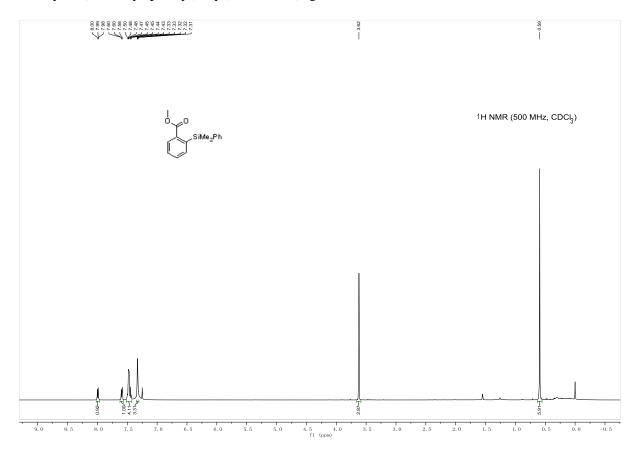

$(4\hbox{-}(Dimethyl(phenyl)silyl)phenyl)(phenyl)methanone\ ({\bf 3m})$

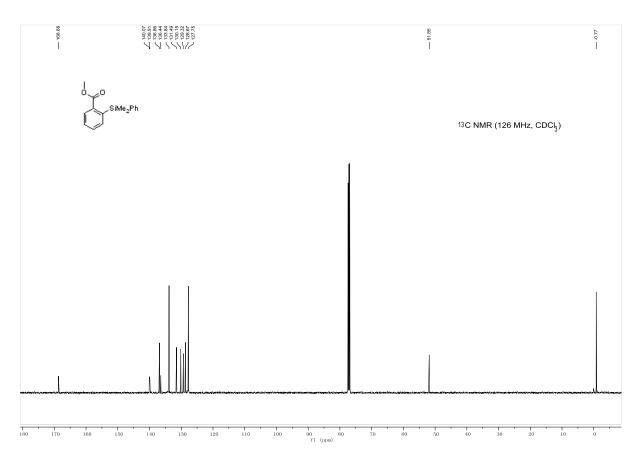


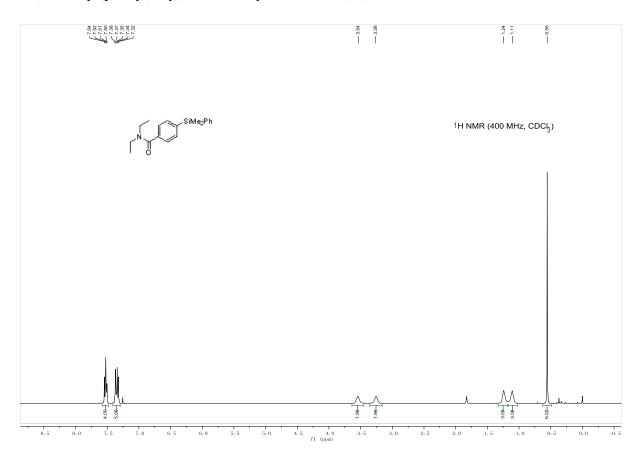

$1\hbox{-}(4\hbox{-}(Dimethyl(phenyl)silyl)phenyl)ethan\hbox{-}1\hbox{-}one\ (\textbf{3n})$

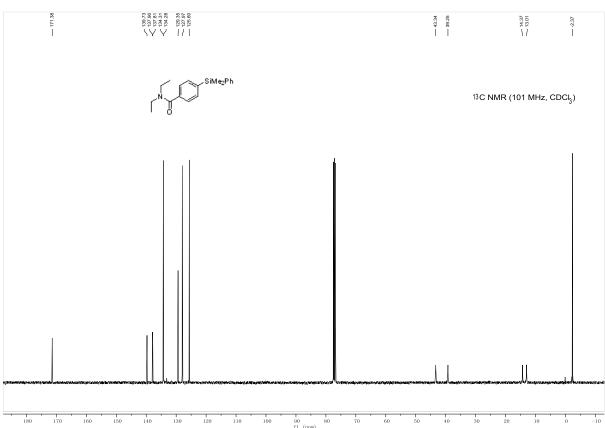


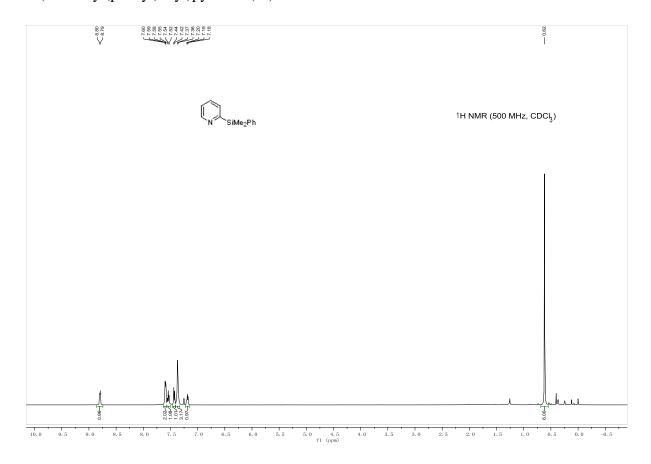

Methyl 4-(dimethyl(phenyl)silyl)benzoate (30)

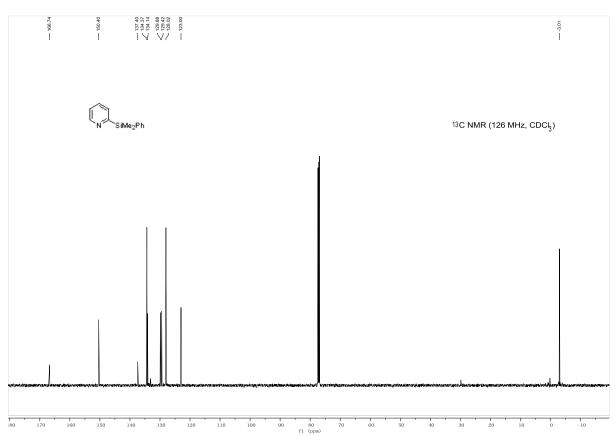


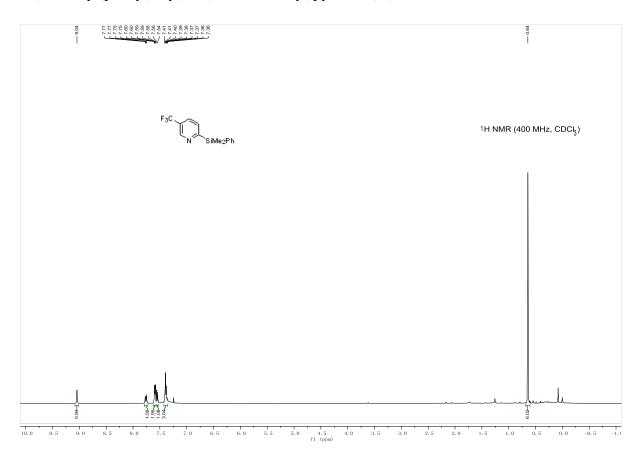

Isopropyl 4-(dimethyl(phenyl)silyl)benzoate (3p)

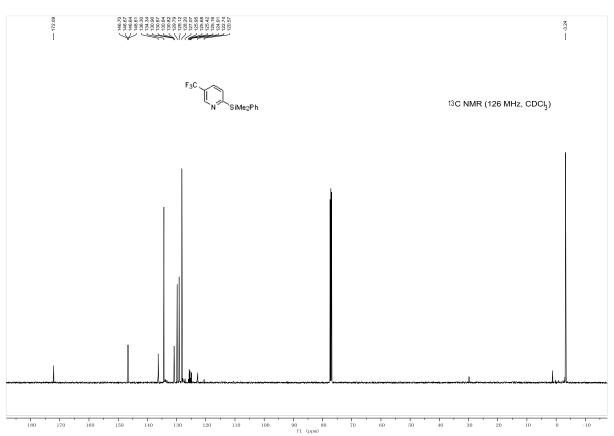


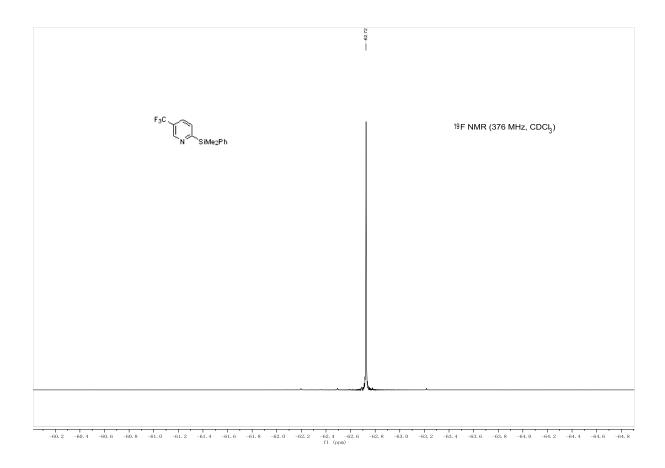

 $Methyl\ 2\hbox{-}(dimethyl(phenyl)silyl) benzoate\ (\textbf{3q}).$

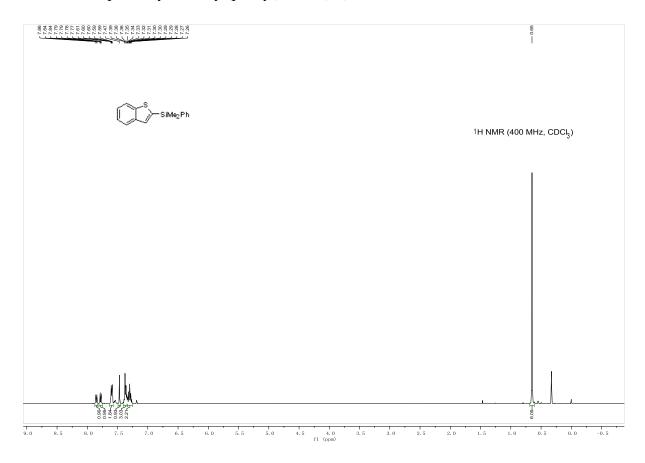


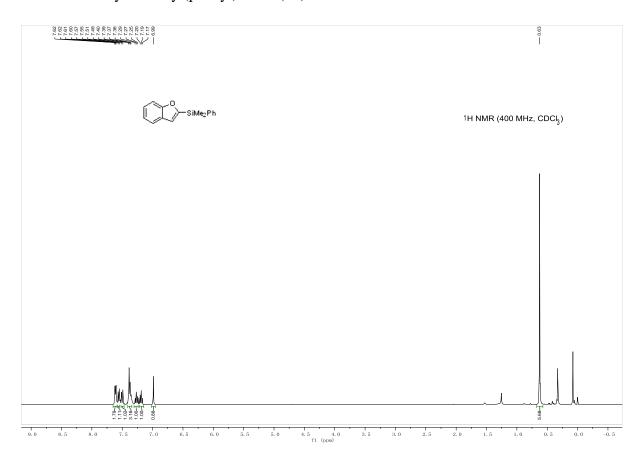

$\hbox{4-(Dimethyl(phenyl)silyl)-N,N-diethylbenzamide ($\bf 3r$)}\\$

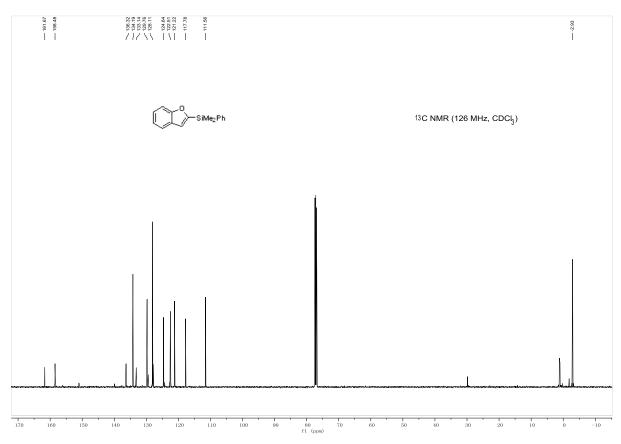


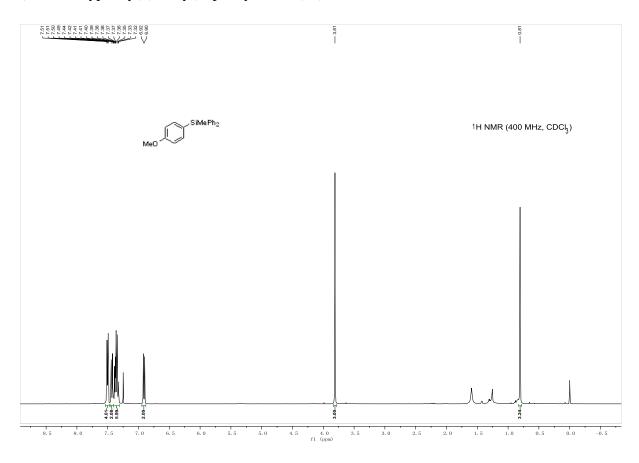

2-(Dimethyl(phenyl)silyl)pyridine (3s)

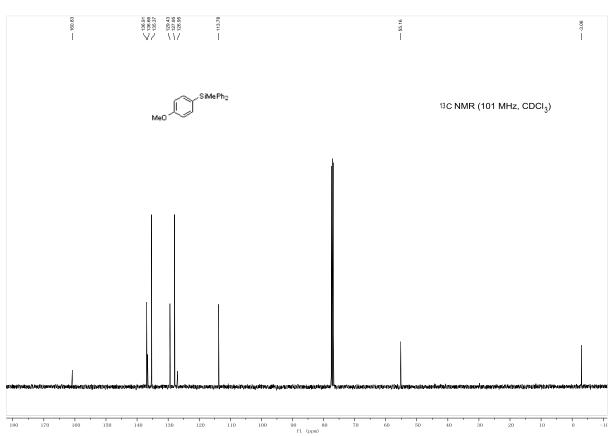


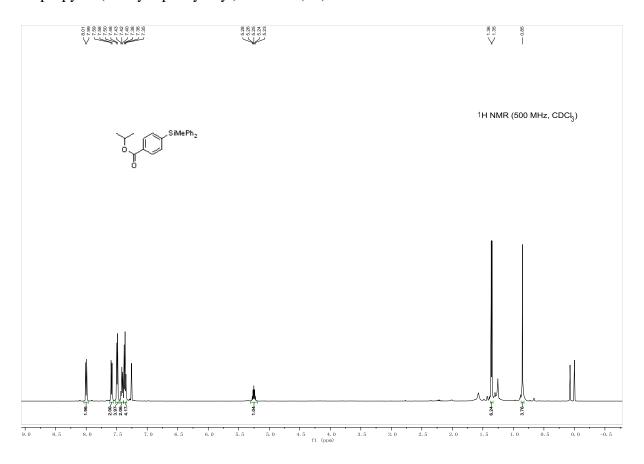

$\hbox{2-(Dimethyl(phenyl)silyl)-4-(trifluoromethyl)pyridine ($3t$)}\\$

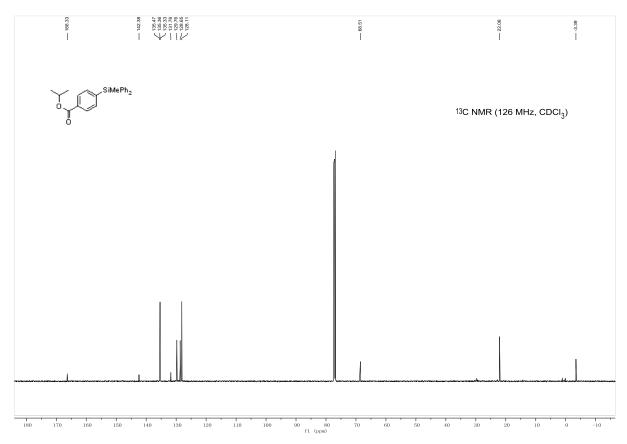


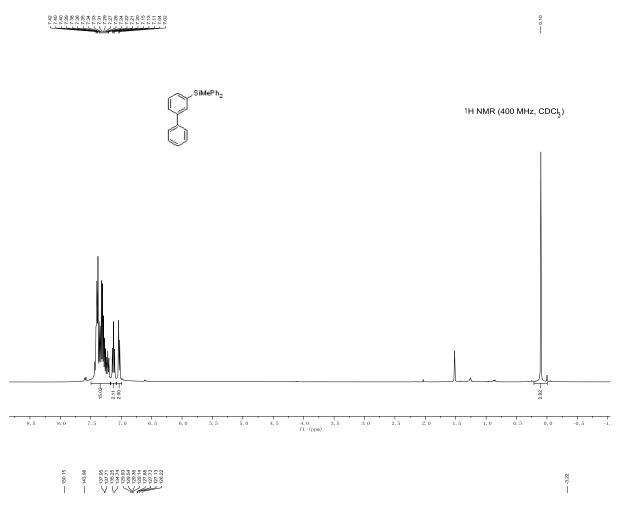

$Benzo[b] thiophen-2-yldimethyl (phenyl) silane \ (\bf 3u)$



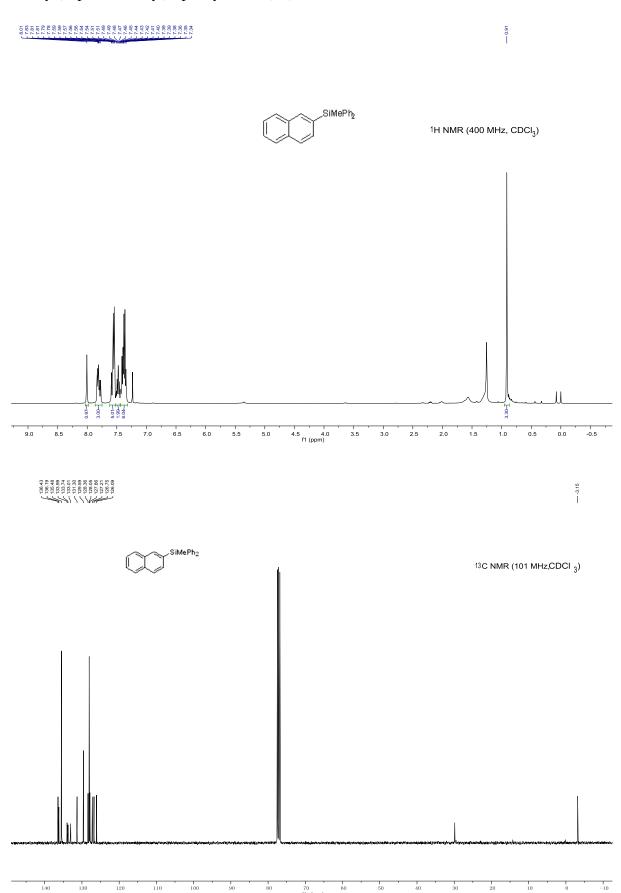

$Benzo furan-2-yldimethyl (phenyl) silane \ ({\bf 3v})$



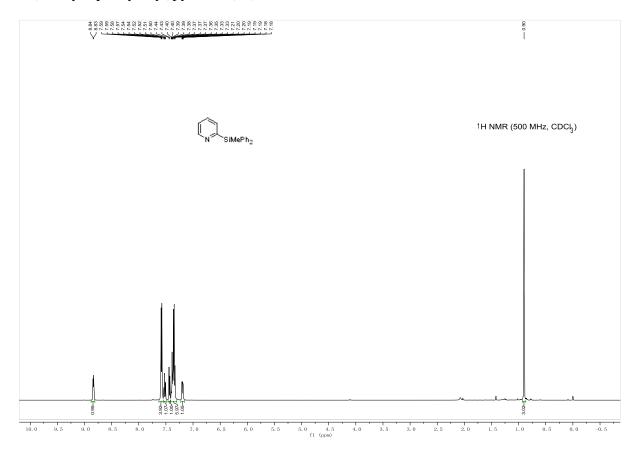

(4-Methoxyphenyl)(methyl)diphenylsilane (**4a**)

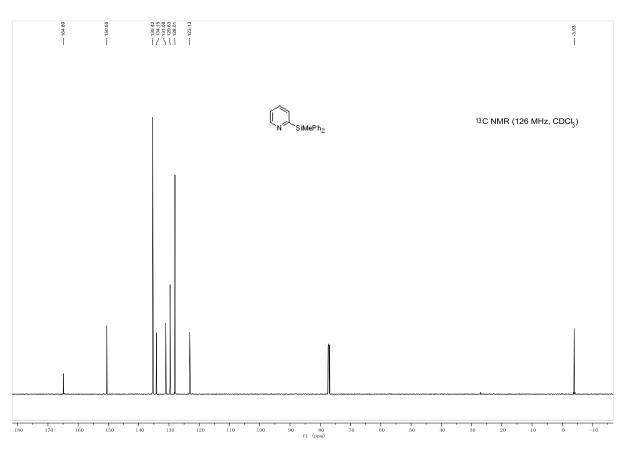


Isopropyl 4-(methyldiphenylsilyl)benzoate (4b)

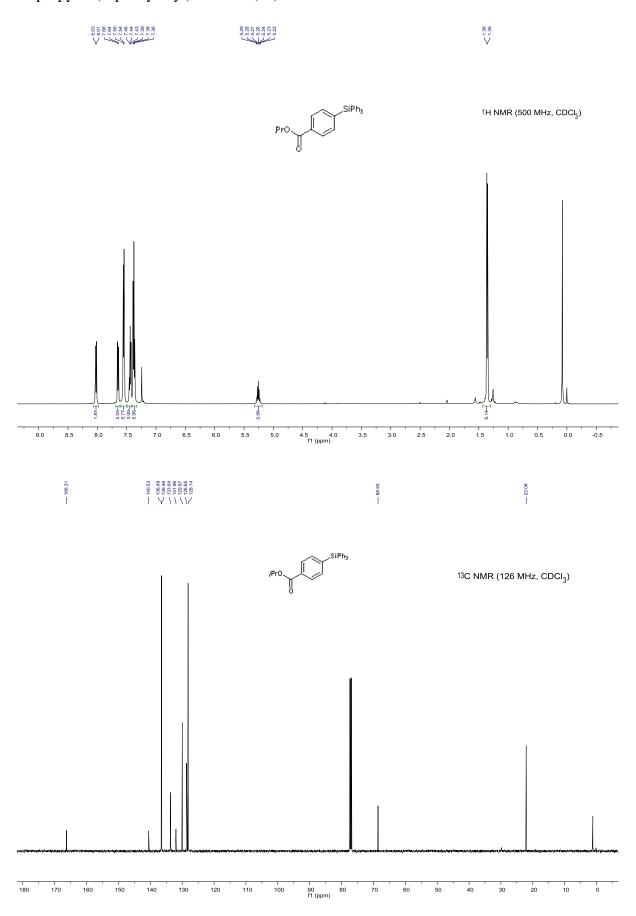


$[1,1'\text{-}Biphenyl]\text{-}3\text{-}yl(methyl)diphenylsilane} \ (\textbf{4c})$

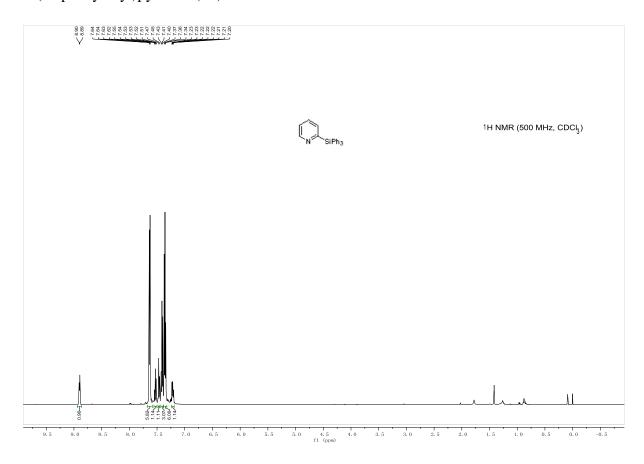


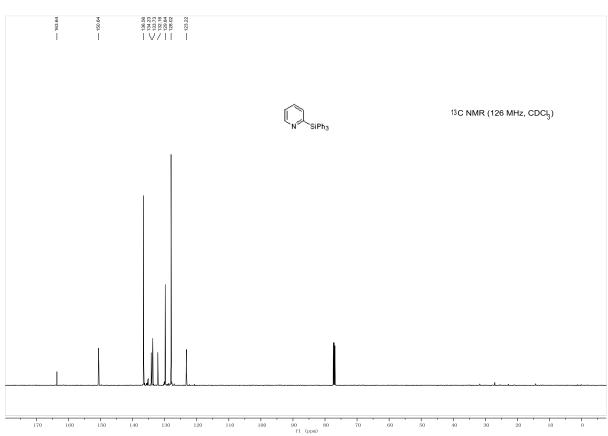


$Methyl (naphthalen-2-yl) diphenyl silane~ ({\bf 4d})$



$\hbox{$2$-(Methyldiphenylsilyl)} pyridine \ \textbf{(4e)}$





Isopropyl 4-(triphenylsilyl)benzoate (5a)

2-(Triphenylsilyl)pyridine (**5b**)

